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Spin disorder in the two-dimensional Hubbard model: A mean-field theory
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A scheme of symmetry breaking is proposed for the two-dimensional Hubbard model at less
than half filling. The self-induced mean field is a random spin-dependent potential. The energy
of the spin-disordered state is shown to be lower than that of commensurate or incommensurate
antiferromagnetic states. Long-wavelength charge and spin Auctuations obey the diAusion equa-
tion, leading to deviations from Fermi-liquid behavior. At wave vector q=(tr, tr) the transverse
spin-excitation spectrum has a gap.

The recently discovered copper oxide-based supercon-
ductors' have a rich phase diagram. Transitions between
antiferromagnetic (AFM) and superconducting phases
are induced by relatively small compositional changes.
The simplest model that appears to have the potential to
describe such complex behavior is the two-dimensional
Hubbard model. At half filling (filling fraction x =50%)
this model has a commensurate AFM ground state. Far
away from half filling its ground state is paramagnetic.
An outstanding theoretical question is to determine the
character of the ground state at intermediate filling frac-
tions. Most theoretical work thus far has focused on the
case of very small departures from half filling. In that re-
gime the AFM state has been found to be unstable with
respect to various types of incommensurate structures
and/or localized defects. ' For larger departures from
half filling —characteristic of superconducting composi-
tion —even these defective AFM states become unstable.

In this paper I study the ground state of the Hubbard
model at filling fractions x & 50% within the frame of
Hartree-Fock mean-field theory. I show that, at least in a
range of concentrations (20% & x & 45%) and interaction
strengths, the system admits an enormous number of
spin-disordered states (SDS) whose mean-field energies
are lower than those of the commensurate AFM state, or
its incommensurate version. These SDS's are character-
ized by a random spin density and by a finite Edwards-
Anderson order parameter. Efrectively then, the SDS is a
spin-glass phase, except that spin disorder is entirely
self induced-

I start from the standard one-band Hubbard Hamil-
tonian

H = —t g (c~c,, +c~,c;,)+Urn;ln;1, (1)
(ij )s I

where c;, is the destruction operator of an electron at site
i, with spin projection s, and (i,j ) indicates summation
over all nearest-neighbor pairs on a square lattice. Al-
though in the region of interest the Coulomb repulsion U
is comparable to the bandwidth W =8t, the Hartree-Fock
(HF) approximation is still the natural starting point for a
systematic treatment of many-body eAects. Inclusion of
many-body corrections can be achieved by standard tech-
niques (e.g. , the loop expansion) which have already en-
joyed considerable success in the half-filled case.

Obtaining an unrestricted solution of the HF equations
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FIG. 1. Hartree-Fock phase diagram for the two-dimensional
Hubbard model. AFM, FM, and PM denote antiferromagnetic,
ferromagnetic, and antiferromagnetic ground states, respective-
ly. The shaded region indicates the approximate stability region
of the model spin disorder state introduced in the text. x is the
filling fraction.

for the Hamiltonian (1) at arbitrary filling fraction is a
very complex numerical task. A good deal of insight into
the character of the solution can be obtained by consider-
ing the phase diagram of Fig. 1, showing the regions of
relative stability (within HF) of the paramagnetic (PM),
commensurate antiferromagnetic, and ferromagnetic
(FM) states. The most remarkable feature is the close
proximity of the AFM and FM regions: the energies of
the two phases coincide along the boundary line. This
suggests that near the phase boundary, the system may be
a mixture of ferro- and antiferromagnetic regions. This
idea is supported by the observation that doping the
AFM state with few holes creates domain walls across
which the phase of the AFM order parameter slips by z.
The relative orientation of a pair of neighboring spins on
opposite sides of a linear wall is ferromagnetic. As the
density of domain walls increases so does the number of
ferromagnetic pairs of spins. Like in conventional spin
glasses, the most likely result of a competition between
ferro- and antiferromagnetic pairings is a randomly disor-
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dered spin state. '

To make the above ideas more quantitative, I propose
as a variational wave function for (1) the ground-state
wave function of the following one-electron Hamiltonian:
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The symmetry-breaking field V; is regarded as a set of
variational parameters. The expectation value of H in the
ground state of H, ff must be minimized with respect to
V s. Usually V; is taken to be a highly symmetric func-
tion in real space; but in this case I regard V; as a random
function of position. To simplify the subsequent calcula-
tions I assume that the spin densities point in the z direc-
tion, i.e.,

