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The Hubbard model in a two-dimensional square lattice is studied within the unrestricted
Hartree-Fock approximation. It is shown that a large number of self-consistent solutions exist,
which correspond to possible metastable spin and charge configurations. A solution, in which the
spins are coplanar and form a vortexlike pattern, is described. The solution is stable over most of
the parameter range and dominates for large values of U/t or at high doping. The influence of this
multiplicity of solutions on the phase diagram is discussed.

I. INTRODUCTION

Interest in the single-band, two-dimensional Hubbard
model has significantly risen since the discovery of the
copper oxide superconductors. ' Although it was origi-
nally conceived as a model of magnetic systems, in
which the most likely behavior was either metallic or in-
sulating, the possibility that it may exhibit superconduc-
tivity has been proposed often in recent times. Extensive
investigations, using a wide variety of theoretical tools,
have been made, and many possible physical regimes
have been proposed. It is striking that, despite the ap-
parent simplicity of the model, so many different
scenarios have been contemplated.

In the present work, we present a comprehensive study
of the properties of the system as described by the
Hartree-Fock (HF) approximation, in its most unrestrict-
ed form. This analysis is a first step in a systematic ex-
pansion, in which quantum Auctuations around the
mean-field parameters (the charge and spin distribution)
can be included. The Hartree-Fock approximation is also
useful to obtain a qualitative understanding of the system
over the entire parameter range. It includes, in an approx-
imate way, both charge fiuctuations (which play a major
role in the small U!t limit) and spin waves (which de-
scribe well the strong-coupling, Heisenberg, limit). In
fact, it was used to analyze the possible metal-insulator
transition in the model long ago .

This approach has already been followed in the litera-
ture. The main purpose of the present work is to sys-
tematize previous results, and to discuss in detail the

great variety of possible solutions allowed by the HF ap-
proximation. We will make special emphasis on the role
of transverse Auctuations in the staggered magnetization,
which may be relevant in the strong-coupling limit. We
think that the richness of solutions obtained within this
scheme can be used to understand the variety of physical
regimes proposed in the literature. Moreover, it also sug-
gests the main features of the phase diagram, as a func-
tion of doping and value of U/t, and relates that to an
underlying "frustration. "

In the next section, the general aspects of the calcula-
tions are outlined. Then, in Sec. III, numerical results
are presented, and the simplest structures found are
classified. A detailed study of those solutions is also dis-
cussed in that section. More complicated situations are
considered in Sec. IV, followed by an analysis of the re-
sulting density of states and excitation spectrum (Sec. V).
In Sec. VI the implications for the phase diagram of the
system are analyzed. Finally, we discuss the main con-
clusions of this work, and its relation with other ap-
proaches currently being used.

II. THE MODEL

We study the one-band Hubbard model in finite, two-
dimensional clusters (up to 13 X 13 sites in size) with open
boundary conditions. Two parameters describe the sys-
tem: the value of U/t and the number of electrons. The
Hamiltonian is

A= g tc,t,c,+ g U(n;& —1/2)(n, t
—1/2) .
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where o. stands for the Pauli matrices.
These equations define the procedure to find the Slater

determinant that best approximates the ground-state ener-

gy. Note that a common procedure used in the analysis
of flux phases for the same Hamiltonian (1) first maps it
into the Heisenberg Hamiltonian (using an approxima-
tion valid in the large Uit limit) and, then, introduces a
decoupling scheme that leads also to a Slater deter-
minant. While the two approaches show some similari-
ties, there are, as well, significant differences. In princi-
ple, both Slater determinants should describe the same
electronic wave function. In the Hartree-Fock case, this
is the straightforward consequence of the variational
principle already mentioned. The procedure itself en-
sures that the weight of configurations with doubly occu-
pied sites tends to zero as U/t ~ ~. An auxiliary step is
required in the second case, to make the wave function
consistent with the initial assumption of considering only
the spin degrees of freedom. Thus, the two Slater deter-
minants cannot be directly compared. On the other
hand, in the large Ult limit, the HF solution shows well-
defined loca1 moments at each site of the lattice. The
one-electron wave functions that make up the Slater
determinant can be understood in terms of an occupied
lower Hubbard band. The effective hopping matrix ele-
ments for the electrons in this band are related to the
overlap between the spin wave functions in neighboring
sites. When their values are complex, the electronic wave
functions resemble those of electrons moving in a ficti-
tious magnetic field. Thus, the Slater determinant associ-
ated with a fiux phase described by a given jtctitious mag-
netic field has a close resemblance to certain solutions of
the HF equations, in which the spins have twisted
configurations.

