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Modified spin-wave theory of low-dimensional quantum spiral magnets
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A general spin-wave theory for the low-dimensional quantum spiral magnets with a constraint in-
troduced by Takahashi is presented. We show that this theory can reproduce the main results of
the conventional spin-wave theory for Heisenberg magnetic systems without frustrations. For the
triangular lattice spin- —Heisenberg antiferromagnet and the frustrated square lattice Heisenberg
models, the present theory yields results different from those of the conventional spin-wave theory
but in agreement with those of recent numerical simulations for small lattices.

Recently there has been a resurgence of interest in the
low-dimensional quantum Heisenberg (LDQH) model in
connection with the mechanism of the high-T, supercon-
ductivity. The conventional spin-wave (CSW) method is
inapplicable when global spin-rotation invariance is not
broken, and to proceed we must develop a spin-rotation
unbroken approach to study the magnetism. A great ad-
vance has been made in this direction. Takahashi has
formulated a modified spin-wave (MSW) theory for both
LDQH ferromagnets and antiferromagnets that yields ex-
cellent results. ' His ideal was to supplement the CSW
theory with an additional constraint that the magnetiza-
tion of each site is zero, which enforces the condition that
the spin rotation symmetry is not broken.

In this paper we formulate, along the same line, a gen-
eral MSW theory for the quantum twisted magnets. It is
known that arbitrary magnetic configurations can be de-
scribed by the action of one or more twists applied to a
ferromagnetic configuration. We can perform all calcula-
tions very easily in twisted coordinates where the spin
correlations are locally ferromagnetic. We derive a set of
self-consistent equations which permit us to calculate the
physical quantities very conveniently for a LDQH sys-
tem. It will be shown that this theory can reproduce the
main results of the CSW theory for the LDQH model
without frustrations. For the triangular lat tice anti-
ferromagnet, we obtain the ground-state energy
Eo= —0. 181 J/bond and the staggered magnetization
MO=0. 375 in agreement with the variational values for
small lattices Eo = —0. 1789 and MD=0. 34. Our result
for Eo is also consistent with Eo —0. 183+0.0003 ob-
tained from the exact diagonalization of small clusters.
This suggests that the ground state of the triangular lat-
tice antiferromagnetic has long-range Neel order. While
for the frustrated Heisenberg magnetic systems, the
present theory gives the different phase diagrams from
the CSW theory.

Let us consider the frustrated LDQH model described
by the following generalized Heisenberg Hamilionian:

H=gJS;S).
The summation over (ij ) in the above equation in-

eluding all possible spin-spin interactions. For example,
J,, =J„J2,. . . , and J„ if (ij ), respectively, represents
first-, second-, . . . , and nth-nearest-neighboring pairs.
When (ij ) denotes the nearest-neighboring pair,
J, =JWO, Jz =J3 = . . =J„=O the above Hamiltonian
reduces back to the standard Heisenberg model. Gen-
erally, the ground state of Hamiltonian (1) has a spiral
spin configuration which can be characterized by a twist-
ed vector Q. We introduce twisted coordinates (g, il, g) at
each site

S;"=—S sinQ r, +SfcosQ r, ,

S,~=S;"cosQ r, +S~sinQ r, ,

(2)

S; =(2S—a, a, )a, ,

S;~= —S+a, a,-,

where a and a are the spin-wave operators and satisfy
the boson commutation relations. It should be pointed
out that DM transformation violates the Hermitian con-
jugate relationship S,+=(S; ), which is diff'erent from
HP transformation. It is expected that this will not affect
the ground-state properties. ' In fact, this Hermitian
can be recovered by an additional nonunitary transforma-
tion. Next we introduce the ideal spin-wave density ma-
trix p=exp( —g„eknka„!T) with Bogoliubov transfor-
mation o.k =cosho&a& —sinhOka I, . Substituting the re-
lations in Eqs. (2) and (3) into Eq. (1) and using this densi-
ty matrix and the Wick's theorem for the interaction
terms between spin waves, we can compute the expecta-
tion value of the energy E = (II ). At zero external mag-
netic field, the spin rotation symmetry requires that the
magnetization of each 'site should be zero (Sf) =0.

such that the equilibrium direction of each spin is along
its g direction. Now we introduce the Dyson-Maleev
(DM) transformation for S,+ =Sf+iSPt, —S, =Sf iS;", —
and S,~ instead of Holstein-Promakoff (HP) transforma-
tion'
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Under this constraint, minimizing the free energy of the
system, we obtain g(r;, ) =Mo+ —g 'sinh28k(nk+ ,' )e-

k

(7)

tanh2t9k = ~k /&k, (4) f(r
z ) =MD+ —g' cosh28& (nj, + —,

' )e
k

(8)

Ak =
—,
' g J~(1—cosQ rj)g(r;J)e

8„=—,
' g J, [(1—cosQ r;, )g(r;, )'()"

—(1+cosQ r,, )f(r,, )

