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Phase modulation and far-field spatial patterns due to the transformational thermal-lens effect
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In earlier work we have reported a thermal-lens effect that is opposite in sign from and much
stronger than the well-known effect in Auids and isotropic solids: Very near the transformation tem-
perature in crystals undergoing structural phase transitions, certain indices of refraction have tem-
perature derivatives that are large and positive ( =+10 ' K '), in contrast to the negative values
of dn /dT that arise from thermal expansion in glasses or Auids. We evaluated the steady-state and
time-dependent behavior of these effects in Ba&NaNb&O» near T, =850 K. In the present paper we
extend these studies to examine the far-field spatial pattern produced by self-induced phase modula-
tion. We also utilize the thermal-lens effect to investigate the critical behavior near the tricritical
point of Ba2NaNb, O„, and the critical exponent P is obtained as l3, =0.28+0.01 and

P, =0.31+0.01.

I. INTRODUCTION II. THERMAL-LENS ABERRATION

The thermal-lens efFect in isotropic materials such as
glasses and Auids' is well understood as arising from
thermal expansion of the illuminated medium and con-
comitant decrease in index of refraction, producing a
negative (concave) lens with typical focal length of the or-
der 100 cm at mW powers. In ferroelectric and other
materials the thermo-optic effect may result in an analo-
gous effect, but the induced lens can be positive. The
latter has been observed in barium sodium niobate by
us ' and previously in doped strontium barium niobate
by Seglins and Krumins and co-workers. ' We have
discovered that this effect can become very strong in
crystals near the temperature of their structural phase
transformations (e.g. , the Curie temperature in ferroelec-
trics) which we term the "transformational thermal-lens
effect." This thermal focusing arises from the fact that
the temperature derivative of at least one index of refrac-
tion may be very large and positive as T~T, from
below, producing a positive (convex) thermal lens of very
short focal length, =3 cm. In a second paper we
showed that the critical exponent P that describes the
coexistence curve [that is, polarization P varies as e,
where e is reduced temperature (T, —T)/T, ] could be
evaluated accurately from such thermal focusing data,
obtaining a mean-field result P= —,

' for BazNaNb50».
The basic ring structure of laser beams passing through

nonlinear media has been noted by a number of investiga-
tors. ' At modest cw powers the steady-state spatial
pattern is quite similar to the interference observed in
light trapped in filaments. ' Several effects, both spatial
and temporal, were observed in Ba2NaNb50, 5 to be very
similar to those in Auids, including chirping above a
power threshold =1 W. ' In the present work we exam-
ine the detailed spatial steady-state structure of the far-
field pattern due to thermal focusing near T, in this crys-
tal and give a quantitative comparison of theory and ex-
periment.

where r is the distance from the axis of the beam and mo

is the waist of the beam. In the case that thermal con-
duction dominates the heat dissipation, the steady-state
heat equation of local heating yields the following expres-
sion for the radial temperature derivative

0. 12bP 1 —2{r /wo )'—1 —e
vrkr r

(2)

where kT is the thermal conductivity, b, the absorption
coefFicient, and P, the laser power inside the sample.

With a dimensionless variable u =r/wo and a bound-
ary condition of AT =0 at u =a, when the axial attenua-
tion of laser power is neglected, the local temperature in-
crement is in an integral form:

~T(u) = I",(1—e ""'")du'-.kT u

The u-dependent part of this temperature distribution is
an integral. For a =10, a numerical calculation of this
integral is plotted in Fig. 1 with a maximum value of
2.95. The index increment can be represented, in turn, as
bn =(dn/dT)6T. Equation (3) can be written in the
form of an exponential series. If we consider only the
terms up to r in the series, the refractive index has the
form of n =no[1+5(r/wo) ], where 5 is a numerical
coe%cient for the first term in a power series. In this sit-
uation the thermal lens is equivalent to a thin lens with a
definite focal length. Such a treatment is called the para-

When the self-focusing or defocusing of a laser beam
passing through a medium is generated mainly by
thermally induced refractive index change, the theoreti-
cal calculation can be carried out based on equations of
heat transport. The radial intensity distribution of a
Gaussian beam is

—2(r/wo)I o-e
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FIG. 1. Normalized radial distributions of Gaussian beam in-
tensity I(u) and of temperature increment AT(u).

bolic approximation' and provides a genera1 description
of the thermal-lens effect.