V; =(0,0, V;),
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(4a)
where s„are the exact eigenvalues of H, tt, and f,, is the
Fermi distribution at zero temperature. (ii) Coherent-
potential approximation' (CPA) for an infinite lattice.
The energy functional to be minimized in this case is

t Ef
E2(i5, ) = —2tr ' g sk ImG (k, co+i rt) dro

+Up &(n;1))+,((n;l))+, , (41 )

where eq = —2t (cosk +coskJ ) is the usual tight-binding
dispersion, G(k, ro) is the average CPA Green's function,
EF is the Fermi energy, and ((n;, ))~& are disorder aver-
ages of (n;, ) subject to the condition that the potential on
site i be + h. Notice that because the energy is self-
averaging, it only depends on the parameters characteriz-
ing the statistical distribution of the V; s. (To within Iluc-
tuations of order I per size of the system. )

The curve for El (8,) is plotted in Fig. 2, for the
representative case U=8t, filling fraction x =40%. The
curve for E2(h) would be barely distinguishable from the
one for E~ (5) on the scale of this graph. The minimum is

found at h. =0.35U. The close agreement between the
CPA and the finite lattice calculation convincingly
demonstrates that localization and finite-size effects do
not significantly affect the energy functional.

In Fig. 2 I have also plotted the energy of the AFM
state and of the incommensurate AFM (IAFM) state,
with parameters as proposed by Schulz. Both curves lie
above the SDS one, although the IAFM is considerably
closer. The CPA density of states at the optimum h, is

where V; is a random variable that can take the values
+h, and —5 with equal probability. The V s on different
sites are assumed to be uncorrelated. This schematic
model' is already sufficient to give lower variational ener-

gy than commensurate or incommensurate AFM states.
I have calculated the average energy of the model SDS

by two different methods. (i) Exact diagonalization of
H ff on a 1 0 x 10 lattice with periodic boundary conditions.
In this case the energy to be minimized with respect to h,

is given by

E, (a) =pc„f,, +Up(n;l)(n;J) g V~((n;t) (n'J)),

FIG. 2. Energy vs "order parameter" 3, for AFM, IAFM, and
SDS ground states at U=8t, x =40%. IAFM has wave vector

q = (2.712,sr) as suggested in Ref. 5. Inset: density of states for
PM (5=0), AFM (6 =0.32U), and model SDS (5=0.35U).
The arrow indicates the position of the Fermi energy in the
SDS.

p" '(q, &) =pot(q, n)[1 —(+)got(q, n)] (Sa)

shown in the inset of Fig. 2. The mechanism of energy
reduction in the SDS appears to be mainly associated with
the "softening" of the gap compared to the AFM state.

The region of stability of the present model at T=O is
sketched in Fig. 1. I believe that this region can be ex-
tended by allowing for more variational flexibility, for in-
stance, by including some degree of short-range order. At
finite temperature, thermal fluctuations will greatly favor
the SDS relative to an ordered state. This agrees with the
fact that neither ferro- nor antiferromagnetism was ob-
served in computer simulations of the two-dimensional
Hubbard model in the non-half-filled case. "

It is important to appreciate the profound difference be-
tween the present theory and previous "alloy analogy"
treatments of the Hubbard model. ' ' In the latter, a
random potential was introduced to model the effect of
correlations (i.e. , the many-body self-energy) in the
paramagnetic state. This led to violations of Fermi-liquid
theory in the weak-coupling limit. In the present work no
correlation effects have been considered. The SDS is a
mean-field solution characterized by true static spin disor-
der, which can be experimentally measured.

Of course, one cannot rule out the possibility that
strong fluctuations, not included in the present calcula-
tion, might completely destroy any static arrangement of
spins. In that case, the correct physical picture would be
that of a paramagnetic spin liquid —a sort of time-depen-
dent SDS in which the spin-orientations fluctuate in space
and time. The present solution should then be regarded as
a static approximation to the true dynamical state.

I now discuss some of' the physical consequences of the
SDS. The response of the system to an external probe is
determined by the average two-particle correlation func-
tions
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for charge ( —) and longitudinal spin (+) correlations,
and

(q, n) =g(q, n) [I+Ugo'(q, n)] (sb)

for transverse spin correlations. go and go are the longitu-
dinal and transverse response functions of H, g, evaluated
at a locally stable configuration of the effective field. ' In
the CPA, go and go are given by

g,'(q, n) =N(E, ) Dq (7)—i 0+Dq
Here N(EF) is the density of states per spin at the Fermi
energy, and D & 0 is the bare diffusion constant, which
can be calculated in the CPA. Equation (7) is just a
statement that density fluctuations of either spin obey a
diffusion equation at long wavelength and low frequency.
The presence of diffusion, combined with the electron-
electron interaction in two dimensions leads to several in-
teresting deviations from standard Fermi-liquid theory. '

For instance, the inverse lifetime 1/r of an exact eigen-
state of H, g scales at T =0 as E —EF, rather than
(E EF) . A linear —behavior of the quasiparticle width
as a function of E EF has been—irideed observed in pho-
toemission experiments on high-T, superconductors. ' I
note, incidentally, that the observation of a Fermi surface
in angle-resolved photoemission experiments is not incom-
patible with the existence of spin disorder. A Fermi sur-
face can still be seen because the spectral function of
quasiparticles remains peaked in momentum space.
However, since the quasiparticle width is comparable to
its energy, the system is at best a "marginal" Fermi
liquid.

