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High-accuracy Monte Carlo study of the three-dimensional classical Heisenberg ferromagnet
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Using extensive Monte Carlo simulations, we study the equilibrium properties of the simple-
cubic, classical Heisenberg ferromagnet. We employ very long runs for L XL XL lattices to obtain
high-precision data for the magnetization probability distribution. Using finite-size scaling for
L ~24 and an optimized multiple-histogram data analysis, we obtain an accurate value of the in-
verse critical temperature J/k&T, =0.6929+0.0001, which is higher than previously accepted esti-
mates. Calculated values of various static exponents are in excellent agreement with
renormalization-group and e-expansion predictions.

I. INTRODUCTION

The static properties of the three-dimensional classical
Heisenberg ferromagnet have been studied by a variety of
statistical-mechanical methods. ' ' This model is
defined by the Hamiltonian

&=—I y (s;"s"+sysy+s, 's;),
where S; is a three component unit vector in the direction
of the classical magnetic moment at lattice site i and J & 0
is the ferromagnetic nearest-neighbor (NN) exchange
constant.

Most previous studies used different high-temperature
series-expansion techniques, ' which yield direct infor-
mation about the critical exponents and the critical tem-
perature. More recently, other estimates for the critical
exponents have been obtained using renormalization-
group theory and the e-expansion technique of Wilson
and Fisher. ' The critical behavior also has been investi-
gated with the transfer matrix Monte Carlo method' and
via various Metropolis Monte Carlo simulations. "

Up to now, the most accurate estimates of the critical
exponents had been obtained using the field-theoretical
formulation of the renormalization group. However,
these results disagreed with series expansion values
which, on the other hand, gave a precise estimate of the
most significant nonuniversal parameter describing a crit-
ical point, the critical temperature T, . In addition, vari-
ous methods used in deriving series expansions for the
Heisenberg model led to different results, so that recent,
seemingly precise studies yielded a number of different
values. ' ' For example, values of the susceptibility ex-
ponent were in the range 1.38 (y (1.42.

Nearly all previous simulation data came from small
system sizes and/or quite modest statistics. " ' Recent-
ly Nightingale and Blote reported' results of a transfer-
matrix Monte Carlo study of the critical behavior of
d =3 Heisenberg ferromagnets. The values of the critical
coupling, K,:—J/k~T, that they calculated for simple
cubic lattices, K, =0.6922(2) and 0.6925(3), had very
small errors but were obtained from a study of systems
not larger than 10X10Xao. These values were incon-

sistent with the widely accepted series expansion result
K, =0.6916, obtained several years ago. ' We believed
that this situation called for more extensive Monte Carlo
calculations to determine accurate estimates of both the
critical coupling constant and the static critical ex-
ponents.

We present here results of extensive Monte Carlo cal-
culations (preliminary parts of which have been reported
elsewhere' ) of the static critical behavior of the simple
cubic classical Heisenberg ferromagnet. We analyze our
data combining finite-size scaling and cumulant '

methods with the optimized reweighting of data from
multiple simulations to temperatures other than those at
which the simulations were performed. As a conse-
quence of this approach we can accurately obtain the
fourth-order cumulants and determine the location and
value of the maxima of various thermodynamic quanti-
ties. We briefly discuss the technique in Sec. II where we
also describe our simulation and analysis methods. The
computational results and a detailed comparison with the
theoretical predictions are given in Sec. III, while Sec. IV
summarizes the main results of our study.

II. METHOD

For our numerical investigation of this model, we im-
plemented a vectorized version of the Metropolis Monte
Carlo algorithm with a checkerboard lattice decomposi-
tion and layerwise sweeps through the lattice. We stud-
ied systems with dimensions L XL XL with 6~L ~24,
and periodic boundary conditions applied in all direc-
tions. At least 10 MCS (Monte Carlo steps/site) were
used for each data point. (Even for the largest lattice this
corresponds to more than a thousand correlation
times. ) All calculations were performed on the Cyber
205 vector processor at the University of Georgia. The
speed obtained, 4.5 ps per spin update, was essential to
obtain meaningful results: One of our longest series of
measurements on a 24X24X24 lattice took about 240 h
of CPU time.

For each configuration generated, the dimensionless
energy per particle E= L "gz~ S, S, an—d the three
components of the magnetization per particle M„, M,
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M, were stored on disk. From these results, we con-
structed the histograms needed for the analysis described
later in this section. Because the energy in this model is
continuous, we had to introduce an appropriate binning
procedure for constructing the histograms. We divided
the whole energy range O~E + —3 into 30000 bins and
checked that within statistical errors the size of the bin
did not affect the numerical results of the reweighting
procedure (which we describe below) by using ten times
finer binning and repeating all the calculations.