Since the thermal-lens patterns generally present aber-
ration, the simple thin-lens model is not sufticient for
studying the details of the pattern. In principle, the ring
pattern can be constructed from the diffraction theory of
aberration. For greater accuracy, a comprehensive con-
sideration of phase variation should include phase retar-
dation at the input plane due to the curvature of the wave
front of a Gaussian beam, the far-field Fresnel variation
of phase, and the thermo-optic phase modulation. "'
Since we place the sample at the waist of the beam fo-
cused by a weakly convergent lens, the wave front at the
input plane can be considered as planar and the diver-
gence of the original beam is negligible. The far-field
Fresnel diffraction is described by a Bessel function of
zero order Jo(kyar). Here k is the wave vector of the
light, r, the distance from the illuminated axis, 0, the con-
vergence angle. References 6 and 7 suggested that the
thermal-lens pattern is dominated by an integral of this
Bessel function. Our experiment shows that, as described
below, the intensity distribution produced by the thermal
lens appears at kOr —10 . This is far beyond the region
where a Bessel function gives a distinct diffraction pat-
tern. Our observation is not in a Bessel-function limit. A
more mathematical comparison of the present work with
Refs. 6 and 7 is given below in Appendixes A and B. In
the following we start from the basic principle of light
propagation in an inhomogeneous medium and then cal-
culate the pattern induced by the self-phase modulation.

In a medium with inhomogeneous index distribution
the radius of deflection for the curvature of the light
beam, as shown in Fig. 2, is given by

1 1dn
R n dr

The deflection angle is normally small. In reference to
Eq. (2), it can be written as

FIG. 2. Schematic illustration of light beam deflection in an
inhomogeneous medium.

where I. is the sample thickness. The u-dependent part
2gof Eq. (5) is F(u)=(l —e " )/u, which has the same

normalized form as 0&(u) and is plotted in Fig. 3. Be-
cause of the differential relation of Eq. (5) from Eq. (3),
F(u),

„

is related to the slope at the inflection point of
the KT(u) curve and is found to be 0.9025 at u =0.7926.

The dependence of Oz upon u means that for the part
of beam of u &0.79, denoted as the "inner section" here-
after, the deflection angle increases with u, while for the
part of u )0.79, denoted as the "outer section, " it de-
creases with u. In other words, the distribution of beam
intensity at any deflection angle is due to two contribu™
tions: that from the inner and outer sections of the il-
luminated part of the crystal. The superposition and in-
terference of these two parts of the beam determine the
thermal-lens pattern.

Although the basic concept of optical interference re-
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(5)
FIG. 3. Radial distribution of deflection angle Oz ( ),

without beam deAection inside the sample and Oz (. . - ),
beam deAects continuously inside the sample.
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quires spatial and temporal superposition of interfering
waves, in order to make the calculation of the pattern
tractable, we consider the interfering parts of the beam to
be nearly parallel. This consideration is reasonable in a
first approximation of the problem, because the intersec-
tion angles of the interfering parts are small (smaller than
4 in our experiment). Let u, and u 2 be the relative radi-
al distances of the inner and outer sections of beam which
deflect at the same angle. Their phase difference is

2&
bP=P& —Pz= [hn(u&) —bn(u2)] .
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From b, n =(dn IdT)b, T as well as Eqs. (3) and (5), it is

found that for the calculation of AP only measured values
of 9 (maximum deflection angle, or beam convergence an-
gle), wo, and n are needed, while other parameters, such
as b, P, L, k T can be eliminated. Through the inverse
function u (Bd ), the calculated P, (Bd ), $2(Bd ), and
hg(8&), are plotted in Fig. 4. The intensity attenuations
occur at 6$=(2n +1)~, n =0, 1,2, . . . and result in the
ring pattern. According to the general two-beam in-
terference theory and the relations of E(9 )d, u (Bd), and
b,g(9d), for a 200-point sampling, which corresponds to
the resolution of our image processing system, a numeri-
cal analysis of the interference intensity I(9d ) is obtained
as Fig. 5. Since AP increases nonlinearly with decreasing
reflection angle, the ring structure appears clearly only
for thinner samples and in the outer part of pattern. In
the center of the pattern the phase difference is, in fact,
the phase modulation of the inner section alone. This
plot gives three of the basic characteristics of the
thermal-lens patterns: ring structure, limited size, and
bright contour. The obvious contour provides a con-
venient definition of the pattern size, from which the
beam convergence angle 0 can be obtained easily.

