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Mechanism for high-temperature superconductivity in cuprates
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A treatment of the Coulomb interaction in cuprates by a time-dependent multiple-scattering
theory leads to coherently excited holes in the "antibonding" band with the appearance of a pairing
interaction between the (coherently excited) holes. This pairing interaction leads to superconduc-
tivity in doped cuprates. The essential points of the mechanism are discussed by making some illus-
trative calculations and by examining the behavior of a few parameters.

In high-temperature super conductors, Coulomb in-
teraction competes with the banding interaction. ' A
large number of theories have been developed for these
systems, but none of them is satisfactory. In this paper
we develop a theory of high-temperature superconduc-
tors by keeping in mind the comparable strengths of the
interelectron Coulomb interaction and the banding in-
teraction. The method that we use to deal with such a
situation is based on the idea that scattering theory can
be used to investigate the evolution of the system from
band states with use of the matrix element of the in-
terelectron Coulomb interaction between the band states,
which determines the transition probabilities between
these states. We consider the screened Coulomb interac-
tion in a simplified form, where the screening effects of
the medium are represented by a dielectric constant e.
Such a screened interaction is justified for cuprates as
these systems are ionic in nature' and have a small carrier
concentration. ' We write

Uc,„,(r, —r )=e /air, —r
l

.

Here r; and r are positions of the interacting electrons,
and e is the charge of a hole. (In doped cuprates the car-
riers are of hole nature. ')

For simplicity we do not consider interlayer interac-
tions and so restrict ourselves to the two-dimensional
CuOz planes only. The Hamiltonian of the system (doped
cuprates) can be written as

H =Hb, „d+Hc,„) .

Here Hb, „d describes the holes in the band states. Writ-
ten explicitly

Hband ~ ~bk bkcT bk
b, k, o.

(3)

where abk and a&k denote creation and annihilation
operators, respectively, of a hole in the band b with
momentum k, spin o., and energy cbk. The b=1 band
corresponds to the partially filled antibonding band,
while the b ) 1 bands lie below the b =1 band in terms of
electron energy. In this way, the b bands are quasi-two-
dimensional. In the process of interband transitions a
hole will make transition from the 6 =1 to the b ) 1

bands.
The interaction Hc, „, in Eq. (2) describes the (screened)

Coulomb interaction between holes. Its explicit form is

Hc, „,= g g (b "k"o",b"'k"'o'l Uc,„,(r; —r ). lbkcr;b'k'o')aI, k al, . k ab k abk
i ) jail b, k, a

The interaction Hc, „& forces a band hole of the system to undergo multiple scattering with other holes of the system.
Let to, t„t~, . . . form a sequence of time (t„)t„,for all n) such that the nth scattering starts at t„,and is completed
by t„. Let f„bk be the distribution function after the nth scattering, and P„(bk~b "k") be the transition probability
per unit time for the bk~b "k" transition. Then we may write

fn bk=fn &be I & Pn—(bk~b "k")~n + 2 fn &b"k"Pn(b "k"~—bk)~n
bll kll

with fo bz as the usual Fermi factor for holes, and

P„(bk~b "k")= pb„k. ,
fz I I bill kl kill

l

Abk b-k ~q k g" k (b "k"o;b"'k"'olT(t„.)lbko", b''k'o')

Xf„,bkf„& b k.(1 f„,b-„)(I f„,„k ~ )— —
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In Eq. (5) r„=t, —r„,. We have written Eq. (5) by us-

ing the fact that P„(bk~b "k")r„&&1. In Eq. (6) R is
Planck's constant divided by 2~. pb"k" is the density of
hole states (per unit energy) at the energy E&.,k", and T(t„)
is the transition matrix corresponding to the interaction
IICQII] during the nth scattering

The quantities 3&k & "k. in Eq. (6) are introduced to ac-
count for the nonconservation of energy during the col-
lision of two holes. When two holes, which are initially
in the states lbko ) and lb'k'o'), collide with each other,
then, due to the presence of other holes, they will be scat-
tered to the non-energy-conserving (NEC) states

k ~)NEc 2 ~b-t-, st gptr)
g~p

FICT. 1. Values of the equilibrium distribution function f~k
'

for various hole energies.

)NEc

In order to calculate the coe%cients AQ k gp we con-
sider a very simple description of the non-energy-
conserving processes. In fact, due to low hole concentra-
tion we may assume that non-energy-conservation arises
when a third hole forces the scattered hole to change its
state from b "k" to gp. When it is so, the share of the gp
states, may be related with the transition probability (per
unit time) for the b "k"~gp transition. In this sense we
may write

= AoIP„(b "k"~gp) j'

