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Much experimental data have been accumulated relative to the emission of photons accompany-
ing electron capture by swift, highly stripped channeled ions. Recent data suggest that the photon
energies may be less than that expected from simple considerations of transitions from the valence
band of the solid to hydrogenic states on the moving ion. We have studied theoretically the
impact-parameter dependence of the radiative-electron-capture process, including the effect of the
ion’s wake and capture from inner shells of the solid on the photon-emission probability, and using
a statistical local-density approach. Numerical comparisons of our results with experiment are

made.

I. INTRODUCTION

Schnopper et al.! first observed the process of charge
transfer from a target atom to a highly stripped fast ion
in condensed matter accompanied by the emission of a
photon. Since then, this radiative-electron-capture
(REC) process has been the subject of much theoretical
and experimental effort,>”!? since it could become a
significant tool in the study of the momentum distribu-
tion of target electrons.

The REC process contributes only in a very small way
to the total production of radiation when swift ions cross
the matter; however, as pointed out by Appleton et al.,®
it becomes more important and amenable to interpreta-
tion when the bombarding ions are channeled through
the solid, since in these conditions the ions never ap-
proach closer than 0.1 or 0.2 A to target atoms. Thus,
the yield of characteristic x rays is very much smaller
than that observed when the beam is incident on the crys-
tal in a random direction. Furthermore, it has been
shown that channeled ions in thin foils have frozen
charge states, and although nonradiative electron capture
is the dominant mechanism for charge transfer, in ion
channeling the inhibition of close collisions makes the ra-
diative process relatively more important.

The purpose of this paper is to extend previous
theoretical approaches*® and to study the impact-
parameter dependence of the REC process as well as the
effect of capture from inner shells of the solid. We
present an interpretation of recent experimental data,'
which suggest that REC photon energies may be less
than that expected from simple considerations of transi-
tions from the valence band of the solid to hydrogenic
states of the moving ion. Measured peak-energy posi-
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uons, widths, and cross sections of the emitted radiation
are compared to calculations made for the channeling
mode.

II. THEORY

We consider a solid through which a swift, stripped ion
of charge Z, and velocity v passes, and assume that it
captures an electron accompanied by the emission of a
single photon. Treating the ion as infinitely massive, and
proceeding nonrelativistically, we work in the projectile
frame where the center-of-mass motion generates no
current, so that the possibility of spurious radiation does
not arise.'* Unless otherwise stated, atomic units are
used throughout.

The probability per unit energy and unit solid angle for
capturing a target electron from the initial state,
represented by @;(r), into the final bound state, represent-
ed by @;(r), in a collision at impact parameter b with
emission of a photon of polarization A and propagation
vector k is found by treating the electromagnetic field as
a small perturbation and using first-order perturbation
theory.!> We have

_dy
dE dQ

E2
==|f2, (1)
br €

where E =ck is the photon energy, ¢ is the velocity of
light, and the amplitude f is given by

f=QmvE)!
><fdtei“”<¢)f(r)|e_ik"A~V|<Pi(r+b+vt)e_iv") ,
(2)

62 ©1991 The American Physical Society



43 RADIATIVE ELECTRON CAPTURE BY CHANNELED IONS 63
with , , TZ\0,
E,=—1z}+ : 9)
w=E+E,—E,—1v*. 3) 2

E; and E, are the initial and final stationary-state ener-
gies, referring to the target and to the ion, respectively.
After Fourier transformation of the wave functions to the
momentum representation, we find

f=E‘1/2f dq8(w+q-v)A-(q—v)e'd®
X@Ha—v—k)g;(q) . @

If we specialize to the situation in which the electron is
captured to the lowest state, that is, to a K-shell orbital of
the ion, we have!®

¢f(r)=(a3/ﬂ.)1/ze—ar , (5)
with
a=(—2E;)'"?. (6)

It is interesting to remark that the enhancement of the
mean electron density of the polarized medium induces a
potential at the site of the projectile given, in the linear
approximation, by!’

Z,

LAY
CD(r)'—T —1r

v

lim =

r—0

(7)

where ®(r) is the total wake potential of the projectile
moving in the medium, and ®,, is the plasmon frequency

w,=3/r))1"?, (8)

r, being the equivalent one-electron radius of the electron
gas, at the position of the ion. Consequently, the energy
eigenvalue for the lowest state of the hydrogenlike mov-
ing ion should be

A. Capture of an electron from a bound state in the solid

Suppose that electrons in the solid and near the center
of a channel may be represented by the orbital

@ (r)= (B3 /)% F" | (10)
with
B=(—2E;)'"?, (11)

E; being the binding energy of the electron in the lattice,
which may be taken to be a few eV, and r the distance
from a lattice atom to the ion. This is a very schematic
form of the wave function in an interior region of the
solid that will be improved later on.