The effective potential defined in Eq. (3) is the most

The Hartree-Fock approximation searches for the ground
state and other possible excited states in the subspace of
wave functions that can be written as Slater deter-
minants. It can be cast as a variational procedure that
minimizes the expectation value of the energy within this
subspace. A wave function that leads to at least a sta-
tionary value of the energy is characterized by the ex-
istence of a self-consistent one-electron potential, which,
in turn, defines the states in the Slater determinant. Al-
lowing for arbitrary charge and spin fluctuations at each
site of the cluster, this procedure amounts to solving the
following one-particle Hamiltonian:

A = g tc, ,ci, +H. c.

{jc /) {~ P7)
I ~ s g /~$, $' $';~, n

J, OCC

(4)

where the sum extends over all occupied one electron
states, o' are Pauli matrices, and the a's are the ampli-
tudes of the wave functions at each site. The index s
denotes the spin direction. Note that, also, a charge
current may also exist, defined as J{&&).{~„)

CE- Im( g a~ 'q (a J „). . .
J, OCC;$

It is finally worth noting that the results can immedi-
ately be applied to the attractive Hubbard model, due to
the exact mapping between the two Hamiltonians on a bi-
partite lattice. By defining new operators such that

Cyij —C

c~ij =cfij
—

( 1 )(E +j)
$i,j Cgt j

c = ( —1)'+i'c
)I,j C)] j

the sign of U is reversed, while t is unchanged in the
Hamiltonian (1). Other operators of physical significance
can be mapped using the above correspondence. In par-

general decoupling possible. As the interaction term in
the Hubbard Hamiltonian is local, the effective field can
be written as a sum of 2X2 pieces that act on the two
spin components at a given site. Each of those matrices
can, in turn, be decomposed into a diagonal part and a
traceless contribution that can be expressed in terms of
the three Pauli matrices. When the magnetization has
fluctuations along more than one direction in spin space,
no components of the electronic spins are conserved.
Calculating the electronic wave functions amounts to the
diagonalization of a matrix (the effective Hamiltonian) of
dimension equal to twice the number of sites in the lat-
tice. Self-consistency is achieved by iterating the process,
until the effective potential in the Hamiltonian and the
one deduced from the solution are equal. The number of
iterations required depends strongly on the initial condi-
tions. Typically, the charge distribution relaxes very rap-
idly to the self-consistent value, while the magnetization
changes more slowly from iteration to iteration. This
feature is more accentuated for large values of U/t, in
agreement with the fact that the spin stiffness tends to
zero in this limit. The iteration scheme mimics, in an ap-
proximate way, the real-space dynamics of a system of
charges and spins approaching equilibrium. The fact that
the new values are those derived from the solution in the
previous step imp1ies that the dynamics corresponds to a
strongly damped situation, with no inertial terms. In cer-
tain cases, up to 2000—3000 iterations were required.

Certain solutions, in which the magnetization exhibits
transverse Auctuations, allow us to define spin currents
Bowing through the bonds in the lattice. Obviously, the
current at each bond has the direction, in real space,
defined by the bond itself. In addition, the currents are
vectorial in spin space, and a separate current can be
defined for each spin component. The current with spin
index i fiowing between nearest-neighbor sites (k, l) and
(m, n) is
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ticular, charge is mapped into spin, and vice versa. Be-
cause of this, the chemical potential in one model is
equivalent to a magnetic field in the other, and spin
currents are equivalent to charge currents. Thus, our re-
sults extend, and complement, previous calculations for
the attractive Hubbard model.

III. ELEMENTARY SOLUTIONS

We first consider the simplest solutions that satisfy the
Hartree-Fock equations. In the absence of doping, the
most stable configuration is the antiferromagnetic Neel
state, for all values of U/t. The value of the staggered
magnetization increases smoothly as a function of U/t.
For U/t )2, we find another metastable solution of the
equations, in which the spins rotate by 360, along paths
that encircle the center of the cluster. This configuration
resembles very closely a vortex in a planar XY model, the
only difference being the presence, in our case, of small
charge Auctuations, which disappear in the large U/t
limit. Similar solutions appear for all filling factors, and
will be discussed further below. %"e cannot rule out the
possibility that they exist for even lower values of U/t

than the ones mentioned above, but cannot be accommo-
dated in the clusters we study. It is worth remarking that
such a configuration is very sensitive to the choice of
boundary conditions. For purely topological reasons, it
changes significantly the nature of the wave functions at
the boundaries of the sample. In particular, a single vor-
tex can never be accommodated for in a cluster with
periodic boundary conditions. Similarly, constraints that
enforce the spin configuration to approach the Neel state
at the edges are incompatible with this solution.