In the above calculations the path length of the beam
inside the sample is taken as L; this implies that the beam
does not deflect inside the sample. In our detailed com-
puter simulation, in which the sample is composed of a
series of slices with a thickness of dz for each, for the

8 (5.0 x lO 4 rad)

FIG. 5. Theoretical calculation of intensity distribution of
thermal-lens pattern near T, ; no beam deflection inside the sam-
ple is supposed.

light beam passing through each slice the increments in
deflection angle and in radial displacement are

dz 1 dn dhT
mp n dT du

z do
du = Od +

Np 2

Using the parameters indicated in Sec. EV of the
present paper and matching the observed maximum
deflection angle, this simulation gives a calculated beam
path in the sample, as illustrated in Fig. 6. The corre-
sponding deflection angle distribution is also shown in
Fig. 3, in which the location of maximum Od moves down
from u =0.79 to 0.69. The calculated phase modulations
according to Eqs. (7) and (8) as well as the intensity distri-
bution from the new set of E'(Bd), u'(Bd), and b,P'(Bd)
are very close to that shown in Figs. 4 and 5.

III. ELECTRO-OPTIC AND ELASTO-OPTIC
COUPLING IN THE TRANSFORMATIONAL

THERMAL-LENS EFFECT
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FIG. 4. Self-phase modulation of thermal lens: P, ( ),
inner section of beam, u &0.79; p~ (

———), outer section of
beam, u & 0.79; phase difference bt)) ( ).

The ferroelectric phase transition in tungsten-
bronze —type Ba2NaNb50&5 occurs at 560—585 C depend-
ing on the slight stoichiometric variations during crystal
growth. The structural transition of paraelectric
4/mmm(D4&) to ferroelectric 4mm(C4, ) is character-
ized by the spontaneous polarization P, along the crystal
c axis. Yamada, Iwasaki, and Niizeki' and Singh, Drae-
gert, and Geusic' have reported their measurements on
optical properties in Ba2NaNb50». Their results re-
vealed that n, increases with large slope as T, is ap-
proached from below, while n, and n b are almost temper-
ature independent. According to Eqs. (5) and (7), the
temperature dependence of the beam convergence angle 0
owing to the thermal-lens effect is mainly related to the
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and were proved to be only weakly temperature depen-
dent. For pure electro-optic coupling Eq. (9) predicts,
with Eqs. (5) and (7),

g( T) &213
—

1 (10)

Singh, Draegert, and Geusic' showed that T, in
Ba2NaNb50&5 is near a tricritical point, so P-=—,'. Hence,
it is predicted that

e(T)-~
where e is reduced temperature ( T, —T)/T, .

IU. EXPERIMENTAL RESULTS AND DISCUSSIGNS

20 4O 6O

Z/ Wo

FIG. 6. Computer simulation of beam deAection inside the
sample. The parameter dn/dT is selected to match the real
beam divergence angle. Because of the different scales in abscis-
sa and ordinate the deflection angle illustrated in this figure is

exaggerated.

b, n, = —
—,'n, (g» —g, z )P, (9)

here g&& and g, 2 are quadratic electro-optic coefficients

temperature behavior of dn /dT. The temperature behav-
ior of n, can be neglected, because it varies (1% in the
temperature interval we are interested in; however,
dn, /dT can still be 1arge very near T, .