Introducing the Fourier transforms of the wave func-
tions (5) and (10) into (4), we find

f= —Z—W—Mqux (q—v)8(q-v+a)
piab
QICEEPIOR
where
qQ=q—v—k. (13)

Introducing (12) into (1), choosing the z axis in the direc-
tion of v, taking (Q,q,), summing over the polarization
index, A, and transferring to the laboratory frame, we
find in the dipole approximation the following expression
for the probability per unit energy and unit solid angle
for emission of a photon of energy E at 6 with respect to
the beam direction after a collision at impact parameter
b:

3 6 5 A,( + a)eiQ.b 2
o :2aB32EE fdQ 2 zszQz 2 22 | 14)
dEdQ mcdy (@*+Q*+ Q2B+ Q*+Qp)
where
Qu=-L[—E;+E —Lv2—E(1—v cosh/c)]v 15)
v
and
QB=—1—2[—Ef+E,-+%v2—E(1—v cos@/c)lv (16)
v
In particular, for emission of a photon at 6=0 with respect to the beam direction, we have
2 2
A | (gg)=2(eBVE [ ~ag 9 Jo(00) (17)
dE dQ b 2 3 2 0 ((12+Q2+Q§)Z(BZ+Q2+Q%)2 ’
and for emission of radiation at 6 >>1, one may write
Y| (gs>1)m _M [*dg QJo(Qb) ’ a8
dEdQ |, o T (a?+Q’+HQLAB+QI+QR)? |
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since the momentum wave functions ¢;;(q) are peaked
around q=0. J, represents the zero-order Bessel func-
tion of the first kind.

We give in Fig. 1 the REC spectrum calculated from
Eq. (18) for 160-MeV bombarding bare sulphur ions
channeled through silicon, wit13 60=46.5° as in the experi-
ment of Ref. 13, and b =1.5 A. In this calculation, the
final stationary-state energy has been corrected according
to Eq. (9) using the equivalent one-electron radius of an
electron gas of valence electron density equal to the total
electron density in the center of the channel (b =1.5 A),
i.e., r;=2.15 a.u. (see Fig. 3).

If we neglect the difference between the vacuum energy
and the actual energy of electrons in the target, as well as
the shift in the binding energy of an electron to the pro-
jectile due to polarization of the medium, the REC ener-
gy is given by

EREcz%UZ'*'%Z% . (19)

Figure 1 shows that the peak energy closely approximates
the REC energy of Eq. (19), though it is slightly smaller
due to the wake correction in the center of the channel.

The REC half widths calculated from Eq. (18) are
given in Fig. 2, as a function of the impact parameter b
for the same conditions as in Fig. 1. Notice that the pho-
ton energy distribution broadens as the impact parameter
decreases; this is consistent with the use of a local-density
approximation, whereby the initial momentum distribu-
tion of target electrons may be expected to be wider as
the impact parameter decreases, as will be shown in the
next section.

B. Capture in the local-density approximation

The electronic structures of crystalline solids of in-
terest in REC experiments are intricate and tedious to
calculate by state-of-the-art numerical methods. Even if
known, the representation of such structures in terms of

-9
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FIG. 1. REC probability per unit energy and unit solid angle
obtained from Eq. (18) for 160-MeV bombarding bare sulfur
ions, when capture occurs of electrons at 1.5 A from the nearest
atom in the crystal. The vertical dotted line refers to the REC
energy of Eq. (19).

orbitals such as in the simple example displayed in Sec.
IT A above would be difficult and time consuming. Here
we simplify REC calculations considerably by using the
local-density approximation. We assume that each
volume element of the solid encountered by the ion in its
channeling trajectory constitutes an independent electron
gas at the total local electron density, n(r). The local
Fermi energy is taken to be

2 2/3
EF(r): w.__ s 20)
when capture occurs from the vicinity of r in the solid.
Then we make the statistical average of the local REC
probability derived in this way over all possible channel-

ing trajectories of the ion.