Away from half filling, we can broadly classify the
solutions into three types.

(i) Magnetic polarons. Here, the magnetization points
along the same direction everywhere in the cluster. The
extra charge is localized in regions that can be either ci-
gar or diamond shaped. ' ' These regions define a core
where the magnetization is reduced. Its size increases as
the value of U/t diminishes; at the same time it reAects
more the anisotropy of the underlying lattice. Inside the
core, there are localized electronic states, whose energies
lie within the original antiferromagnetic gap. Examples
are shown in Fig. 1. They can be described as magnetic
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FIG. 1. Polaron solutions of the Hubbard model. (a) Ult=5, nI, =12; (b) U/t=5, nI, =24; (c) Ult=8, nI, =12; and (d) U/t=8,
n =24. The radius of the circles at each lattice site is proportional to the total defect charge there, taken as a reference for the half-
filled case. The size and direction of the arrows describe the local magnetization.
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FIG. 2. Same as Fig. 1 for domain-wall solutions ( U/t =5).

polarons, or the HF analog of the spin bag. '

(ii) Domain walls. These are linear structures that
separate different domains of the reference antiferromag-
netic state. ' The extra electrons, or holes, are localized
in them. Their width increases as the value of U/t de-
creases. Examples are shown in Fig. 2. They are the
solutions with lowest energy when the number of elec-
trons is such that they completely fill the localized states
that exist inside them. The situation resembles closely
that of one-dimensional systems with degenerate ground
states.

There are solutions that interpolate between (i) and (ii).
As the doping increases, the polaron solution (i) evolves
into a diamond-shaped bag, in which the interior has the
opposite staggered magnetization from the exterior. As
the size increases, this situation can be thought of as two
domains, one at the center of the cluster and the other
outside, separated by a domain wall and 180 out of
phase. If this phase is periodically extended, it forms a
superlattice.

(iii) Vortices These are solut. ions in which the charge is
localized at the center of the cluster, and the staggered

magnetization rotates by 360 along paths that enclose it.
As mentioned before, such solutions are metastable even
in the absence of doping. As in case (i), they have a
charged core, whose size and anisotropy are function of
U/t, and a region outside where only spin waves are
present. The magnetization always lies in a given plane.
At the boundaries, the magnetization resembles closely
that of vortices in planar antiferromagnets.

They are stable solutions for all filling levels, provided
that the value of Ult exceeds a certain threshold. Exam-
ples are shown in Figs. 3 and 4.

Their existence implies their stability against small de-
formations, which are probed by the iteration procedure
followed in the calculations. This stability cannot arise
from topological arguments based on the local staggered
magnetization, which is a three-dimensional vector.
Rather, it is due to a hidden U(1) symmetry present in the
problem, associated with the complex nature of the elec-
tronic wave functions. "' The twist in the magnetiza-
tion around the core of the defect gives rise to complex
phases and spin currents. Far from the core, the elec-
tronic wave functions are similar to those of tight-binding
electrons orbiting around a magnetic-Aux tube. This can
be better understood by using the correspondence with
the attractive Hubbard model. The solutions found here
are the counterparts of real vortex configurations in the
superconducting phase of the negative-U Hubbard mod-
el. The additional U(1) symmetry, in the attractive case,
describes the phase of the superconducting condensate,
and the spin currents correspond to charge supercurrents
in the superconductor. Following this analogy, we can
assume that the gauge field associated with the U(1) sym-
metry is proportional to the spin currents. Alternatively,
we can assume the existence of a coupling term between
the spin current of the additional holes and the magneti-
zation current arising from the continuum of electronic
states that build up the occupied Hubbard band. ' This
term is maximized with a finite spin current, as shown
from our results.

In the case where the staggered magnetization lies in a
single plane, the only nonzero current is that associated
with the spin index in the normal direction (J', if the
magnetization is in the xy plane in spin space). Its value
for the corresponding spin configurations is also shown in
Fig. 3. The fact that the charge current is zero implies
that the effective gauge field has an opposite sign for the
two spin directions.

As in the previous cases, there are localized electronic
states within the antiferromagnetic gap, where most of
the extra charge resides.