X(1—e ")]+@,

c, k /T
Here nk =(akak ) =1/(e " —1), p is the Lagrange
multiplier introduced by the constraint, Mp is the num-
ber of the zero-energy spin waves which represents the
long-range order of the system, and gk denotes the sum
excluding the zero-energy modes. %'hile the spin-wave
spectrum is given by

(6) and the ground-state energy is obtained as
I

Eo= —
—, g J; [(I—cosQ r~)[g(r; )] —(1+cosQ.r, . )[f(r,, )]2] .'()"

From the constraint (S,~) =0, Mo has the expression

Mo =S+—,
' ——g' cosh20k ( nk + —,

'
) .1

k

From the above equation, the Lagrange multiplier p in
Eq. (6) can be determined. Mo here is in fact equivalent
to the staggered magnetization in the CS% theory. '

Thus a set of self-consistent equations (4)—(11) which
govern the basic magnetic properties of the spiral Heisen-
berg magnets are obtained. In a system with a long-range
magnetic order and from Eqs. (7) and (8), one has

g(r, , )-f(r,, )-S for S~ oo. In the classical limit
(S~~ ) we obtain the spin-wave spectrum from Eq. (9)

Ea =S[(Jk —Jg ) [(Jk+ g+ Jk —g )/2 —Jg ]]'" (12)

which is exactly the result of the CSW theory for a spiral
magnetic system' with Jk=g(;, &Jjexp(ik r,, ). It
should be emphasized here that for finite S or for the case
close to the critical transition boundary even in large S
limit where the staggered magnetization is vanishing,
g(r,") and f(r,") in Eqs. (7) and (8) are quite different
from S. Therefore, it is expected that the present theory
wi11 yield dift'erent results from the CSW theory.

An an example, we first apply the present theory to
study the ground-state properties of the LDQH bipartite
lattice antiferromagnets with the nearest-neighbor cou-
pling (J& =J) only. Using the mean-field approximation
as in Ref. 2 and from Eqs. (4)—(6), one has

the nonlinear o.-model mapping. Of course, like
Schwinger boson approach, ' the present theory is unable
to predict the absence of a gap in half-odd-integer spin
systems. For 2D antiferromagnet, Eqs. (13) and (9)—(11)
give the exact same equations obtained by Takahashi,
which lead to a quantitative agreement with the CSW ap-
proach and the renormalization group theory. '

The more powerful aspect of our theory is for a frus-
trated Heisenberg system. Recently, the square lattice
Heisenberg antiferromagnet (HAF) with first- and
second-nearest-neighbor couplings J, and J2 that we will
call the J,-J2 model have been studied by various ap-
proaches. ' ' The advantage of this model is that it re-
tains the square lattice symmetry while simultaneously
exhibiting frustrations. In fact, for very small J2/J, the
ground state has the Neel order, while at large J2/J& lim-

it, the system decouples into two unfrustrated sublattices
each one with its own Neel order, and the dominant
configurations have alternating rows (or columns) of spin
up and down that we will call collinear state. ' ' All
previous methods' ' for this model only consider the
small and large J2/J, limit, i.e. , they only study the Neel
state and the collinear state. Here we give a united pic-
ture for arbitrary values of Jz/Jt based upon our Eqs.
(4)—(11). Generally, this model has a spiral spin struc-
ture which can be described by a twisted vector
Q= Q(1, 1), where Q satisfies

J2 j [g (5') ] + [f(5') ] ]sin2Q+ J, [ [g(5)]
zJg(6)y„

tanh20k = B„zgJ(5) p+
(13) +[f(5)] ]sing=O, (14)

with yk =gsexp(ik fi)/z, where 5 is the vector to the
nearest neighbors and z is the coordination number. For
1D, Rezende" has used this theory to predict the ex-
istence of a Haldane gap. ' In fact, we know that there is
no long-range order in the ground state for 1D antifer-
romagnet. Solving Eqs. (9) and (11) with Mo=0 at large
S limit, we obtain the spin-wave gap cp zSJe, which
is essentially the same result obtained by Haldane' from

Q=ir, for a&1,
Q=cos '( —a), for a(1, (15)

where

which corresponds to the minimal energy of Eq. (10). 6'
is the vector to the next-nearest-neighbors. Equations
(14) and (15) has the solution
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FIG. 1. Energy of the ground state vs J3/Jl for the Jl-J3
model with S= ~. The solid and the dashed lines are the results

of the present theory and those of the linear CSW theory, re-
spectively.