For oxygen-octahedra ferroelectrics, in the regime of
linear optics, the index change of a mechanically and
electrically free crystal is mainly because of the spontane-
ous polarization-optic effect. Among other possible ori-
gins, the thermal-expansion-induced birefringence is
small in the temperature region we are interested in
(Ba2NaNb50»'s dilatation constant is —10 ). ' The
ferroelectric phase transition in BazNaNb&O» is nonfer-
roelastic, so that the strain-induced effect is not large. In
this respect, Ba2NaNb~O» is different from the ferroelas-
tic crystal As205, in which the change in optic
birefringence is attributed to the elasto-optic coupling. '

Ba2NaNb50» belongs to the oxygen-octahedra ferroelec-
trics with a fourfold axis and an inversion center in
paraelectric phase. Based on a free-energy expansion of
Landau theory, the polarization s contribution to optical
birefringence is given by DiDomenico and Wemple as'

The experiment setup has been reported previously.
Ba2NaNb50» samples were prepared in a or b cut. A
typical sample size is 1.3X4X6 mm . The single fer-
roelectric domain is obtained by means of a poling pro-
cess with an applied field of 350 V/cm during cooling
from 600'C to lower temperature. Because the measure-
ments are performed far above the ferroelastic transition
temperature around 300 C, a detwinning process is not
necessary. The sample was placed in an oven with tem-
perature control accuracy of +0. 1 C. The temperature
was measured by a thermocouple attached to the sample
holder. The output 514.5 nm excitation of an Ar+ laser
was focused weakly onto the sample with the light polar-
ization parallel to the crystal c axis. The laser power at
the sample was 0.33 W. The Gaussian beam waist at the
focusing point, where the sample was placed, was
w0=0. 213 mm. The pattern's full size d was measured
on a screen, 204.5 cm from the sample, manually or
through a video-camera —computer on-line system. An
image processing program was used to obtain pattern pa-
rameters. Because the focal length of our thermal lens
( =3 cm) is much shorter than the observation distance z,
the beam convergence angle in Eqs. (10) and (11) can be
considered as equal to the measured divergence angle
O=d/2z. It is observed that the pattern's structure
remains unchanged when the observation plane is moved
from the location directly outside the oven to a few me-
ters away. This verifies that only thermal-induced phase
modulation is important for the formation of the patterns
and that Fresnel diffraction can be ignored.

A typica1 thermal-lens pattern near T, is shown in Fig.
7. After passing through T, by heating, the pattern
shrinks rapidly. The beam divergence angle at T, is 4.3'.
For Ba2NaNb5O» the following parameters are used:
b =0.257 cm ', kz-=0. 059 W/cm K, n, =2.33. '

According to Eq. (5) and the observed divergence angle,
the temperature gradient of the diffractive index at T, is

obtained as dn /dT =0.57 K '. This value is much
larger than dn/dT=10 for fluids' and glasses. This
unusually large value of dn/dT makes the transforma-
tional thermal pattern very sensitive to all possible heat
sources: bulk heating of the sample, laser local heating,
and even sample defects. The latter could act as secon-
dary light sources by scattering the incident laser light
and produce extra ring patterns.

The temperature dependences of divergence angle 0,
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FIG. 9. Double logarithmic plots of the data shown in Fig. 7;
the slopes yield O, -e (A) and O, -e ' (X) with
e=(T, —T)/T, and T, =570.7'C.

FIG. 7. Far-field thermal-lens pattern near T, . The radial in-
tensity distribution of the pattern is shown in Fig. 10.

(along the crystal c axis) and 0„(along the a axis) are:
plotted in Fig. 8. Double logarithmic plots of 0, and 0,
versus temperature are shown in Fig. 9, wher»
T, =570.7 C was taken as the temperature correspond-
ing to the 8(T),„.The plots shown in Fig. 9 yield
0 -e — ' and 0 -e +- ' ' From Eq. (10) the

C Cl

critical exponent 13 is obtained as /3, =0.28+0.01 and
f3, =0.31+0.01, respectively. The advantage of deter-
mining the critical exponent according to Eq. (10) is that
no other crystal parameters are involved. However, Eqs.
(5) and (7), from which Eq. (10) is deduced, are based on a
simplified model, in which dn /dT is constant both axially
and radially. In fact, dn IdT varies in both directions be-
cause of the radial temperature distribution and the ab-

sorption of the crystal. This may result in the discrepan-
cy of measured 13 values from the theoretical expectation
of —'. According to the measured /3 values, we believe4 '

that our system is mean field. For a comparison we want
to note that P=0.30 is found for As205 and attributed to
"crossover" behavior. '

