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Radiative electron capture by channeled ions
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Much experimental data have been accumulated relative to the emission of photons accompany-
ing electron capture by swift, highly stripped channeled ions. Recent data suggest that the photon
energies may be less than that expected from simple considerations of transitions from the valence
band of the solid to hydrogenic states on the moving ion. We have studied theoretically the
impact-parameter dependence of the radiative-electron-capture process, including the efFect of the
ion s wake and capture from inner shells of the solid on the photon-emission probability, and using
a statistical local-density approach. Numerical comparisons of our results with experiment are
made.

I. INTRODUCTION

Schnopper et al. ' first observed the process of charge
transfer from a target atom to a highly stripped fast ion
in condensed matter accompanied by the emission of a
photon. Since then, this radiative-electron-capture
(REC) process has been the subject of much theoretical
and experimental effort, ' since it could become a
significant tool in the study of the momentum distribu-
tion of target electrons.

The REC process contributes only in a very small way
to the total production of radiation when swift ions cross
the matter; however, as pointed out by Appleton et al. ,
it becomes more important and amenable to interpreta-
tion when the bombarding ions are channeled through
the solid, since in these conditions the ions never ap-

O

proach closer than 0.1 or 0.2 A to target atoms. Thus,
the yield of characteristic x rays is very much smaller
than that observed when the beam is incident on the crys-
tal in a random direction. Furthermore, it has been
shown that channeled ions in thin foils have frozen
charge states, and although nonradiative electron capture
is the dominant mechanism for charge transfer, in ion
channeling the inhibition of close collisions makes the ra-
diative process relatively more important.

The purpose of this paper is to extend previous
theoretical approaches ' and to study the impact-
parameter dependence of the REC process as well as the
effect of capture from inner shells of the solid. We
present an interpretation of recent experimental data, '

which suggest that REC photon energies may be less
than that expected from simple considerations of transi-
tions from the valence band of the solid to hydrogenic
states of the moving ion. Measured peak-energy posi-

lions, widths, and cross sections of the emitted radiation
are compared to calculations made for the channeling
mode.

II. THEORY

We consider a solid through which a swift, stripped ion
of charge Z, and velocity v passes, and assume that it
captures an electron accompanied by the emission of a
single photon. Treating the ion as infinitely massive, and
proceeding nonrelativistically, we work in the projectile
frame where the center-of-mass motion generates no
current, so that the possibility of spurious radiation does
not arise. ' Unless otherwise stated, atomic units are
used throughout.

The probability per unit energy and unit solid angle for
capturing a target electron from the initial state,
represented by y;(r), into the final bound state, represent-
ed by q& (r), in a collision at impact parameter b with
emission of a photon of polarization A, and propagation
vector k is found by treating the electromagnetic field as
a small perturbation and using first-order perturbation
theory. ' We have

d y E 2

dEdn =, Ifl',

where E =ck is the photon energy, c is the velocity of
light, and the amplitude f is given by

f = (2vri&E )

X Jdt e' '(yf(r)le '"'A, Vly, (r+b+vt)e '"'),
(2)
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with

co=E+Ef—E, ——,'U 2 (3)

7TZi CO

E = —-'Z'+f 2

A. Capture of an electron from a bound state in the solid
E; and Ef are the initial and final stationary-state ener-
gies, referring to the target and to the ion, respectively.
After Fourier transformation of the wave functions to the
momentum representation, we find

f =E '/ f dq5(co+q v)A, (q. v—)e'"
1p, (r) =(p /77)

with

(10)

Suppose that electrons in the solid and near the center
of a channel may be represented by the orbital

xq1f*(q —v —k)q1;(q) . (4) P=( 2E, )'/—

q1f(r)=(a'/m)'/ e

with

a=( 2E )'/—f

(5)

It is interesting to remark that the enhancement of the
mean electron density of the polarized medium induces a
potential at the site of the projectile given, in the linear
approximation, by'

T

If we specialize to the situation in which the electron is
captured to the lowest state, that is, to a E-shell orbital of
the ion, we have'

iq.b
X

[a2+(qI)2]2(p2+ 2)2
(12)

E; being the binding energy of the electron in the lattice,
which may be taken to be a few eV, and r the distance
from a lattice atom to the ion. This is a very schematic
form of the wave function in an interior region of the
solid that will be improved later on.