The relative stability of these three types of solutions
depends on U/t and the filling. Figures S and 6 show the
energies, for solutions of the three types considered
above, as function of filling for U/t= 5 and U/t= 8. The
cluster considered is 12X12. As the value of U/t in-
creases, vortices become more stable. The energy per
particle seems to decrease smoothly for small doping,
showing a tendency towards clumping. '" In case (i) a
number of holes between 4 and 8 is favored (U jt=8). It
is hard, however, to distinguish between clumping in its
strictest sense, and the inhuence of a residual interaction
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between the elementary defects. The additional charge is
not strongly localized, and the overall distribution sug-
gests more strongly the existence of an ordered array of
defects.

On the other hand, the energy of a vortex solution in-
creases logarithmically as a function of cluster size. This
is shown in Fig. 7. This dependence is independent of
filling. Hence, it arises from the twist in the magnetiza-
tion far away from the core, where the charge is local-
ized. In that region, the system is well described in terms
of spin Auctuations only, and the logarithmic dependence
is a straightforward consequence of spin wave theory. It
is remarkable that such a simple explanation fits so well
our numerical calculations. Alternatively, we can consid-
er the energy as arising from the kinetic energy stored in
the spin currents around the core, mentioned before. In
any case, this result implies that a single vortex should be
unstable in large clusters, where it will be energetically
favorable to split it into smaller defects. We can estimate
the filling at which a vortex becomes unstable by analyz-
ing the core contribution to the energy as a function of

the number of electrons. From the results shown in the
figures, vortices with two electrons seem to be favored.

It is also worth noting that, for large values of U/t and
small doping, solutions in which the neighborhood of the
region where the hole is localized is ferromagnetic have
also been found, in accordance with Nagaoka's
theorem. '

IV. OTHER SOLUTIONS

There is a large number of self-consistent solutions of
the HF equations, which can be reached by the appropri-
ate choice of initial conditions in the iteration procedure.
In general, the spins either lie along a given direction or
in the same plane. While some of them show very com-
plicated magnetization patterns, most can be defined as
combinations of the elementary defects described in the
preceding section. Figure 8 shows different multivortex
solutions. In these cases the initial distribution of magne-
tization was close to the final one, although the charge
started uniformly distributed. Thus, a significant locali-
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FICy. 4. Same as Fig. 1 for the vortex solutions.

zation of the charge has taken place, with the resulting
appearance of electronic states within the antiferromag-
netic gap. On the other hand, the position of the vortices
has not changed much. We ascribe this effect to the
strong pinning of the magnetization pattern to the under-
lying square lattice. For the large value of U/t chosen,
each vortex has a small core. In order for the vortex to
move by one lattice spacing, the spin and charge
configurations have to be significantl altered. Our re-
sults can be explained by assuming that this process re-
quires a large cost in energy, or, in other words, that
there is a Peierls-Nabarro type of energy barrier that
prevents the motion of defects from site to site. Then,
many local minima of the energy as a function of spin
and charge distribution may exist, as evidenced from our
calculations. Energetically they are nearly degenerate,
and great numerical accuracy is required to find the most
stable solutions.

For smaller values of U/t, locking effects can arise
from the anisotropy of the defects themselves. In this
case, the charge and spin distributions are extended, and
vary little over distances compared to the lattice spacing.

This makes studying them in small clusters difficult. On
the other hand, they are highly anisotropic, reAecting the
nesting properties of the Fermi surface in reciprocal
space. This anisotropy influences the interaction between
defects, and tends to give rise to locking effects into cer-
tain orientations, pinning, and to the existence of meta-
stable minima, as before.

In general, only when the distance between vortices in
the initial configuration is comparable to their core size
do they change significantly in the iteration process.

It is interesting to mention that the only spin
configurations that correspond to self-consistent so1utions
of the Hartree-Fock equations are those in which the spin
directions lie either along a single direction or are copla-
nar. We have not found solutions where the magnetiza-
tion was three dimensional in spin space. In particular,
the skyrmion, which is a topologically stable
configuration of the continuum Heisenberg model, does
not exist for the Hubbard model in a discrete lattice. We
have checked that by using it as the initial configuration
in our iteration procedure. The system evolves towards a
situation with a single overturned spin at the center, im-
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mersed in an AF background. We adscribe this collapse
of the three-dimensional skyrmion to discrete-1attice
effects.

