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The effects of correlation forces and the inhomogeneity gradient correction on the atomic free en-

ergy are studied numerically within the framework of the Thomas-Fermi-Dirac model. Using the
expressions presented by Gell-Mann and Brueckner [Phys. Rev. 106, 364 (1957)] and Ma and
Brueckner [Phys. Rev. 165, 18 (1968)],an energy relation for the thermodynamical equilibrium state
is derived. The strength parameter of the gradient term is expressed as o.=

9 + 8A, n ' ' where n is

the electron density and A, is a structure parameter, A, =4.235X10 a.u. The influence of these
corrections on the equations of state of Al, Fe, Cu, and Mo was calculated. The results show that
the net contributions of these correlation corrections to the binding energy are 6.78, 1.91, 1.80, and
1.04 parts per thousand, respectively. Results for the contributions to the cold pressure are also
presented.

I. INTRODUCTION

The statistical Thomas-Fermi' (TF) and Thomas-
Fermi-Dirac (TFD) models, including gradient terms of
the von Weizsacker type (the TFW and TFDW
theories), have been used intensively for the past several
decades to calculate the equation of state (EOS) and other
atomic properties of matter. The advantage of these
models is the fact that the description of the many-
particle atomic system depends on the local electron den-
sity only but not on the quantum state of the atom, there-
by greatly decreasing the amount of computations.
Results of these models for the atomic binding energies
are within 1.7% of those of more accurate theoretical
computations carried out using the Hartree-Dirac-Slater
(HDS) model or 0.5% of experimental values. ' Even
better accuracy, 0.5%—0.25 %%uo, is obtained with the
TFDW model, deduced from the virial theorem. '
While this may be still insufficient for comparison with
experimental atomic binding energies, which are now
known to five or more significant figures of accuracy, "
for the computation of EOS and related macrocospic pa-
rameters, the accuracy of results from the TFDW model
is comparable to that of detailed configuration theories.

Of the various self-consistent models, the augmented-
plane-wave (APW) method, which uses a complete
quantum-mechanical band-structure calculation, yields
the most accurate results over a large domain of densities
characteristic of the solid state. The APW-tabulated
data' for a few elements show impressive agreement with
experimental cold curves in the solid phase. However,
the extension of this theory to other temperature regimes
is extremely complicated and simpler procedures of com-
putation, which still provide reasonable accuracy, are
therefore highly desirable.

In this paper we present from computations of EOS
which incorporate the correlation forces into the TFDW
model using the expressions developed by Gell-Mann and

Brueckner' and Ma and Brueckner. ' These corrections
are an improvement of the TFDW model. The results of
EOS from these corrections, which we denote as the
TFDWB model, are compared to those of other shell-
orie~ted models as well as with experiment, to show its
improved accuracy.

Though the generalization to high temperatures is
straightforward, ' our treatment of this problem is limit-
ed to the zero-temperature ground state of the atom,
since the correlation correction is well known only at that
temperature.

II. THEORY

A. TFDW model

The main point of the TFDW model is the addition of
a gradient correction to the statistical kinetic energy to
account for the slow spatial variations of the electron
density. This gradient correction to the Helmholtz free
energy per particle has the form

2

(1)
8 n

where n is the local electron density and 8 is the strength
parameter (atomic units e =m =A'=1 are used). There
has been considerable discussion on the optimal value of

Originally, 8=1 was proposed by von Weizsacker.
Later, Kirzhnits' and others' ', using perturbation
theories, suggested that A should be —,'. In fact, the value
of 1/5 gives the best fit for cold-pressure curves at ex-
tremely high average electron densities (Ref. 10),
n )6X 10 cm . On the other hand, computational re-
sults on binding energies' ' showed that a value of —,

' to
—,
' is in better agreement with the HDS theory or the ex-
perimental values. Other researches ' ' proposed a
space-dependent A.
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B. The correlation and
gradient-correlation corrections

The correlation energy strongly depends on the
electron-gas density. ' ' An expression for this energy
density, which is valid in the high-density region, was de-
rived by Gell-Mann and Brueckner, '

Qc — n —( 1 —ln2)ln n +0.0962 4m

3~2 3
(2)

According to Ma and Brueckner, ' it is possible to cal-
culate the corresponding gradient correction to this term
following a reverse procedure to that outlined in the
density-functional theory (DFT). ' Their result indicates
that a term of the form

kG=An '~Vn
~

should be added to Eq. (2).
The proportionality constant in Eq. (3) accounts for

the long-range density variation effects. Ma and
Brueckner computed this constant to be 4.235 X 10 a.u.
based on the collective motion effects in a uniform elec-
tron gas. ' Their results were found, however, to be in
poor agreement with experimental data.