Introducing the Fourier transforms of the wave func-
tions (5) and (10) into (4), we find

23(ap)5/2f = — f dqA, .(q —v)5(q v+co)~'&E

Z]
lim 4(r)— 7TZ ) cop

2U

where

q'=q —v —k. (13)
where @(r) is the total wake potential of the projectile
moving in the medium, and m is the plasmon frequency

—
( 3/& 3 )1/2

r, being the equivalent one-electron radius of the electron
gas, at the position of the ion. Consequently, the energy
eigenvalue for the lowest state of the hydrogenlike mov-
ing ion should be

Introducing (12) into (1), choosing the z axis in the direc-
tion of v, taking (Q, q, ), summing over the polarization
index, A, , and transferring to the laboratory frame, we
find in the dipole approximation the following expression
for the probability per unit energy and unit solid angle
for emission of a photon of energy E at 0 with respect to
the beam direction after a collision at impact parameter
b:

d'y
dE dO

2( P)E A, .(Q+Q )e'~'

4C3U2
dQ

( 2+g2+g2 )2(p2+g2+g2 )2
(14)

where

1
Q =

2 [ —Ef+E, ,'u E(1—u c—o—s8/c—)]v
U

and

1
Q13= 2 [ Ef+E;+ ,'u —E(1—u cos8—/c)—]v .

(15)

In particular, for emission of a photon at 0=0 with respect to the beam direction, we have

d y 2(aP)E O'Jo Qb

~c u o (a+Q +Q )(P+Q +Q )

and for emission of radiation at 0)&1,one may write

(8»1)= dg
2 (aP) E sin 8 QJo(gb)

dEdQ b o (a2+Q2+g2 )2(P2+Q2+g2 )2
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2/3[3' n (r)]E~(r) = (20)
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d j 2'a E (kX(q —v)~ /k
e V; [a+(q —v —k) ]

where we have substituted the identity'

g ~A,
.(q —v)~ = ~kX(q —v)~ /k

and

m+q v=E+Ef+E~ —
—,'(q —v)

(23)

(24)

(25)

where F, is the energy of the electron referenced to the
vacuum level and EF represents the local Fermi energy of
Eq. (20), which accounts for the fact that electrons at
small r tend to be bound in the solid more strongly than
those at larger values of r.

The first summation in (23) runs over initial states of
the target electron; transforming this sum to an integral
covering a Fermi sphere of electrons, incorporating a fac-
tor of 2 for the possible spin states, and transforming to
the laboratory frame, we find, after some algebra, the
diff'erential inverse mean free path (DIMFP) per unit en-

ergy and unit solid angle for emission of a photon with
energy E at O with respect to the incident beam as

dp a E J'm. x f 2~ [(qp v)sin—0 qvc—os0cosq&] +v q sin y
dEdA 2~ c v q v E

EF+E' 1 ——p+ —cosO+
C C 2C

(26)

when

Ei Ef 2 i/EiE—~ E' Ei Ef +2%—E,E~

and zero, otherwise. In these expressions,

q;„= i/ 2(Ef +EF+E')—+2E, ,

q,„=min(+2E+, +2(Ef +Ez+E')+ i/2Ei ),
1p= t ,'q (Ef +Ez+—E'—)+E,],

qv
—

( 1 2)1/2

p =p cosO+ v sinO cosy,

E =—'u'
1

(27)

(28)

(29)

(30)

(31)

(32)

(33)

and

E'=E(1—v cos0/c) .

If the dipole approximation is made, thus neglecting k in comparison with q and v, one obtains

Ci (E,„E;„)+C2(E—,„E,„)+C3(E—,„E;„)—
dEdQ 4~ c E,(EF+E')

(34)

(35)

where 2
max 2 ~ max (40)

(Ef+EF+E' E,)—
(sin 0—2 cos 0)

2Ei

+4(Ef+EF+E')sin 0,
Ef +EF+E'+E)

C =—
2 2E)

(sin 0—2 cos 0) 7

1
C3 = (sin 0 2 cos 0),

1

(37)

(38)

dp 2 a E f F ) max min)

3mc'u' (EF+E)
(41)

2. Coulombic waves

Integrating Eq. (35) over all directions of photon emis-
sion, one finds the DIMFP per unit energy for emission
of a photon with energy E as

and

Emin 2 9 min (39) Alternatively, we may assume, in the local-density ap-
proximation, that each electron undergoing capture from
the solid experiences the full Coulomb field of the projec-
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tile, that is, that target electrons in a given part of the
solid are in a continuum hydrogenic state of the bare
bombarding ion,

y;(r) = — g (2l + 1)i'e 'RI(q, r)P&(cos8), (42)
2q t=o

where q represents, as before, the initial momentum of
the electron, the quantities Rl and PI represent the radial

solution of the Schrodinger equation and the Legendre
polynomials, respectively, and 0 is the angle between q
and r.