To estimate the self-phase modulation, some quantita-
tive knowledge of the crystal is necessary. For our exper-
iments, with 0.33 %' in a m =0.2II3 mm beam, the max-
imum value of AT is estimated as 0.2 K from Eq. (3).
b,n,„=(dnjdT)b, T .,„

is, thus, estimated as 0.1. The
corresponding phase difference is 6$,„-470~.

The intensity distribution of Fig. 7 along the long el-
lipse axis (parallel to the c axis) is shown in Fig. 10. In
comparison with this experimental result, the theoretical
illustration of Fig. 5 is basically a good description of the
thermal lens pattern, only in Fig. 5 the interference rings
distribute intensity mostly in the outer part of the pat-
tern. This inconsistency in intensity distribution is due to
the uncertain crystal parameters available and the ap-
proximation in which the interfering parts of the beam
are considered to reAect at exactly the same angle (i.e., in
parallel rays).
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FIG. 8. Temperature dependence of the beam divergence an-
gles 0, (A ) and 0, (X).

FIG. 10. Intensity distribution of thermal-lens pattern along
the c axis. This is an experimental plot of the pattern shown in
Fig. 7.
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We want to stress that our far-6eld patterns basically
originate from the self-phase modulation of the thermal
lens rather than from the Fresnel diffraction, which is of
the form of a Bessel-function integral, as in Refs. 6 and 7.
Thus, our intensity pattern has a radial distribution that
is not a nth-order Bessel function. Basically, Ref. 6 de-
clined to calculate the intensity pattern in the rings, be-
cause this required computer calculations not readily
available to them. Reference 7 did such a calculation,
but, we believe, in the wrong limit; the results of Ref. 7 in
the Bessel-function limit are inappropriate for the scatter-
ing angle ~ 4 observed in the present work.
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APPENDIX A: DISCUSSION OF THE THEORY
OF AKHMANOV et al. AND DABBY et al.

The only paper dealing with the intensity distribution
of the thermal-lens pattern is by Dabby et al. They
used directly the results by Akhmanov et al.

I(8)=Io f rJo(k8r)exp
2

~2 y2 r2—E'k + + f 5n (r, z)dz dr
2Ro 2z o

(Al)

with 0 as the deflection angle and Jo the Bessel function
of zero order. [Reference 4 stops at Eq. (Al), saying only
that it converts a Gaussian input beam into an output
consisting of rings described by Airy functions. ] For the
origin of the Bessel function, we cite here the phase part
of diffraction integral from Born and Wolf: '

II(p) f f ei [kC —vpcos(a —g) —(1/2)up ]

0 0

ivp cos(a —g)d= 1

2' 0
(A3)

Thus, the Bessel functional rises from the phase shift due
to the geometry of the diffraction aperture. vp in Eq.
(A3) is equivalent to k0r in Eq. (Al). Referring to Fig.
11, the other terms in Eq. (A 1) are the following:

—r /wO
'2 2

e ', which describes the intensity distribution of a
Gaussian beam; r /2Ro=PP' —Ro, the phase retarda-
tion at the input plane of the sample with Ro as the input
beam radius; r /2z =P P' —z, the phase retardation
from the output plane of the sample to the observation
plane with z as the distance from the sample to the obser-
vation plane. In our experiment, r = 10mo =2 mm,
RO =1000 mm, z =2000 mm. Therefore, the phase shift
is mainly due to the difference in optical path length in-
side the sample.