For the systems described above we performed simula-
tions at two temperatures which we believed were close
to the infinite lattice size critical temperature T, . One
important quantity which we used to determine the criti-
cal coupling constant K, is the fourth-order cumulant
UL,

' defined by

M =(M'+M'+M')'"x y z (3)

3&M')'

Here & M ) L and & M )I denote the second and fourth
moments of the probability distribution of the magnetiza-
tion PI (M), where

where g, is related to the correlation time r, of the ith
simulation by g, = I+2r, , X, is the length (in MCS) of
simulation i, n, (E,M) is the histogram, and f, is an esti-
mate for the free energy at K=K; and is determined
self-consistently by iterating the relation

exp(f;)= X W(E, M)exp( K,L—E)
E, M

with W(E, M) given by Eq. (7). In practice it is incon-
venient to work with the complete two-dimensional prob-
ability distribution P(M, E). (Because of the large num-
ber of bins involved, it is impossible to store the full dis-
tribution in the computer memory. ) To overcome this
difhculty, we have adopted a method which uses only the
one-dimensional histogram n, (E) and the constant-
energy average (estimated from the simulation data) of
any function of M, f (M), which we wish to study. ' For
example, we can evaluate the first, second, and fourth
moments of the magnetization distribution, thus allowing
us to determine the susceptibility and fourth-order cumu-
lant. However, when reweighting to a temperature far
above or below the simulated temperature, one must take
care to avoid unphysical predictions of average quanti-
ties ' arising from inadequate accuracy in determining
the "wings" of the distribution.

& M"), =JdM M "P,(M) .

In the disordered phase UI ~—', , in the ordered phase
UI ~—,', while at criticality U~ ~U* (in the L ~ ~ lim-

it). ' ' [For the Kosterlitz-Thouless transition in the
d =2 planar clock model the universal constant U* was
estimated to be U*=0.655(2), while for the d =3 Ising
model the current estimate is U* =0.46(2). j

The K dependence of the order-parameter cumulant
UL, as well as that of other thermodynamic quantities,
was determined using a multiple-histogram reweighting
method proposed by Ferrenberg and Swendsen, which
makes it possible to obtain accurate thermodynamic in-
formation over the entire scaling region from just a few
Monte Carlo simulations. In this approach, the data con-
tained in histograms of the energy and magnetization
from simulations performed at different values of K are
combined to yield an optimized estimate for the density
of states W(E, M). The probability distribution P(E,M)
for some value of K is then determined by

III. RESULTS AND DISCUSSION

A. The critical temperature

In our numerical study, we performed simulations at
two values of K that were previously proposed as the
infinite-lattice critical coupling of the Heisenberg model:
K, "=0.6916 and K, =0.6925. The first estimate, by
Ritchie and Fisher, ' was long regarded as very accurate,
so that our initial numerical effort concentrated on creat-
ing extensive histograms at this value of K only. We per-
formed between 5.6 X 10 and 12 X 10 MCS for lattices
with 6 L 24. In addition, we later performed 10
MCS at the higher estimate for the critical coupling,
K =0.6925 proposed by Nightingale and Blote. '

An appropriate method for determining K, is to record
the variation of UI with K for various system sizes and
then locate the intersection of these curves. We compare
the values of U for two different lattice sizes L and
L ' =bL, making use of the condition '

(U /U ) =1.
P(E,M) =—W(E, M)exp( KL E ), —1 Because of the presence of residual corrections to finite

size scaling, one actually needs to extrapolate the results
of this method for (lnb) '~0, ' as will be demonstrated
below.

For each lattice size we found the optimized distribu-
tion 9 which was used to calculate the cumulant Ul (K)
for the appropriate range of coupling in the critical re-
gion. In Fig. 1 we show results for UL plotted as a func-
tion of K for 8 +L ~24. The thin lines show the cumu-
lants obtained from the optimized distribution close to
the critical coupling K,*=1/k~T,* (note their almost
linear shape), and their intersections with the cumulant
for L =6 (thick line) are shown by circles. Due to correc-

(5)

where

Z= X W(E, M)exp( KL E) . —

According to Ref. 29, the optimized density of states
obtained from R simulations performed at K values
K)). . . , K~ is.

Xg; 'n, (E,M)
W(E, M) =

Xg; 'N, exp( K;L E f;)— —
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FIG. 1. The fourth-order comulant UL (8 ~L 24) plotted
vs K obtained by optimized reweighting of 8 X 10 MCS generat-
ed at the coupling K, "=0.6916 and 10 MCS generated at the
coupling K, =0.6925

RF

tions to scaling, the estimates for the fixed point K,* for
L =6 depend on the scale factor b =L'/L so that an ad-
ditional extrapolation procedure is necessary (Fig. 2).
Results of extrapolations for 8~L ~ 12 agree quite well;
the difference for L =6 suggests that this lattice size is
not yet in the asymptotic regime where the effects of
correction terms to finite size scaling justify a strictly
linear extrapolation. Data for larger values of L were
consistent with this extrapolation, but due to the larger
scatter, because fewer points were available, straight-line
extrapolations were not well defined. When additional
data are added to the histogram, the new cumulant line is
shifted with respect to its previous position. Even a small
shift of two crossing cumulant lines for lattices L& ——Lz
produced a quite substantial error. Although the range
of validity of the optimized distribution method coincides
with the scaling region, ' the errors tend to be quite pro-
nounced even for temperatures that are not too far from

the simulation value. However, our initial choice of the
simulational temperatures (K=0.6916) was quite good,
since one expects, on the basis of previous studies in
Monte Carlo reweighting, ' that the best statistics for
the cumulants used in the finite-size scaling analysis
would be obtained by doing the simulation at a slightly
higher temperature than that where the cumulant cross-
ing occurs.