(ii) q=(rr, tr). At this value of q the spectrum of non-
interacting transverse spin excitations can be calculated
exactly. The result is

'Imago(q, &+i~) =
~ N«/2)~(l &I —2IEFI)

Note that the spectrum vanishes for IQI &2IEFI, ir-
respective of the form of the random potential. Thus, the
noninteracting transverse spin spectrum has a gap of mag-
nitude 2IEFI. This result is a consequence of the follow-
ing theorem: For V; in the form ofEq. (3), if y„(l ) is an
eigenfunction of H, tt, with energy E and spin s, then
ttI-, —,(l)=e'~ y„(l) is also—an eigenfunction of H, tt
with energy —E and spin —s. (The proof is by direct
substitution. ) The application of a transverse probe with
momentum transfer Q will therefore excite a spin s elec-
tron with energy E & EF ( & 0) to a —s state with energy

~."'(q, n) =g . G(1 +q, ~+ n)G(k, ~)
2@i

x I-I(t)(q + Q )
where I is the well-known CPA vertex correction. '

The calculation of g, is a cumbersome numerical task.
However, some elegant analytic results can be derived for
the special cases q —=0 and q =Q = (rr, rr).

(i) q =0. The CPA vertex correction I (q, to+ 0+i rt, ro
—irt) has a pole when q and t1 tend to zero and co =EF.
Hence, the longitudinal response function takes the famil-
iar diffusion form
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FIG. 3. Denominator of the transverse spin susceptibility, Eq.
(5h), vs Q at q =(z,x). The zero of the real part determines the
energy of the bound exciton.

E & —EF. The minimum excitation energy in the process
is 2IEF I. Since there is a finite density of states at EF, the
excitation spectrum will have a finite discontinuity at
2IEF I.

Consider now the interacting transverse correlation
function, given by Eq. (Sb). The denominator
1+Ugo(Q, 0 ) is plotted in Fig. 3. At 0 =0 its real part is
found to be positive, as it must be if the SDS is stable. As

2IEF I, it diverges logarithmically to —~, due to the
discontinuity in the imaginary part. Thus, the interacting
response function must have a pole at some frequency be-
tween 0 and 2IEFI. I interpret this pole as a bound exci-
ton formed by an electron and a hole with opposite spins
and energies (relative to the center of the band).

It should be clear from the above discussion that the ex-
istence of the bound exciton does not depend on the
specific form of the one-electron potential and thus it does
not unambiguously characterize the SDS. In particular, a
paramagnetic state could also support the bound exciton.
Within the frame of the Hartree-Fock theory of the Hub-
bard model, this does not appear to be the case: the
paramagnetic state becomes unstable well before the
bound exciton can emerge as a significant collective exci-
tation of the system. However, a strongly correlated
paramagnetic state, for which the HF description is in-
valid, could support the exciton.

The magnetic spectrum of the SDS is dramatically
difi'erent from that of an antiferromagnet (even a "short-
range" one) in that low-energy damped spin waves are ab-
sent. The SDS also has a zero-frequency Goldstone mode,
corresponding to a global rotation of all spins. However,
because of the random orientations of the spins, this mode
does not overlap significantly with any plane-wave probe.
It plays no role in neutron-scattering experiments.

The above results have interesting implications for the
interpretation of inelastic neutron-scattering experi-
ments on superconducting samples of YBa2Cu306+
At x =0.45, T, =45 K, it was found that the system has
an antiferromagnetic correlation length extending over
several lattice constants at low temperature. The low-
energy excitation spectrum (3 meV) near momentum
transfer Q was successfully interpreted in terms of
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damped spin waves. ' At x =0.5, T, =50 K, however,
the antiferromagnetic correlation length appears to drop
by an order of magnitude. (See Table II in Ref. 23.) The
low-energy cross section also drops dramatically, but a
peak in the cross section is still observed at considerably
higher energy (10 meU).

I propose that the x =0.5 sample is a realization of the
SDS. The peak at finite energy should then be interpreted
as the bound exciton state. This interpretation is also
supported by the stability of the x =0.5 spectrum with in-
creasing temperature. The x =0.45 sample, which is lo-
cally ordered, has a temperature-dependent spectrum,
which becomes similar to that of the disordered sample as

T increases.
In summary, I have proposed in this paper a scheme of

symmetry breaking in which the self-induced mean field is
a random spin-dependent potential. I have shown that a
spin-disordered state is a definite possibility from the en-
ergy and stability point of view, and that it leads to
definite predictions about the nature of the charge- and
spin-excitation spectra, which can be tested by experi-
ment.
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