Akhmanov et ah. and Dabby et al. concluded that Jo
is responsible for the angular structure in the far field.
However, in our experiment this is not true. We failed to
produce a pattern according to Eq. (Al). Now the ques-
tion is what approximation has been made in deducing
Eq. (Al) and whether this approximation is appropriate
for our thermal-lens problems. In general, due to the

where k4 is the phase shift from a Gaussian reference
sphere to the wave front at the diffraction aperture, while
u, v, p, a, and g are coordinates concerning the
diffraction of the reference sphere; (I)(r)= fo|)n(r, z)dz.
If &0 is a independent, the angular integral in Eq. (2) can
be separated and written as a Bessel function:

aberration of an optic element, the wave front is de-
formed after passing through it. For the Ba2NaNb50»
thermal lens, the difference in refractive index between
beam center r =0 and r =3mo is estimated as approxi-
mately 0.1. In this case the wave-front deformation is no
longer small. (See Appendix B.) In Fig. 12, cr represents
the wave front whose center is directly outside the sam-
ple. o' represents a Gaussian reference sphere. Now,
when we consider P's contribution to different points on
the observation plane, say, points P &,P2, . . . , the opti-
cal path differences in Eq. (A2), C&„&I)2,. . . , are no
longer equal to a same quantity P"P'"=@(r). The
difference in 4 could be much greater than that due to
the geometry of the diffraction aperture. Mathematical-
ly, because C&=4(a, gati, P ), N is not independent of a
and hence the solution to Eq. (A2) is not a Bessel-
function product. When the deformation of wave front o.
is small enough that (I)) =42= . . =4(r), then Fig. 12
can be simplified to Fig. 11 and the output from the sam-
ple is a plane wave with a phase distribution 4(r) on it.
This phase retardation distribution becomes a modula-
tion to the Bessel function.

In our numerical calculation of Eq. (Al), k and r are
determined by the experimental setup. Only when L9 is
chosen to satisfy kOr (1, i.e., the modulation occurs in-

'~ p' p"

) p

/

I
I

/~
/

Sample

FIG. 11. Schematic illustration of a Gaussian beam propaga-
ting through a thermo-optic sample, according to the model in

Ref. 7.
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FIG. 12. Schematic illustration of a Gaussian beam propaga-
ting through a thermo-optic sample. The wave-front deforma-
tion is taken into account: o. , the deformed output wave front;
o.', a Gaussian reference sphere.

FIG. 13. Estimated wave-front deformation of a Gaussian
beam passing through a SBN sample near T, .

side the first maximum (Airy disc), and when the tail of
the Bessel function is cut off, can we obtain a fringe with
higher intensity in its outside ring, just as the numerical
results in the paper of Dabby et al. However, if these
conditions are not satisfied, our numerical calculation
shows that the phase shift due to a thermal lens is not
able to compensate the rapid decay in amplitude of the
Bessel function and a thermal-lens fringe cannot be pro-
duced by Eq. (Al).

We want to remind readers that Fig. 1(c) of Ref. 7 is
obviously not a digital reproduction of Fig. 1(a). From
their data, B=0.06'. koBr is estimated as =20~. Their
observation of Fig. 1(a) and other observations for liquid
media are not in the Bessel-function limit. For
Ba2NaNb50&5 near T„weestimate kB=10 . It is even
further beyond the region in which a Bessel function
presents its structure.

An accurate calculation of the thermal-lens diAraction
can be carried out either based on the wave model in Fig.
12 or on a light ray approach. For the former, the de-
formed wave front is the source of the secondary wavelet
and we need to And an expression of N. As to the latter,
the wave-front deformation is treated as a beam
deflection in an inhomogeneous medium. In our present
paper we calculate first the beam deflection and then the
interference of two parts of the beam according to their

phase difterence. This approximation is still rough, but it
includes the basic features of the phase modulation of the
thermal lens. Our numerical results are in good agree-
ment with the experimental observations.

APPENDIX 8: ESTIMATION
OF THE WAVE-FRONT DEFORMATION

Referring to Fig. 13, the time required for light travel-
ing through the sample at its polar coordinate r is

t (r) = n(r), —L
C

ht (r) = t (0)—t (r) =—[n (0) n(r) j . —L
C

Here we ignore the beam deflection inside the sample. At
the moment when the beam center just passes the sample,

z (0)=0,
z(r)=cht =L [n(0) —n (r)] .

The numerical calculation shows that the temperature
increment AT occurs mostly in r ~ 3m~. That is,

z(3wo—-0.6 mm) =(1.3 mm)(0. 1)=0.13 mm .
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