Here 2 o is to be determined by requiring that

We now present calculations for the distribution func-
tion at zero temperature. For this calculation we assume
that there are only two (two-dimensional) bands, b =1,
and b =2. Both the bands are assumed parabolic and
truncated so that the b =1 band has a width of 4 eV,
while the b =2 band has a width of 2 eV. The b = 1 band
is of positive effective mass, while the b =2 is of negative
effective mass so that there is a 0.5-eV gap between the
bottom of the b = 1 band and the top of the b =2 band.
The Fermi energy EI; is taken in the b = 1 band at 3 eV
up from the bottom of the band. In Eq. (1) e is taken to

I

be 6, which is a typical value for cuprates. From a prac-
tical viewpoint, in Eq. (5) we have taken the time interval
as v. =0.01 sec instead of ~, . Using these simplifications,
and applying the wave packet appronach" for the calcula-
tion of T-matrix elements in the first-order approxima-
tion, we found that after the 237th step the distribution
function attains an equilibrium value fIj,k

' that is shown
in Fig. 1. It is clear that the distribution function has a
discontinuity of 0.23 at EF. In a realistic calculation we
would expect to get a different magnitude of discontinui-
ty at EF, but discontinuity will be there because the num-
ber 0.23 is not so small that one may doubt the discon-
tinuity of the distribution function. Thus we can con-
clude that in (doped) cuprates the distribution function
will be discontinuous at the Fermi energy. In this sense
superconductivity in (doped) cuprates will be based on
Cooper pairs.

We emphasize that the plane-wave functions used in
the above calculations are considered for simplicity only.
For a realistic calculation one should use realistic wave
functions as obtained from a band-structure calculation. '

Within the plane-wave approximation the values of the
intrasite and intersite Coulomb interactions are 6.3 and
1.2 eV, respectively.

As a result of the above multiple-scattering process, a
hole will move, at all times in a coherent mixture of the
excited

l
lkcr) states. We can describe such a coherent

state by the creation operator

hatt

(t„)=
k', k",k"', o-'

(lk"o'; 1k"'o'lT(t. )l»o; Ik't ')~]k, tg"-4 ', tk'fttttf„tt, (1 f„tk")(1 f tk"')~ jk-. (10)

along with a corresponding annihilation operator
tkcr( tn )'
The wave vector k" of the component states of the

coherent mixture takes all such values (including k itself)
for which the band states

l

lk"o. ) are in coherence. As
the Coulomb interaction, which leads to coherence, is
repulsive, we assume that the energies for k"Wk are
higher than those for k"=k, where k is restricted to
k ~ k~ with kz as the Fermi wave number. The energy
range for the coherent state resulting from the

l

lko. )

state will be Ac, k
—A/~„where ~, —r, /U with r, as the

average intercarrier spacing, and U is the group velocity

of wave packet in the band states. For cuprates
0

r, ~ 3 A, ' and v will be less than or equal to the Fermi
velocity, which is of the order of 10 cm/sec (Ref. 11) in
cuprates. This leads to Ac. ]k ~0.2eV. This is at least one
order of magnitude less than the typical band width' of
cuprates.

It may further be noted that the strength of the coher-
ence within the energy range Ac. ]k will depend on the
strength of the interaction Uc„„~(r,—r ). In the present
case, in the above model calculations, we have found that
the transition probabilities P„(lk~ lk") are comparable
for many k" values. This means that the usual Fermi-
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&O(k, k")= —(&Qalk al k- ) . (12)

Here ( ) denotes an average in terms of the state of
the system, and Jo is the l =0 partial-wave component of
the interaction J'" '(2k"). (We have assumed s wave
pairing. )

We calculate b, ,ft(k, k") through the contribution of the
k" state to the ground-state energy of the system of su-
perconducting quasiparticles. ' An expression for such a
contribution can be written as'

I2(E,„., ) +[6,o(k, k")
E(k",bo( k, k" ) ) = F. ,„—

2I(E,k ) +[ho(k, k")] I'

(13)

liquid theory, which is based on single k' (k"=k) quasi-
particle states is not applicable to (doped) cuprates.
Rather, a consideration of the coherent nature of the hole
states is necessary for a reasonable description of cu-
prates. We emphasize that such a deviation of the
present "hole liquid" from the Fermi liquid is due to the
nonenergy conservation approximation.

The holes in the coherent mixture of
~

lk"o. ) states, will
polarize, through the electrons generated in the 6 =1
band, the medium of the holes of the b ) 1 bands which,
in turn, will mediate an indirect interaction between the
b =1 band holes. Such an indirect interaction has al-
ready been used in different excitonic models' ' of cu-
prate superconductivity. However, in the present case
the situation is quite complicated as the indirect interac-
tion acts between coherently excited holes. Keeping in
mind that superconductivity in cuprate superconductors
involves Cooper pairs of zero center-of-mass momenta, '

we assume that g'" "I(2k) is, to within a spin factor, the
indirect interaction due to polarization of band electrons
between holes characterized by the coherent mixture
operators y, k, y &k and y, k, y, k . We can
clarify the role of g' '(2k) in terms of the indirect in-
teractions J'" "'(2k") which, to within a spin factor, act
between holes moving in states

~

lk", o ) and
~
1, —k", —cr ) in the following manner:

'(2k)l'lko. (t„)l I k (t„)
= g Dkk-(t„)J'" "'(2k")a )k a ) k„. (11)

k"

Here the expression for Dk k" (t„) follows from the Eqs.
(10) and (11).

