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d-wave, dimer, and chiral states in the two-dimensional Hubbard model
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The ground-state properties of two holes on a 4X4 Hubbard cluster have been studied using a
Lanczos algorithm at intermediate coupling U =4. Several states have been found to lie within a
very small energy range at the bottom of the spectrum. Although many properties of these states
are remarkably similar, their overall symmetries are quite different, suggesting different possible

scenarios in larger systems.

The 2D Hubbard model, and the related ¢-J model, are
presently hoped to provide insight into the behavior of
the high-T, Cu-O superconductors.! For a square lattice
at zero doping, antiferromagnetism prevails for all values
of U. However, in the region of small doping, more
relevant to Cu-O superconductors, much less information
is available. Several authors using different theoretical
methods have suggested the possible existence of many
interesting phases: resonating-valence-band (RVB) flux
phases,2 chiral phases,3 dimer phases,4 and nonuniform
phases.?

In this Brief Report we show, by detailed analysis of a
small size system, namely, a 16-site (4 X4) Hubbard lat-
tice with 14 electrons, that very interesting information
on these possible ground states is foreshadowed by the
properties of the low-lying states of the two-hole prob-
lem. In particular, we find three uniform and one
density-wave state within a very small energy difference
of one another. Among the possible uniform states, one
closely resembles a dimer phase while another can be in-
terpreted as a kind of flux phase, or chiral spin liquid.
We also find that all these and exclusively these low-lying
states can be given an approximate representation in
terms of linear combinations of ‘Fermi-level” hole
creation operators acting onto the half-filled ground
state. This form suggests new approximate wave func-
tions for the 2D Hubbard model at small but finite dop-
ing.

We seek the lowest eigenvalues of the 4X4 Hubbard
model with periodic boundary conditions by a power
method supplemented by a-few Lanczos steps at the end
in order to improve accuracy. This method, although
rather slow, minimizes memory requirements which are
at present the major limiting factor for this kind of calcu-
lation. Special coding of the wave function and memory
access techniques were used to make the calculation
feasible. In this calculation we have restricted our search
to the subspace of S, =0 and even total spin, whose size is
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M (M +1)/2 where
Nsites
M= N,

In the present case N, =16, N; =7, the size is 7X10".
No explicit use has been made of the spatial symmetries
of the lattice. The initial vector ¥ of our iterative pro-
cedure has been taken to be an appropriate random su-
perposition of eigenvector of the total momentum. This
device permits the simultaneous study of all possible sym-
metries and k vectors. Each of them is singled out after
convergence by using a symmetry projector. We find that
all the low-lying state, within our even S manifold, are
singlets. Convergence has been checked throughout, and
all figures given below represent accurate results. In par-
ticular, accuracy in the energy is always better than one
part in 10%. To our knowledge, this is the largest size
computation ever carried out for this problem. A
description of the method and some preliminary results
can be found in Ref. 5.

In Table I we show the resulting energies for each total
k vector Q along with the magnetic structure factor
Smag(m,m), the density structure factor S, (7, 7) the
single-particle density matrix p, (where n denotes the nth
neighbor) and, where defined, the rotational symmetry of
the state g. The energy improvement upon doping, which
is seen by comparison with the undoped case in Table I,
is basically a kinetic energy gain, as indicated also by p,.
Although this is not surprising, it is interesting to note
that the ground state does not have the best kinetic ener-
gy. Doping has a clear depressing effect on the magnetic
Smag(7,7), but does not affect so much the density
response at the same wave vector.

The ground state is threefold degenerate (0,0), [(0,7),
(,0)]. This agrees well with the existing ¢ —J model cal-
culations.*” The extra, nonrotational, degeneracy be-
tween (0,0) and (0, 7) is due to an additional symmetry of
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TABLE 1. Numerical results for the U =4 Hubbard model, see text.
v 16/16 14/16
Q 0,0 0,0) (0,7) (7, 7) (i%,i%) (ﬂ,%) (0,7/2)
g s d P
E/N —0.8514 —0.9840 —0.9840 —0.9839 —0.9839 —0.922 —0.922
Eun/N —1.3118 —1.3366 —1.3375 —1.3375 —1.3375 —1.24 —1.24
S mag (77,77) 3.64 2.14 2.18 2.18 2.16
Sden (T, 7) 0.385 0.4242 0.4242 0.4245 0.4245
P 0.164 0.167 0.168 0.167 0.167
02 0.0 5.4X1072 —7.8X1074 —7.4%x1074 —7.7x107*
03 0.0 —5.6X1072 5.5X 1072 5.4X1072 —7.4X107*
P4 —4.8X1072 —5.0%X1072 —5.1X1072 —5.1X1072 —5.0X1072
ps 0.0 —5.1X1072 —5.1X1072 —5.1x1072 —5.1X1072

the Hubbard Hamiltonian, specific to the 4 X4 lattice. A
new striking feature is the presence of extremely low-
lying excited states with (+7/2+7/2) and at (m,7). By
contrast states at (0,7 /2),(m,7/2) are found to be much
higher in energy. The density matrix indicates that elec-
tron hopping within the same sublattice, strictly forbid-
den by charge conjugation symmetry at half-filling, is al-
lowed in a substantial amount in presence of holes.