We introduced the following expression into the equa-
tions of the TFDW free energy per particle, to account
for the correlation effects:

It is this cr which should be used in Eq. (5). It com-
bines the short-range density variation effects, represent-
ed by the term A'=

—,', as predicted by the random-phase-
approximation theory, ' and the long-range density vari-
ation effects expressed by the parameter A, .

C. Self-consistent solutions and boundary conditions

The solutions of Eqs. (5 —7) under finite spherical
boundary conditions, as defined by the ion-sphere model
(ISM), should satisfy two self-consistency conditions:
namely, that the electrostatic potential V(r) is a solution
of the Poisson equation,

V(r)= ——+, d r,Z n (r')
r Ir —r'I

and the charge neutrality condition,

Z= f n(r p)d r,

(8)

V(ro) =Bn /dr (ro) =0,
rV(r)~„o= —Z,

(10a)

(10b)

which, in practice, is used to calculate the chemical po-
tential p.

Equation (5) is a fourth order difFerential equation
which requires four boundary conditions in order to give
a unique solution. These boundary conditions are

f, =
—,'(ec/n) =—

r

1
( 1 —ln2)ln n +0.048

4m

3~2
Bn /dro n 2Z 7 (10c)

(4)

The factor of —,
' was introduced into Eq. (4), to account

for the two possible spin directions in the Fermi electron
gas. The characteristic energy equation of the system is
obtained by applying the variational principle to mini-
mize the total free-energy density, following the DFT for-
malism. ' The new energy equation is

2(3m. n) —~ (3~ —n)—'~ c, +c—2ln n

'2
Vn 2V n(1—y ) — + V(r) =p, (5)

where ro is the ion-sphere radius.

D. KOS and the virial theorem

After solving the electron spatial distribution Eq. (5)
with the complimentary conditions Eqs. (8)—(10), one can
calculate the total free energy of the atom. From this
function the basic thermodynamic quantities of the atom
can be derived: namely, the atomic pressure, energy and
volume. Finally the EOS can be obtained. The result is
the decomposition of the total pressure into the sum of
five terms. Three ' of them are the kinetic, electrostat-
ic, and exchange components, whereas the other two, the
gradient and the correlation terms, derived from Eqs. (1)
and (4), are given by

where V(r) and p are the central and chemical potentials
of the atom, and

c2 = (1—ln2),1

3m2

o [n (ro)]
PG= — V n(ro),

Pc = — (1—ln2)n (ro),
1

(1 la)

(1 lb)

o- =A+8zn (7)

c& =C2+0.048,
lno'Y=

8 inn

The sum of the correlation gradient correction, Eq. (3),
and the von Weizacker term, Eq. (1), can be cast into a
form similar to Eq. (1), with a modified, density-
dependent strength parameter

PcG = —2A[n (ro) j ' V' n (ro) . (12)

The energy E, at T=O, is the sum of the contribution
of the corresponding partial free energy densities,

E =E~+E~ +E~+E~+Ec= n n d r . 13

In Eqs. 11, n (ro) is the electron density at the atom boun-
daries. PG of Eq. (11a) includes the correlation gradient
contribution
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TABLE I. Contribution of the computed correlation corrections to the atomic binding energy in some elements compared to vari-
ous theoretical and experimental quantities.

Element
Binding energy (a.u. )

Expt' HDS" TFDW'
Energy calculations with the TFDWB model

E—(a.u. ) EcG (a.u. )
—Ec (a.u. ) 1000~DE!E~

Al
Fe
Cu
Mo

13
26
29
42

242.704
1272.57

240.714
1267.80
1649.47
4040.75

261.43
1345.51
1747.65
4174.87

252.35
1320.06
1713.81
4122.65

2.26
3.81
4.57
6.62

0.55
1.30
1.49
2.32

6.78
1.90
1.80
1.04

'Reference 11.
Reference 24.

'Present work.

The terms originating at the TFD%'8 model are'

Ec=f nf, (n)d r (14a)

IV. RESULTS

A. Binding energy

EcG ——f Xn ""~Vn ~'d'r . (14b)

E = —6 X -'"V' d' —" '" 'Z
GC 2

(16)

III. NUMERICAL PROCEDURE

Equation (5) is solved numerically by means of the
Milne Predictor-Corrector method. The values of
n "(ro) and n (0) are determined by carrying out an
inward-outward integration procedure, requiring the
equalization of the logarithmic derivative at the turning
point.