1. Plane waves

Firstly, we assume in this approximation that the wave
functions of electrons in a given part of the solid are
plane waves

1 .
=___ pigqr 21
Vv e, 2n
where q represents the initial momentum of the target
electron in the laboratory frame.
After introducing Fourier transforms of the wave func-
tions (5) and (21) into Eq. (4), one finds

@;(r)

24a5 iq-b

EVw

A-(q—v)e
[a?+(q—v—k)?

f.:

]2 f°° dt ej(w+q~v)t;
(22)

then substituting Eq. (22) into Eq. (1), and summing over
the polarization index and over initial states of target
electrons, we find the transition rate per unit energy and
unit solid angle for emission of a photon of energy E and
propagation vector k to be

N
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FIG. 2. Half widths calculated from Eq. (18), as a function of
the impact distance, for incident ion energies from 120 to 180
MeV.
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dy _ 2°°E
dEdQ v

lk X (q—v)|*/k?
7 [a?+(q—v—k)?]

70w+qv),

where E; is the energy of the electron referenced to the
vacuum level and E represents the local Fermi energy of
Eq. (20), which accounts for the fact that electrons at

(23) small 7 tend to be bound in the solid more strongly than
those at larger values of 7.
h h bstituted the identity!® The first summation in (23) runs over initial states of
where we have substitute ¢ identity the target electron; transforming this sum to an integral
covering a Fermi sphere of electrons, incorporating a fac-
S [A-(@q—V)P=|kX(q—V)|?/k? (24)  tor of 2 for the possible spin states, and transforming to
A the laboratory frame, we find, after some algebra, the
and differential inverse mean free path (DIMFP) per unit en-
ergy and unit solid angle for emission of a photon with
o+qVv=E +E; +Ep—X(q—v)*, (25) energy E at 0 with respect to the incident beam as
J
du _ _a’E Imax 27 [(gu—nv)sinf—gqv cosf cosp]* +v?q>sin’p
dEdQ  2mcw? Jam, 119 TN g . v E|* 20
Er+E' [1—Zp+—cosf+—
c c 2¢?
when
E\—E;—2VE\Ex<E'<E,—E;+2VE E;, 27
and zero, otherwise. In these expressions,
Imin =V 2E;+E+E)—V2E, , (28)
qmax=min(V2EF"/2(Ef+EF+E’)+\/2E1) s (29)
1
=y B = (B Ep BN (30)
v=(1—pH'"?, 31
p=pcosf+vsinb cosg , (32)
E, =1, (33)
and
E'=E(1—vcosf/c) . (34)

If the dipole approximation is made, thus neglecting k in comparison with q and v, one obtains

d,u _ a5E Cl(Emax_Emin)+C2(Erzrlax—Eﬁlin)+C3(E3nax_Ex:';nin) 35)
dEdQ 472> E((Ep+E'* ’
[
h
where E o =10 - (40)
(E;+Er+E'—E,) , N :
= (sin20—2 cos20) Integrating Eq. (35) over all directions of photon emis-
2E, sion, one finds the DIMFP per unit energy for emission
+4(Ef+EF+E’)sin20 , (36) of a photon with energy E as
Ef+EF+E’+E1 L, ii_E'_: 24a5E (Ef+EF+E)(Emax_Emin) @1)
C,=— 2E, (sin?0—2 cos®9) , (37 dE  37c3p? (Ep+E)*
- s 2 2
G = 6E, (sin“9—2cos’0) , (38) 2. Coulombic waves
Epin=1 a2 (39) Alternatively, we may assume, in the local-density ap-
proximation, that each electron undergoing capture from
and the solid experiences the full Coulomb field of the projec-
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tile, that is, that target electrons in a given part of the
solid are in a continuum hydrogenic state of the bare
bombarding ion,

—‘/l—?z—lq 2 (2[ +1)ilei§IR1(q,r)P1(Cose) > (42)
1=0

where q represents, as before, the initial momentum of
the electron, the quantities R; and P, represent the radial

J

p;(r)=

solution of the Schrdédinger equation and the Legendre
polynomials, respectively, and 6 is the angle between q
and r.