The existence of many self-consistent solutions of the
HF equations can also be studied analytically, in small
clusters, or for periodic configurations with small unit
cells. A complete classification of all Hartree-Fock solu-
tions can be done for 2X2 and 3X3 clusters. For nh =2
and U/t & 2, the solution of lowest energy in a 2 X 2 clus-
ter is the vortex, which resembles closely the core of the
solutions discussed before. The same occurs in a 3X3
cluster when the total number of electrons is small. It is
easy to check that the Hartree-Fock wave function ob-
tained in this way is a very good approximation to the ex-
act one, once the degeneracy in spin directions is taken
into account. These results illustrate a general trend: for

small enough clusters, vortexlike solutions are always the
lowest in energy. This is very likely due to the absence of
the logarithmic contribution arising from the spin distor-
tion far from the core of the defect. As this term de-
creases as U/t increases, this result also explains why
vortex solutions are more stable at large values of U/t.

As mentioned before, the planar spin textures associat-
ed to vortices give rise to spin currents, which are related
to the additional U(1) symmetry of the model. These
currents are not gauge invariant, when the phase of the
wave functions is redefined, or a rotation in spin space is
performed. Their curl is invariant, however. This fact
implies that we can define an auxiliary vector potential in
such a way that gauge-invariant quantities are related to
(lattice) covariant derivatives, instead of ordinary deriva-
tives, such as the operators used in Eq. (4) for the spin
currents. This procedure is closely related to the
definition of gauge-invariant quantities in terms of the
phase of the superconducting condensate in the
Ginzburg-Landau description of a superconductor. In an
analogous way to the London equations, we can assume
that our vector potential is directly proportional to the
current. Then, the currents depicted in Figs. 3 and 8 can
be interpreted as a visualization of this auxiliary poten-
tial. It is finally worth remarking that most of the
analysis of the Hubbard model in terms of Aux phases is
based on the existence of the U(1) symmetry discussed
here, and a vector potential is defined in a similar, al-
though not identical, way. We suggest that this rejects
the fact that the underlying physics of our solutions with
a twist in the transverse magnetization is very similar to
that of the Aux phases.

V. SINGLE-PARTICLE EXCITATIONS

FIG. 6. Same as Fig. 4 for U/t=8.
The different solutions above give rise to significant

differences in the excitation spectrum. A typical density
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of states is shown in Fig. 9. The cluster size used gives a
reasonable approximation to the electronic bands in the
Neel state. Peaks associated with Van Hove singularities
can be clearly appreciated, and the size of the antiferro-
magnetic gap closely follows results obtained for infinite
systems.

Doping induces localized states within the gap. Fully-
self-consistent solutions always have the Fermi energy
close to the lower band (for holes) and it separates local-
ized states and extended ones. Thus, the number of states
in the gap adjusts itself to the degree of doping, and each
new hole leads to the formation of an additional state in-
side the gap.

A finite small gap always remains, for all values of dop-
ing. Its magnitude depends strongly on the type of solu-
tion considered, but it is more weakly dependent on U/t.
It is always comparable to the value of t.

This subgap is lowest for the vortex configuration, and
highest for the domain walI, with the the polaron solution
lying in between. The same trend exists for the degree of

filling of the antiferromagnetic gap. %'bile the gap edges
are not altered very much upon doping, it is clear that it
tends to be filled by localized states, which accommodate
the extra holes. These states are more evenly spaced in
the vortex configuration, while they are clustered into a
narrow band for the domain wall, and the polaron shows
an intermediate situation.

It is clear that higher-order corrections to the
Hartree-Pock approximation depend strongly on these
densities of states. Vortex solutions are, presumably,
those more effective in suppressing further the local mo-
ments, and giving rise to a more disordered state. They
will also inhuence the spin excitations, and the way in
which they mix with the low-energy charge fluctuations
associated with transitions across the Fermi energy.

VI. MAIN FEATURES OF THE PHASE DIAGRAM

As mentioned before, we believe that the existence of a
large number of possible self-consistent solutions to the
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FIG. 9. Density of states (in units of t ') for nz =12 and
U/t=8. The three elementary configurations discussed in Sec.
III are presented, as well as the reference Neel state (nl, =0).

Hartree-Fock equations is an intrinsic property of the
two-dimensional Hubbard model near half filling. Its ap-
pearance is due to the interplay of the pinning to the lat-
tice and the interactions between the elementary
configurations. The combined effects lead to frustration,
and to many metastable solutions. The same physical be-
havior is found in arrays of Josephson junctions in an ap-
plied field, ' or for electrons on a lattice in an applied
field. ' ' The relative importance of these effects de-
pends on the range of parameters considered.