The results for the binding energy obtained by this
method were compared with the values calculated by
means of the virial theorem, Eqs. (15) and (16). For the
studies reported here, a typical difference of the order of
0.1 —0.5% relative to the virial theorem was obtained.

The last contribution, EcG, is included in the gradient
term E~ of Eq. (13) through the strength parameter cr,
Eq. (7).

A more balanced way of expressing the total energy E
is by means of the virial theorem which has been shown
to hold true for the generalized TF atom. ' The follow-
ing procedure described in Ref. 8, in the case of the
TFDWB model, E can be also calculated by the formula

E =(3PV+E~+E~ EGc)/2+E—c,
where EGc is given by

Table I summarizes the computational results obtained
for the binding energy and the correlation corrections in
the elements of Al, Fe, Cu, and Mo, according to the
TFDW and TFDWB statistical models. These parame-
ters are compared, in Table I, to either experimental" or
computational results using the HDS model.

The incorporation of the new terms to the energy equa-
tion (5), causes a decrease in the energy contribution of
each term. This lowering of the binding energy (calculat-
ed around the crystalline state density), is much larger
than the addition of the single corrections Ec& and Ec to
the unperturbated energy computed by the TFD%' model
(see Table I). Only at very high compressions do both
procedures give the same results. Nevertheless, the im-
provement of the predictions of the TFDWB relative to
the TFD%' model, both compared with experimental or
HDS results, is still insufficient.

The size of the total correlation contribution to the en-
ergy, shown in Table I by AE, follows an approximate
scaling law of Z, compared with the factor Z fol-
lowed by the total binding energy. This fact indicates
that this correlation becomes insignificant with increasing
values of Z, as can be seen in the last column of Table I.

B. Cold pressure

Similar computations have been carried out for the
cold pressure. In Table II are shown the value of this
pressure and its corrections at the normal density for the
elements of Table I. The expected value of zero for the
total pressure is not attained, in spite of the fact that the

TABLE II. Contribution of the computed correlation corrections to the cold pressure at the normal

density for the same elements quoted in Table I.

Element

Al
Fe
Cu
Mo

13
26
29
42

p (g/crn')

2.7
7.874
8.93

10.2

TFDW
P (GPa)

8.617
115.380
130.013
70.559

P (GPa)

—15.483
56.952
68.427
26.015

TFDWB
—P~~ (GPa)

5.679
12.267
12.835
10.100

Pc (GPa)

5.084
12.952
13.666
10.424
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FIG. 1. Zero-degree Kelvin pressure isotherms for iron ac-
cording to present calculations compared to similar graphs from
Ref. 25 (1 TPa=10 Mbar). The abcissa units are density ex-
pressed in g/cm' as given by the same reference. (a) Computa-
tions according to the TFDW model. (b) Experimental cold
curve (Ref. 25). () Computed values with the INFERNO code
(Ref. 26). (0) Present computations with the TFDWB.

p (g/cm )

FIG. 2. Electronic pressure in iron as obtained from the
TFDWB scheme. P& and P& (absolute value) are the known ki-
netic and exchange components of the total pressure P. The ab-
solute values of the gradient (PG) and correlation (Pc) terms
defined by Eq. (11)are also plotted as functions of the density.

correlation correction has a more significant influence on
the pressure than on the binding energy. Furthermore, in
the case of aluminum, the computed TFDWB value of
the pressure is negative. A more complete description of
the improvements introduced by the TFDWB model in
the cold curve is shown in Fig. 1. This figure shows a
comparison between the cold-pressure curves for iron, as
obtained from the present calculations (TFDW and
TFDWB models) and similar graphs of Ref. 2S.

It can be seen that, for iron, the TFDWB is in better
agreement with the experimental cold curve than the
TFDW computations, particularly at the low pressures
region.

In Fig. 2 the contribution of the various terms compos-
ing the total pressure are plotted from 3 to 1000 g/cm .
From a comparison of Fig. 2 with a similar analysis car-
ried out with the TFDW model, one finds that the intro-
duction of correlation forces appreciably changes the rel-
ative contributions of the various terms at low pressures.
For example, at a density of 100 g/cm, when the effect of
the correlation term in the expression of o. [see Eq. (7)] is
small, the gradient contribution is around 0.61 of the ex-
change component, compared to 0.5 as predicted by the
TFDW computations. Near the crystalline state this gra-
dient contribution becomes as high as the kinetic term, in
sharp contrast to the TFDW theory. In the range of den-
sity shown in Fig. 2, the correlation term constitutes ap-
proximately only —,

' of the gradient pressure. In the
liquid phase, when the density is below 10 g/cm (see Fig.
2), the correction terms exceed the kinetic contribution in
the pressure and even becomes negative, rejecting the
tensile forces opposing the interatomic binding forces
during expansion.