Making use of the fact that in the dipole approxima-
tion only those continuum eigenfunctions with / =1 con-
tribute, we find in this approximation the following result
for the transition rate per unit energy and unit solid angle
for emission of a photon of propagation vector k:

d¥y _ 257a°E _ |kX(q—V)I*f(V'—E /(E;+Ep+E))/k?

dEdQ 3y <

(q—v)’[a?+(q—V)*]

S(ot+q-v), (43)

where the argument of the 8 function is given by Eq. (25), and

— —1
e 4x tan” '(1/x)

l_e—-27rx

(44)

In particular, setting the Fermi energy equal to zero, thus the only contribution to the sum over initial states coming
from g =0, and integrating over all directions and energies of the emitted radiation yields the Bethe-Salpeter cross sec-

tion for radiative recombination.'®

Now transforming the sum of Eq. (43) to an integral covering a Fermi sphere of target electrons, incorporating a fac-
tor of 2 for the possible spin states, and transforming to the laboratory frame, one finds

d,u. _ a6E Cl(Emax_Emin)+C2(Er2nax _Efnin

dEdQ 93723

where C,, C,, C3, E_;,, and E,, are given by Egs. (36),
(37), (38), (39), and (40), respectively, and E' is the energy
of the emitted radiation with respect to the ion frame,
which is given by Eq. (34).

Integrating Eq. (45) over all directions of the emitted
radiation, one finds

du _ 2%0°E (Emax— Emin f(V —E;/(E;+E+E))
dE 3¢3 E\((E;+Ep+E)/Ep+E)

(46)

3. Statistical model for channeled ions

With the aim of interpretating the available experimen-
tal data, we are interested in the dependence of REC
probabilities on photon energy for a given direction of
emission. Therefore, we consider expressions (26), (35),
and (45) for the local DIMFP per unit energy and unit
solid angle in a given part of the solid, and then we em-
ploy a statistical approximation.

Assuming that capture from an infinitesimal volume
element of the solid can be calculated by attributing the
local Fermi energy of Eq. (20) to electrons in that volume
element, and that channeled ions sample on straight-line
trajectories all portions of the Wigner-Seitz sphere corre-
sponding to impact parameters greater than a given b ;,,
we follow Ref. 9 and write the statistical average of the
DIMFP per unit energy and unit solid angle as®?°

E\(E;+Ep+E'Ep+E')

)+C3(E3nax_E?nin)
f(\/—Ef(Ef+EF+E’)) , (45)
[
<—dL>= 3 frwsdrr(r—b . )—dL[E (]
dEdQ [ rdg Y bmin mnTdEdQ TR
47)

where ryg is the Wigner-Seitz radius, and the local
DIMFP per unit energy and unit solid angle is given by
Egs. (26), (35), or (45), depending on whether the dipole
approximation is made and whether plane waves or
Coulombic waves of target electrons are used. The total
electron density in this expression is computed from a rel-
ativistic Hartree-Fock program using the Wigner-Seitz
boundary condition,?! thus obtaining the local Fermi en-
ergy from Eq. (20). Figure 3 shows a plot against r of the
local equivalent one-electron radius computed in this way
for silicon.

I, (au)

(=} L L i
0 0.5 1 1.5
r (A)

FIG. 3. The equivalent one-electron radius r,(7) plotted vs
position in the Wigner-Seitz cell for silicon, as calculated using
a relativistic Hartree-Fock approach (Ref. 21).
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1. RESULTS

In the present section we consider the REC spectrum
for collision of 100-200-MeV S!®* ions channeling
through a silicon target, when photons are emitted at
46.5° with respect to the beam direction. Comparisons of
our results with the experimental data of Vane et al.'?
are made.

We give in Fig. 4(a) the REC spectrum calculated from
Egs. (26), (35), and (45), for 160-MeV bombarding bare
sulphur ions and the local electron density of Fig. 3 cor-
responding to capture of electrons at 1.5 A from the
nearest atom in the crystal. The solid line has been calcu-
lated using initial-state plane waves, in the dipole approx-
imation. The dotted line has been obtained employing
plane waves, without the dipole approximation, from Eq.
(26), and the dashed line has been calculated for initial-
state Coulombic wave functions, in the dipole approxima-
tion. It is interesting to remark that Eqs. (26) and (35)

T T T T T
L (O) ——Plane waves, dipole approx.
...... Plane waves

’, —-- Coulombic waves, dipole approx.

9

DIMFP (10 a.u.)
0.5

Energy (keV)

- T e T L

(0)

—Plane waves, dipole opprox.
....Plane waves

i\~ Coulombic waves, dipole approx.

-9

Average DIMFP (10 a.u.)