To within a spin factor, we can write an expression for
the interaction J' '(2k") in a manner similar to that of
Eq. (16) of Ref. 14.

In order to get an idea regarding the binding energy of
Cooper pairs we proceed as follows. First of all we notice
that the band states k"Wk, as assumed above, correspond
to higher energies than the k"=k states. As the higher-
energy states k"Ak are brought in because of the
Coulomb repulsion, opposite spin holes of momenta
k'Wk, —k" will form a bound state only if the pairing in-
teraction 5' '(2k" ) can overcome the Coulomb repul-
sion associated with the k", —k" states. It is clear that
the binding energy of the k"Wk, —k" Cooper pairs, say
b,,fr(k, k" ) will be reduced from its bare value

In this expression, the effect of the Coulomb repulsion on
the ground-state energy is incorporated into the energies,
c,k- which appear in the coherent state formed out of the
initial state k(k (kF ) due to the presence of the Coulomb
interaction. An alternate form of this very contribution
to the ground-state energy from the pair k"Wk, —k" can
also be written as E(k, b, ,~(k, k" ) ) where now the effect of
the Coulomb repulsion appears through the effective
binding energy b, ,s(k, k"). Since both E(k",b,o(k, k"))
and E(k, h, s(k, k")) represent the same quantity, we
have

E(k, h, gk, k"))=E(k",ho(k, k")) . (14)

Ao{k,k)
F(T)= J F (ob„)Te x(p—b, lkt3T)db, .

Here the integrand is the product of the value of F( T) for
a given b, and the corresponding weight factor Dkk" (t„).
Fo(h, T) is a nonexponential function of temperature T

Evaluation of the integral of Eq. (15) will lead to a
dominating power law term. In fact, there will be an ex-
ponential term also but it will be too small to have any
practical significance.

In the above discussion we have considered only the
contribution of bound pairs to the temperature depen-
dence of a physical property. But as has been clarified
above, there will be a finite probability for finding holes in
unpaired states also, even though the interaction
JI" "'(2k") between these holes will be there. According
to the above estimate holes will remain in the unpaired
states with probability =0.33. This means that the frac-
tion of holes of the complete system existing in the un-
paired state is macroscopic. So the unpaired holes will
also contribute to the properties of the system. Such a
contribution is important in at least two ways. Firstly,
these holes will contribute a power-law temperature
dependence for some of the physical properties of the sys-

(15)

This equation provides us a way of determining
A, fr(k, k" ).

From Eq. (14) we can see that a bound hole pair will be
formed only for those E&k ~ that lie within a few meV
above c Ik. In fact, for cuprate superconductors
b,o(k, k")—50 meV so that we estimate the "pairing" en-

ergy range above c. lk for bound pairs to be of order 10
meV, which is more than —,

' of the complete coherence
range (of (0.2 eV). We note that the above treatment of
the Coulomb interaction is different from that of Morel
and Anderson. ' In the present case, superconductivity
will occur only when the probability of finding the pair-
ing holes in the pairing energy range (of order 10 meV) is
such that on average the number of pairs in this energy
range is macroscopic. An estimate of this probability of
finding a pair, in the model system used in our calcula-
tion at T=O K, leads to a value of about 0.67, which is
sufficient for the occurrence of the superconducting or-
der.

Et is clear from Eq. (14) that the pairs will assume
different binding energies A,s(k, k") in accordance with
the probabilities Dkk»(t„). When it is so, then the overall
value of a property of the system, say F(T), may be writ-
ten as
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tern. This fact, along with the above-noted power-law
contribution of bound pairs, may be used to understand,
for example, the T dependence of the low-temperature
specific heat, ' and of NMR relaxation rate. ' Secondly,
due to the presence of holes, properties like Knight shift
will not vanish at T=O K. This is indeed what has been
observed experimentally.

Another specific feature of the above mechanism of su-
perconductivity is related to the superconducting energy
gap. In the above mechanism, the superconducting ener-

gy gap will be obtained by averaging the individual gaps
2h, tt(k, k" ) [in accordance with the probabilities
Dt,& (t„)]. Because of this, those experiments that mea-

sure the superconducting energy gap (Andreev reAection,
tunneling, infrared absorption) may show effects of the
individual gaps 26,@k,k") also in the sense that the gap
will not be sharp. For example, in infrared absorption
experiments there is a possibility that infrared frequencies
below the average superconducting energy gap are ab-
sorbed. Such a residual absorption has indeed been ob-
served even for single crystals. '

In conclusion, we have presented a mechanism for
high-temperature superconductivity by treating the
Coulomb interaction in a realistic manner. Pairing be-
tween coherently excited states is the key point of the
present mechanism.
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