We have also studied charge-charge and spin-spin
correlation functions for all the low-lying states. Rather
surprisingly we find that all the low-lying states have
similar correlations. The spin correlations
c(R)=(S,(0)S,(R)) all show evidence of a tendency to-
ward antiferromagnetic ordering which is however sub-
stantially weakened with respect to the half-filled case
[see Fig. 1 and also S,,, (7,7) in Table I]. Remarkably,
the hole-hole correlations A (R)=—1+{hohg)/{hy)?
(where hg_{([1—n'(R)][1—n*(R)])) are slightly
“repulsive” and not much structured (Fig. 2), i.e., the two
holes tend to stay apart in all cases. Previous ¢ —J model
studies found a crossover between repulsion and attrac-
tion for increasing J, but seem to attach importance only
to the attractive regime.® In view of existing suggestions
that long-range hole-hole correlations should show
overall indifference if not repulsion' or instead attrac-
tion,® it would be desirable to remove the short-range
repulsion effects present in both pictures. If we take the
undoped A (R) as representative of these “bare” correla-
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FIG. 1. Spin-spin correlations for U=4 along the path
shown in the inset. Dashed line: half-filling. Solid line: two
holes in the (0,0) state. The asterisk represents the correspond-
ing Heisenberg value on the same cluster.

tions then one would conclude (see Fig. 2) that the addi-
tional correlations are repulsive at short range but less so
at the largest available distance. By contrast, very recent
calculations indicate that two holes in the 4X4 lattice
have a nonzero binding energy.® This discrepancy sug-
gests the presence of severe finite-size effects. Only a
proper finite-size scaling will eventually be able to resolve
the issue. The repulsive hole-hole correlations also imply
that phase separation does not occur in this region of the
phase diagram.

In order to extract more information we analyze in de-
tail the nature of the low-lying states. If they are degen-
erate, a particular linear combination will be presented,
based on physical motivations, such as the analogy with
existing mean-field results.'°

(0,0): This state is even under x and y reflections and
changes sign under /2 rotation. Therefore the two
holes are in a dx2~y2 relative state. The symmetry of this

state is the same as that of one of the proposed d-wave
RYVB states.
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FIG. 2. Hole-hole correlations for half-filling and for the
three unfirom states at v=%. Note that the two holes tend to
stay apart (repulsive correlations).
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(0,7);(7,0): This doublet can be combined to break
translational invariance, while restoring rotational sym-
metry. The states thus obtained exhibit neither charge-
nor spin-density-wave spatial modulation. Rather, an or-
der parameter distinguishing the two inequivalent states
of the doublet can be identified as a current fluctuation
operator: we find an interesting nonhomogeneous current
pattern which can be identified by meausuring
(XijXjxXwXy?), the circulation along the elementary
square plaquettes of the operator )(,»j=20c,»+"c;’. This
gives 0.18 and —0.008 along two nonequivalent neigh-
boring plaquettes. This result rather resembles the pat-
tern one could expect for some superposition of dimer
phases, as recently discussed by Dombre and Kotliar.*

(£m/2,£m/2): This quartet of states can also be com-
bined to give translationally noninvariant states with a
uniaxial symmetry analogous to the ‘kite” phase of
Affleck and Marston.? One thus finds two pairs of states
characterized by a weak CDW (An/n=6.5X10"3) ar-
ranged to form a two-sublattice structure. Another
feature of this state is the weak asymmetry between
(x;;? at opposite kite sides: (X;;4.?={X;i—,)
=0.3340, {X; 4+, ? ={Xi;—x ) =0.3347.

(7r,7): This is a doublet of translationally invariant
states with p-like rotational symmetry. The circularly
polarized combinations p, +ip, have well-defined chirali-
ties. Therefore this state is a natural candidate for a
finite-size realization of a ‘‘chiral spin liquid.” Notice
that in such a homogeneous and isotropic state, no net
current can flow on the bonds of the lattice, unlike the
picture envisaged by Rice et al.!! We have investigated
the circulation dependence on the plaquette area. For a
long-range chiral ordered state of the type proposed by
Wen, Wilczek, and Zee,® the phase of the circulation
should increase with the area. The flux states first intro-
duced by Affleck and Marston and by Kotliar? imply 1
flux quantum per electron. The phase of a flux state is
predicted to depend upon doping in the simple manner
¢=vm A. The results for our (,7) state given in Fig. 3
do show an increase of phase with the plaquette area
which compares rather well, though not exactly, with the
flux state values. This state is characterized by a nonzero
chiral order  parameter: (P(R))=(S;'S; X8, )
=1.3X 1072, where i, j, k label the vertices of the elemen-
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FIG. 3. Phases associated with several plaquettes of different
areas (@) as found in the (,7) chiral state. The phase expected
for a flux state with % flux per electron is also shown (solid line).
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tary triangle centered at R. This provides a first indica-
tion of the rather small amount of parity symmetry break-
ing to be expected for a Hubbard model as opposed to the
more “ad hoc” Hamiltonians.!? If, as it may seem possi-
ble, the chiral long-range order still shows up in the ther-
modynamic limit, then statistical transmutation would
necessarily follow.?