(i) For small U/t the elementary solutions have large
and anisotopic cores. Thus, even for small doping values,
they will tend to form locked patterns. The overlap of
the cores can also be understood in terms of interactions
mediated by charge Auctuations. The configurations that
arise are, most likely, commensurate and incommensu-
rate arrays of domain wall-like configurations. It is easy
to show that either anisotropic vortices or elongated spin
polarons can lead to such patterns. A particular case can
be the spiral phase, already considered in the litera-
ture.

Quantum Auctuations in the charge and spin distribu-
tion will tend to melt those phases that are less pinned to
the lattice, and a liquidlike distribution of defects will re-
place them. Temperature can play a similar role.

(ii) For large values of U/t, the cores of the elementa-
ry solutions are small, and there is an appreciable activa-
tion energy that prevents them from diffusing freely
through the lattice. In this regime, Auctuations in the
transverse components of the magnetization, away from
the core, are likely to exist. Accompanying them there
will be spin currents, in accordance with an analysis
based on the t-J model. ' As mentioned before, these
spin currents are associated with nontrivial phases in the
electronic wave functions, which can also be interpreted

in terms of a fictitious gauge field, or a spontaneous inter-
nal magnetic field. This scenario resembles closely
the Aux phases proposed for the large U/t limit of the
Hubbard model. " ' In particular, the vortexlike solu-
tions described in Sec. III are likely to exist. As in the
XY model, they interact logarithmically, and can undergo
a Kosterlitz-Thouless transition. In this connection, it is
interesting to note that such a liquid of excitations that
interact logarithmically may have many features in com-
mon with those proposed in the marginal-Fermi-hquid
hypothesis, invoked to explain many phenomenological
properties of high-T, superconductors.

(ii) Finally, we think that the most interesting regime
for the existence of superconducting phases in the repul-
sive Hubbard model is the intermediate U/t range.
Then, the system cannot be viewed as in a strongly
locked situation (i), or a dilute number of small defects,
with low mobilities (ii). For filling factors such that the
cores of the elementary defects begin to overlap, the sys-
tem will be, most likely, in a liquid phase with strong in-
teractions. One of its possible instabilities may well be
towards a superAuid phase.

The analysis discussed above can be applied to charge-
density-wave systems such as BaPb Bi

&
03. The basic

features, such as commensurability, frustration, and the
existence of a strongly interacting liquid for
intermediate-coupling situations, are present in this case
also.

VII. CONCLUSIONS

We have presented a comprehensive study of the solu-
tions of the Hartree-Fock approximation for the two-
dimensional repulsive Hubbard model. The most
relevant feature is the existence of many nearly degen-
erate metastable configurations. We suggest that this is
an intrinsic feature of the model, associated with frustra-
tion effects that arise from the competition between the
pinning by the underlying lattice and the interactions be-
tween the elementary excitations. The inAuence of this
competition survives in the presence of quantum Auctua-
tions not taken into account by the Hartree-Fock approx-
imation, although the most weakly locked configurations
may be melted.

Among the possible solutions is the existence of vortex-
like configurations, in which the staggered magnetization
closely resembles that of a planar antiferromagnet. Their
stability cannot be explained from the topology of the or-
der parameter (a three-dimensional vector in spin space),
and requires the existence of an internal U(l) symmetry
associated with the complex phase of the electronic wave
function. In a similar way to a superconductor, spin
currents arise, and a gauge field can be defined. Thus, we
find, in the large U/t limit, features that resemble those
of certain Aux phases proposed in the literature for the
Hubbard model.

Finally, the frustration effects already mentioned will
give rise to a complicated phase diagram. For small
values of U/t, we expect elementary configurations with
large and anisotropic cores. They lead to commensurate
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and incommensurate phases, which may be locked to the
underlying lattice. Some of these phases will melt, be-
cause of increased doping and/or charge fluctuations.
There should be a regime, in the intermediate U/t range,
where the system can be best described as a strongly in-
teracting liquid, and may be unstable towards the forma-
tion of a superconducting phase. For large values of U/t,
our results suggest a description in terms of small vortex-
like defects, with low mobilities, transverse spin fIuctua-
tions, and a fictitious internal gauge field.

Hence, we believe that the Hartree-Fock approxima-
tion sufFices to give a comprehensive qualitative picture
of the phase diagram of the repulsive Hubbard model,

close to half filling. It is worth noting that, if the main
assumptions made in this work are correct, namely the
relevance of frustration efT'ects and the existence of many
nearly degenerate metastable spin and charge
configurations, the analysis of the system may prove to be
extremely complicated by analytical or numerical tech-
niques.
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