Making use of the fact that in the dipole approxima-
tion only those continuum eigenfunctions with l = 1 con-
tribute, we find in this approximation the following result
for the transition rate per unit energy and unit solid angle
for emission of a photon of propagation vector k:

y y
dE dQ ~'y

~kX(q —v)~ f (Q Ef l—(Ef+EF+E))/k
5(co+q v),

(q —v) [a +(q —v) ]
(43)

where the argument of the 5 function is given by Eq. (25), and

—4x tan (1/x)f (x)= (44)

In particular, setting the Fermi energy equal to zero, thus the only contribution to the sum over initial states coming
from q =0, and integrating over all directions and energies of the emitted radiation yields the Bethe-Salpeter cross sec-
tion for radiative recombination. '

Now transforming the sum of Eq. (43) to an integral covering a Fermi sphere of target electrons, incorporating a fac-
tor of 2 for the possible spin states, and transforming to the laboratory frame, one Ands

Ci (E,„E;„)+—C2(E,„E;„)+—C3(E,„E;„)—
2 ~c Ei(Ef+E~+E') (E +E') (45)

where C„Cz, C3, E;„,and E,„are given by Eqs. (36),
(37), (38), (39), and (40), respectively, and E' is the energy
of the emitted radiation with respect to the ion frame,
which is given by Eq. (34).

Integrating Eq. (45) over all directions of the emitted
radiation, one finds

dp 2 a E (Emax min)f(& Ef ~(Ef
dE 3c E,(Ef+EF+E)' (EF+E)

(46)

J dr r(r b;„) — [EF(r)],
r ~s min dE dQ

(47)

where r~s is the Wigner-Seitz radius, and the local
DIMFP per unit energy and unit solid angle is given by
Eqs. (26), (35), or (45), depending on whether the dipole
approximation is made and whether plane waves or
Coulombic waves of target electrons are used. The total
electron density in this expression is computed from a rel-
ativistic Hartree-Fock program using the Wigner-Seitz
boundary condition, ' thus obtaining the local Fermi en-
ergy from Eq. (20). Figure 3 shows a plot against r of the
local equivalent one-electron radius computed in this way
for silicon.

3. Statisticai model for channeled ions

With the aim of interpretating the available experimen-
tal data, we are interested in the dependence of REC
probabilities on photon energy for a given direction of
emission. Therefore, we consider expressions (26), (35),
and (45) for the local DIMFP per unit energy and unit
solid angle in a given part of the solid, and then we em-
ploy a statistical approximation.

Assuming that capture from an infinitesimal volume
element of the solid can be calculated by attributing the
local Fermi energy of Eq. (20) to electrons in that volume
element, and that channeled ions sample on straight-line
trajectories all portions of the Wigner-Seitz sphere corre-
sponding to impact parameters greater than a given b
we follow Ref. 9 and write the statistical average of the
DIMFP per unit energy and unit solid angle as '

0.5
r (A.)

FICx. 3. The equivalent one-electron radius r, (r) plotted vs

position in the Wigner-Seitz cell for silicon, as calculated using
a relativistic Hartree-Fock approach (Ref. 21).
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III. RESULTS
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FIG. 8. Total recombination cross sections calculated from
Eq. (48) (solid curves) and from Eq. (49) (dashed curves), as a
function of emitted photon energy, for Z, = 8 [Fig. 8(a)] and
Z, =16 [Fig. 8(b)].

2 1 2n ( vf) (v+vf)
3 2 C 3 (48)

and

2'~ 1 2~
, f( I/' vf/(v+vf)), —

c & (v+vf )v
(49)

come slightly smaller.
Such differences between differential cross sections per

unit target atom and solid angle also exist in the well-
known total cross sections for recombination. These
are'

when plane waves and when Coulombic waves are used
to represent target electrons, respectively; in these expres-
sions 1/c is the classical electron radius, 2~/c the
Compton wavelength of the electron, and vf and v
represent the frequency of the captured electron and the
emitted radiation frequency, respectively.

Figure 8 shows plots of the total recombination cross
sections calculated from Eqs. (48) (solid curves) and (49)
(dashed curves) against the emitted photon energy, for
different values of the bombarding ion charge: Z&=8
[Fig. 8(a)] and Z, =16 [Fig. 8(b)]. Notice that although
at high energies the cross section can be determined ap-
proximately using the Born approximation, that is, as-
suming that the target electrons are initially free, for en-
ergies of interest here the introduction of the bare
Coulomb potential gives rise to a faster decrease of the
cross section as the photon energy is increased. This is
specially true for high Z&, however, this effect seems to
be not appreciable at high velocities when the charge of
the bombarding ion becomes smaller, as one might ex-
pect.

IV. CONCLUSIONS

We have used a statistical local-density approach to
model the capture of electrons by swift ions channeling in
solids. Our results tend to confirm the deficit in REC
photon energies observed by Vane et al. This deficit
originates in two different physical mechanisms, both of
which become more important with decreasing impact
parameter of the ion relative to atoms in the solid. These
are (a) the width of the distributions in momentum of
electrons in the solid, and (b) the depolarizing effect of
the ion's wake on the binding energy of the captured elec-
tron. Use of Coulombic initial-state wave functions tends
to result in improved agreement with experimental REC
energies.
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