This exhausts the set of low-lying states of the two
holes. It seems remarkable that, in spite of the obvious
size limitation, so many different kinds of states already
show up in the two-holes problem. It is clearly desirable
at this stage to have a simple description and rationaliza-
tion of these states. A crucial clue is provided by the
change in the momentum distribution function 7 (k)
which we observe upon doping. As examplified in the
(0,0) case

dn(k)=n(k)l,=16/16—n (k)| ,=14/16

shown in Fig. 4 is a very strongly peaked function at
(0,7)(r,0) suggesting that the main ingredients in this
state are two holes at these k vectors. This turns out to
be a general property for all the low-lying states. For all
of them, the true eigenfunction can, approximately but
accurately, be described by the form

Yy 2—2)= > ¢(k1’k2)clllcli2|¢N/2> > (1)

K.k,

where |¢y ,) is the half-filled ground state. The form of
¢(k,,k,) is uniquely determined by the following require-
ments: (i) k; and k, should lie on the outermost shell of
the U =0 Fermi surface at half-filling, (ii) k; +k, should
equal the total momentum of the state, (iii) the holes form
a singlet state, (iv) the holes cannot sit on the same site.
The latter two requirements prevent the holes from being
in a relative s-like state [i.e., ¢(r;=r,)=0]. Although
very simple, the wave functions (2) reproduce very well
the properties of all the true low-lying states. It is to be
noted that most of the correlations in |4y ,,,_,) derive
from those already present in the parent half filled-state
¥y 2)-

For the 4X4 lattice the Fermi surface consists of 6
points (w7 /2,27 /2),(0,7),(m,0). Out the 36 two-hole
states that can be formed, 15 are triplets and 21 singlets.
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FIG. 4. Momentum distribution » (k) for the two-hole state
(0,0) (@) as compared with the half-filled, zero-hole, state (O).
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Out of the latter, 10 states satisfy the above criteria. We
find that nine of them are good approximations to the
low-lying states described above, as anticipated !>

The above analysis shows how to build approximate
but accurate, two-hole states, starting from the
knowledge of the ground state at half-filling. It seems
possible, although clearly speculative, at this stage, to
generalize this result to the many-hole, dilute limit. One
such generalized wave function could be, for example,

> ¢(k1,k2)c{1cé2
K.k,

¥ =exp ), (2)

|'/1N/2

where the pair envelope function ¢ k, k, can be determined

variationally, but must obey the same rules as described
above for two holes. The richness of different states
found in a tiny range of energy suggests that in the
infinite-size limit various scenarios are indeed possible.
Translational invariance (charge and spin uniformity) is
equivalent to requiring k, +k,=Q=G/2, where G is a
reciprocal lattice vector. The symmetry of ¢(k,,k,) will
of course be reflected in the overall symmetry of the cor-
responding W. We do not yet know, however, any other
property of these proposed states, including the possible
presence of off-diagonal long-range order. We note, how-
ever, a certain similarity of our wave function (3) with the
spin-bag picture by Schrieffer et al.,® which is recovered,
in particular, if |¢y /2) is approximated by a spin-density
wave state and ¢(k,,k,) is peaked around pockets at the
corners of the Fermi surface.

By a direct extension of our two-hole states, an explicit
choice of ¢(k,,k,) which leads to a many-hole state with
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explicitly broken chirality is
d(k,ky)= 3 Be HTHBL (K)f o p(ks)

a,f==*1

where k,=Q—k,, Q=(m,m) and f,z is a function
peaked about (aw/2,Bm/2). Alternatively, the choice

S Bfapk)f —qpky)

a,B==1

ok, ky)=

k,=Q'—k,,[Q'=(0,7)], represents a “dimer” state. Fi-
nally

$(ky, ko) =g, (ki )g, (ko) —g, (ky)g, (Ky)

where k,= —k,,g,(k) [g,(k)] is peaked near (,0)[(0, )],
yields a d-wave state. A study of the properties of these
states is under way.

In summary, we have presented a detailed study of the
two-hole problem in the 2D Hubbard model, which un-
covers a manifold of ground states (or very nearly ground
states) including a d-wave state, a dimerlike state, and a
chiral flux state. From these exact states, approximate
wave functions are constructed which permit extension to
the thermodynamic limit.
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