Energy (keV)

FIG. 4. REC spectra obtained for 160-MeV bombarding bare
sulfur ions. (a) Local DIMFP per unit energy and unit solid an-
gle calculated from Egs. (26) (dotted curve), (35) (solid curve),
and (45) (dashed curve), when capture occurs of electrons at 1.5
A from the nearest atom in the crystal. (b) Average DIMFP per
unit energy and unit solid angle calculated from Eq. (47), for
bin=0.1 A and the local DIMFP’s of Egs. (26) (dotted curve),
(35) (solid curve), and (45) (dashed curve). The vertical dotted
line refers to the REC energy of Eq. (19).

predict essentially the same dependence of REC probabil-
ities on photon energy, although the results differ some-
what in magnitude. This figure also shows that assuming
Coulomb continuum wave functions rather than plane
waves for the initial states gives somewhat relatively
greater REC probabilities for small photon energies; the
energy of the REC peak is also slightly smaller. We
should mention that this effect happens to be more im-
portant as the impact parameter decreases.

It has been found that for small impact parameters the
DIMFP peak energy deviates importantly from the ener-
gy predicted by Eq. (19). This deviation is originated in
two different ways: On the one hand, the wake correc-
tion to the binding energy of the captured electron gets
more important as r decreases, and, on the other hand,
inner-shell electrons are more strongly bound to the solid;
this effect is slightly enhanced as a result of the fact that
emission probabilities get slightly greater as the energy
decreases, especially when the initial Coulombic wave
functions are considered. These results are favorably re-
lated to the REC deficit observed in recent experimental
data.’

In order to compare our theoretical results with experi-
ment, we compute the statistical average of the local
DIMFP by means of Eq. (47). Figure 4(b) exhibits plots
of the average DIMFP per unit energy and unit solid an-
gle when the minimum impact parameter is taken to be
bin=0.1 A; the local DIMFP’s have been calculated
from Eqgs. (26), (35), and (45), with the distance-dependent
local electron density of Fig. 3. Comparing Figs. 4(a) and
4(b) we find that the contribution of capture from inner
shells gives rise to a small shift in the peak energy compa-
rable to the experimentally observed REC deficit. In or-
der to illustrate this, the average DIMFP peak energies
deduced from Eq. (47) for b ,;, =0.1 A are plotted in Fig.
5(a) versus the energy of the incident ion, together with
the experimentally measured peak energies of Ref. 13 and
the REC energies of Eq. (19).

It appears from Fig. 5(a) that the calculated peak ener-
gies are systematically smaller than the REC energies cal-
culated from Eq. (19) by about 80 eV, in approximate
agreement with the experimental results. Representing
target electrons by Coulombic wave functions gives rise
to slightly smaller peak energies, as discussed above; this
can be due to the fact that in this case the increase in the
emission probability as the energy decreases becomes
more important. On the other hand, it may be shown
that making use of the dipole approximation does not
affect appreciably the peak-energy positions obtained em-
ploying plane waves.

The origin of the REC deficit obtained in this approxi-
mation is twofold, as discussed above. As the impact pa-
rameter decreases, thus increasing the total electron den-
sity, the wake correction to the binding energy of the
captured electron is enhanced, on the one hand, and the
initial momentum distribution of target electrons gets
wider, on the other hand. These two contributions to the
energy deficit are shown separately in Fig. 5(b), as a func-
tion of the energy of projectiles, for b, =0.1 A; the
dashed line represents the contribution to the energy
deficit due to the broadening of the momentum distribu-
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tion, the dotted line represents the contribution from the
wake correction to the binding energy of the captured
electron, and the solid line represents the total energy
deficit.

Radiative electron-capture half widths calculated from
average REC distributions described by Eq. (47) are
found to be wider as the minimum impact parameter de-
creases, as one might expect. We have calculated, also,
widths of these distributions as a function of the incident
ion energy, and plotted them in Fig. 6 for different
minimum impact parameters, together with the experi-
mental results of Ref. 13. The theoretical values are
somewhat larger than the experimental ones, but the en-
ergy dependences are nearly the same.