V. DISCUSSION AND CONCLUSIONS

The effects of the TFDWB model were analyzed nu-
merically. We have found that the introduction of corre-
lation and gradient corrections to the TFDW energy
equations improve the results for the pressure near the
crystalline state as well as for the binding energies. The
size of the correlation corrections at very high compres-
sion varies between 0.7% and 0.1% of the total energy
for 13 Z 42, which is close to the accuracy of the nu-
merical integration. This means that, seemingly, there is
no advantage to adding new terms to the Hamiltonian in
order to describe the macroscopic properties of matter
for this region of densities. Nevertheless, the inclusion of
these corrections in the Hamiltonian may significantly
improve the solutions for atomic properties, particularly
at low pressures. It is, however, doubtful that the incor-
poration of more terms in the gradient expansion' ' '

could produce better agreement with the experimental
data. In fact, the statistical nature of the TF models
avoids the possibility that a continuous gradient expan-
sion will provide a correct description of the atomic
quantum properties. ' At present it seems that for fur-
ther improvements more realistic expressions for the
Dirac exchange term and the correlation contributions
should be worked out.

ACKNOWLEDGMENTS

The author is grateful to Dr. D. Salzmann for valuable
discussions of this work and to Dr. J. L. Borowitz for
critical reading of the manuscript.



6098 H. SZICHMAN 43

~R. P. Feynman, N. Metropolis, and E. Teller, Phys. Rev. 75,
1561(1949).

R. Latter, Phys. Rev. 99, 1854 (1955); J. Chem. Phys. 24, 280
(1956).

R. D. Cowan and J. Ashkin, Phys. Rev. 105, 144 (1957).
4C. F. von Weizsacker, Z. Phys. 96, 431 {1935).
~N. H. March, Adv. Phys. 6, 1 (1957).
~H. M. Schey and J. L. Schwartz, Phys. Rev. 137, A709 (1965}.
7W. Jones and W. H. Young, J. Phys. C 4, 1322 (1971).
R. M. More, Phys. Rev. A 19, 1234 (1979).
C. C. Shih, Phys. Rev. A 14, 919 {1976).
0H. Szichman and H. Hora, J. Phys. C 14, 5847 (1989).

~'C. W. Allen, Astrophysical Quantities (Athlone, London,
1973), pp. 37—40; K. R. Lang, Astrophysical Form ulae
(Springer, New York, 1974), p. 246—248,

~2K. S. Holian, Los Alamos Scientific Laboratory Report No.
LA-10160-MS, 1984 (unpublished).

' M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364
{1957).
S.-Ma and K. A. Brueckner, Phys. Rev. 165, 18 (1968).

'sH. Szichman, S. Eliezer, and D. Salzmann, J. Quant. Spec-

trosc. Radiat. Transfer 38, 281 (1987).
'sD. A. Kirzhnits, Zh. Eksp. Theor. Fiz. 32, 115 (1957)[Sov.

Phys. —JETP 5, 64 (1957)].
A. S. Kompaneets and E. S. Pavlovski, Zh. Eksp. Teor. Fiz.
31, 427 (1956) [Sov. Phys. —JETP 4, 328 (1957)).

8P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 {1964).
K. Yonei, and Y. Tomishima, J. Phys. Soc. Jpn. 20, 1051
(1965); Y. Tomishima, and K. Konei, ibid. 21, 142 (1966).
E. Wigner, Phys. Rev. 46, 1002 (1934).
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 {1965).

22Handbook of Mathematical Functions, edited by M.
Abramowitz, and I. A. Stegun (Dover, New York, 1964), p.
896.
P. C. Chow, Am. J. Phys. 40, 730 (1972}.

~E. C. Snow, J. M. Canfield, and J. T. Waber, Phys. Rev. 135,
A969 (1964)~

2~B. K. Godwal, S. K. Sikka, and R. Chidambaram, Phys. Rep.
102, 121 (1983).

~sD. A. Liberman, J. Quant. Spectrosc. Radiat. Transfer 27, 335
(1982).