FIG. 2. Staggered magnetization vs J3/Jl for the J&-J3 mod-
el with S=—'. The solid and the dashed lines corresponding to
the results of the present theory and those of the linear CSW
theory, respectively.

where

[f(5 )1'+[g(5 )]'
4J3 [f(53)]'+[g(53)1'

(19)

[f(5)]'+ [g(5) ]'
2J~ [f(5')]'+ [g(5')]'

(16)

+[g(53)] ]sin2Q=O, (17)

which corresponds to the minimal energy of Eq. (10). 5&

and 63 here are the vectors to the first- and third-nearest-
neighbors, respectively. Equation (17) has a solution

We can see from the above equations that for small
Jz/J, , a) 1 and Q=rr, which corresponds to the Neel
state. While at very large Jz /J, limit, a~0 and
Q~vr/2, which gives the collinear state. In the general
case of o. ( 1, the incommensurate spiral phase with

Q =cos '( —a) is the ground state.
In Ref. 15 we performed a self-consistent calculation

only for small and large Jz/J, limit, i.e., for the Neel
state and the collinear state. The lower ground-state en-
ergy than that obtained from the CSW theory has been
obtained. ' ' Our results agree well with those of the re-
cent numerical simulation for small lattices. ' ' Here we
present a general expression for the twisted vector Q in
the whole parameter region. We show that at both small
J~/J, limit (corresponding to the Neel state) and large
Jz/J& limit (corresponding to the collinear state), our
general results can automatically return back to those ob-
tained previously. '

Now we study the square lattice HAF with first- and
third-nearest-neighbor couplings J& and J3 that we will
call the J, -J3 model. Generally, the ground state of this
model has a spiral spin structure which can be character-
ized by a wave vector Q =Q(1, 1 ), where Q satisfies

J& [[f(5&)] +[g(5, )] ]sinQ+2J3[[f(53)]

We note that at the classical limit (S~~ ), f(5, 3) and

g(5& 3) -S, Eqs. (17) and (19) reduce back to
J&sinQ+2J3sin2Q =0 and a= J& /4J3 which are just the
results of linear CSW theory. ' We have performed the
self-consistent calculations for this model with S=—,'.
The results for the ground-state energy Fo and the stag-
gered magnetization Mo are shown in Figs. 1 and 2, re-
spectively. It is clear from Fig. 1 that the present result
for Eo is lower than that obtained from the CSW theory.
In Fig. 2, the result for Mo show that for small value of
J3/J& the Neel state is the ground state, while for the
large enough frustrations the incommensurate spiral
phase with Q=cos '( —a) becomes stable. The change
from one state to the other occurs around J3/J& =0.4.
There exists a narrow region around J3/J& =0.4 to ac-
commodate the nonmagnetic quantum spin liquid (QSL)
phase. An investigation with other analytical or numeri-
cal methods would be necessary to characterize the true
ground state around J3/J, =0.4. This picture is qualita-
tively similar to that of the CSW theory, ' but a
significant quantitative different exists between these two
results.

All discussions above are confined to the bipartite lat-
tice models. Our theory can be also applied to the nonbi-
partite lattice systems. As an example of the nonbipartite
lattice, we consider here the triangular lattice HAF with
S=

—,'. The triangular lattice HAF with S=
—,
' is the sim-

plest frustrated system with the nearest-neighbor cou-
pling only. The ground state of this system consists of
three sublattices, A, 8, and C, with spins on each sublat-
tice at an angle of 2'/3 to those on the other two sublat-
tices, i.e., Q.5~& =2'/3 and Q 5„C=4rr/3. Thus, from
Eqs. (4)—(6) we obtain

Q =sr, for a) 1,
Q=cos '( —a), for a(l,

Ak
tanh20k =

B
3zJg (5)y k

3zJg(5) zJf (5)(1—y„)+p— (20)
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Substituting the above relation into Eqs. (10) and (11),
and performing the self-consistent calculation, we obtain
the ground-state energy Eo = —0. 181J/bond and the
staggered magnetization Mo=0. 375. The diagonaliza-
tion of small clusters has led to an estimate for the
ground-state energy which is Eo= —0. 183+0.003, but
with no information on the staggered magnetization. Re-
cently, Huse and Elser have performed a variational cal-
culation for small lattices with an ordered trial wave
function including three parameters. They got
Eo = —0. 1789 and Mo =0.34. These values are very
close to our MSW results. The CSW results of Jolicoeur
and Guillou lead to a slightly higher energy
Eo = —0. 1796 than our result. But they obtained
Mo=0. 239 which is much smaller than our result and
that of Ref. 3. It is interesting to note that our value for
Eo is much lower than the Eo = —0. 158+0.005 estimated
from various RVB-type wave functions. ' This sug-
gests that the situation of the triangular lattice HAF is
quite similar to that of the square lattice: a ground state
with long-range Neel order exists in both cases.

The theory discussed here is of rather general utility

and can be easily applied to other LDQH models with
complicated magnetic structures. It is also convenient to
use this theory to calculate the other physical quantities.
For example, the spin-spin correlation function can be
computed by evaluating (S, S.) in the ground state,
which yields the result

(S; S~ ) =
—,'(1+cosQ r; )[f(r J )]
—

—,'(1 —cosQ r,, )[g(r;, ) ] —
—,'5,,

The details of the calculations together with the finite-
temperature results are planned to be presented else-
where.
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