T 1
S C))
=
[
=
>
4
(7]
e
)
x
o
@
e s A Eq. (19)
— Plane waves, dipole approx.
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F
" | 1 L 1 |
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FIG. 5. (a) Peak-energy positions of the average DIMFP per

unit energy and unit solid angle calculated from Eq. (47), as a
function of the energy of bombarding ions, for b,,;, =0.1 A and
the distance-dependent local DIMFP’s of Egs. (35) (solid line)
and (45) (dashed line). Also shown are the REC energies of Eq.
(19) (dotted line) and the measured peak energies of Ref. 13
(cross points). (b) Calculated energy deficit, as a function of the
energy of bombarding ions (solid line). The dashed and dotted
lines represent the contribution to the energy deficit from the
broadening of the initial momentum distribution and from wake
corrections to the binding energy of the captured electron, re-
spectively.

Half-width (keV)

* —— Plane waves, dipole approx.
—— Coulombic waves, dipole approx.
<L +  Experiment N
o
*
L 1 N I L L I
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FIG. 6. Half widths calculated from Eq. (47) as a function of
the 1nc1dent ion energy, with minimum impact parameters from
0.1 to 0.7 A. The local DIMFP’s for capture of electrons in a
given part of the solid are calculated from Egs. (35) (solid lines)
and (45) (dashed lines). Also shown are the measured widths of
Ref. 13 (cross points).

Finally, we have calculated the REC differential cross
sections per target atom and unit solid angle, by dividing
the average DIMFP of Eq. (47) by the atomic density of
the solid and integrating numerically over the photon en-
ergy. Figure 7 shows results from Vane et al.'* measure-
ments of K-shell REC yield from bare sulfur ions chan-
neled in silicon, together with our calculated differential
cross sections. Notice that in the range of energies of in-
terest in REC experiments when initial Coulombic wave
functions are used (dashed curves), the differential cross
section decreases somewhat more rapidly, as the energy
increases, than when plane waves are employed (solid
curves); this may explain the fact that REC peak energies
calculated making use of the full Coulomb potential be-

L —— Plane waves, dipole approx.
banin = 0.1A —— Coulombic woves, dipole approx.

*  Experiment

2
cm)

-21

Diff. cross section (10

) 1 1 L
100 120 140 160 180 200
lon energy (MeV)

FIG. 7. REC differential cross sections plotted as a function
of ion energy calculated from Eq. (47) with the local DIMFP’s
of Egs. (35) (solid curves) and (45) (dashed curves), for b;, =0.1
A and bmin=0.3 A. These results are compared with the exper-
imental data of Ref. 13 (cross points) normalized at 140 MeV.
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FIG. 8. Total recombination cross sections calculated from
Eq. (48) (solid curves) and from Eq. (49) (dashed curves), as a
function of emitted photon energy, for Z, =8 [Fig. 8(a)] and
Z,=16 [Fig. 8(b)].

come slightly smaller.
Such differences between differential cross sections per
unit target atom and solid angle also exist in the well-

known total cross sections for recombination. These
are!?
0_=2_6L2_1T(_Vf)5/2(v+vf)1/2 s
3 ¢2 ¢ V3
and
S0 W . S APV sy v LT

3 ¢ ¢ (vivpn?

when plane waves and when Coulombic waves are used
to represent target electrons, respectively; in these expres-
sions 1/¢? is the classical electron radius, 27 /c the
Compton wavelength of the electron, and v, and v
represent the frequency of the captured electron and the
emitted radiation frequency, respectively.

Figure 8 shows plots of the total recombination cross
sections calculated from Egs. (48) (solid curves) and (49)
(dashed curves) against the emitted photon energy, for
different values of the bombarding ion charge: Z,=8
[Fig. 8(a)] and Z,=16 [Fig. 8(b)]. Notice that although
at high energies the cross section can be determined ap-
proximately using the Born approximation, that is, as-
suming that the target electrons are initially free, for en-
ergies of interest here the introduction of the bare
Coulomb potential gives rise to a faster decrease of the
cross section as the photon energy is increased. This is
specially true for high Z,; however, this effect seems to
be not appreciable at high velocities when the charge of
the bombarding ion becomes smaller, as one might ex-
pect.

IV. CONCLUSIONS

We have used a statistical local-density approach to
model the capture of electrons by swift ions channeling in
solids. Our results tend to confirm the deficit in REC
photon energies observed by Vane et al. This deficit
originates in two different physical mechanisms, both of
which become more important with decreasing impact
parameter of the ion relative to atoms in the solid. These
are (a) the width of the distributions in momentum of
electrons in the solid, and (b) the depolarizing effect of
the ion’s wake on the binding energy of the captured elec-
tron. Use of Coulombic initial-state wave functions tends
to result in improved agreement with experimental REC
energies.
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