Our final estimate for the critical coupling
K, =0.6929(1) (see Fig. 2) is clearly larger than previous
estimates. ' ' ' ' A slightly lower value of K,
( =0.6928) obtained using the data for L =6 supports our
earlier conjecture that the result of the transfer-matrix
Monte Carlo study by Nightingale and Blote' was limit-
ed by the small strip width.

A similar analysis of the variation of cumulant cross-
ings (cf. Fig. 1) shows that linear fits to the data are
represented by a family of points. Each set is labeled by a
lattice size L and consists of the intersections of UL with
the cumulants UL with L ' & L. Here too the extrapola-
tion procedure, similar to this discussed above, was
necessary due to presence of finite-size corrections to
scaling. Our final estimate of the value of the fixed-point
cumulant is U *=0.622( 1 ).

B. The critical exponents

In order to extract critical exponents, we performed
finite-size scaling analyses of various thermodynamic
quantities calculated at our estimated critical point K, .
[In some cases this approach also provided additional es-
timates for K, which, unfortunately, suffer from larger
statistical errors than those obtained using the cumulant
crossing methods. However, the values of K, obtained
are consistent with our estimate E, =0.6929(1)]. Ac-
cording to the standard theory of finite-size scaling, in
an L XL XL lattice at T, the equilibrium magnetization
M should obey the relation

(9)

for suSciently larger L. Figure 3 shows results of a
finite-size scaling analysis for the order parameter M.
Within the very high accuracy of our simulation (note

0.5

0.4

1.442

3.440 0.2

0

FIG. 2. Estimates for T, (see text) plotted vs inverse loga-
rithm of the scale factor b =L'/L.

FIG. 3. Log-log plot of the magnetization M vs the lattice
size L. The plotted values of M have been calculated by opti-
mized reweighting (see text) at K, =0.6929+0.0001.
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and the derivative of the UL at T, should obey the rela-
tion

dUL
L 1/v

dK

In Fig. 4 we show that this prediction is borne out quite
well. The statistical errors are more visible here than on
the previous plot, so we were unable to determine for
what lattice size the asymptotic regime sets in. The value
of the static exponent v obtained after least-squares
fitting gave us v=0. 706(9), which is remarkably close to
the e-expansion prediction ' v=0. 705(3).

Another quantity of interest is the magnetic suscepti-
bility per spin y which, in the static limit of the
fluctuation-dissipation theorem, is

y= lim (L EC)((M M) —(M)(M)) .
L, —+ oo

(12)

that the error bars are smaller than the size of the points)
the asymptotic finite-size scaling regime was already
reached for L =10, or perhaps even L =8. The slope of
the best linear fit to the data on this log-log plot was ob-
tained using a standard least-squares fitting routine. Ex-
cluding the smallest two lattice sizes L =6 and 8 from the
fitting procedure (since they are not yet in the asymptotic
regime), we obtained the value of the exponent ratio
13/v=0. 516(3). The error estimate represents the largest
of two values: (1) the standard deviation of the fit de-
scribed above; (2) the change in the value of the slope
when the magnetization is obtained (using the reweight-
ing procedure) at I(.,+0.0001 (our estimated error in E, )

and the fit also includes the L = 8 point.
The ratio of exponents which we obtained agrees very

well with the e-expansion estimate ' P/v=0. 517(6).
The behavior of the reduced fourth-order cumulant UL

at the critical point can be used to find the value of the
critical exponent v. Since the correlation length
diverges at T, the cumulant UL is expected to have the
following asymptotic behavior: '

Ul =U*[1—c, (g/L) 'i + ],

500
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FICx. 5. Log-log plot of the susceptibility g=(L'K)(M )
(calculated by optimized reweighting at E, =0.6929+0.0001) vs
the lattice size L.

(13b)

These relations lead to the following finite-size behavior
at the critical point:

(14b)

Figure 5 displays the finite-size scaling of the susceptibili-
ty g calculated at %=0.6929. From the log-log plot we
obtained the value of the exponent ratio y/v=1. 969(7),
which, again, is remarkably close to the e-expansion re-
sult ' y/v=1. 966(14). This value of the slope was
determined after excluding the two smallest lattice sizes
from the fitting procedure. If only the point L =6 is re-
jected, the result does not change much: y/v= 1.971.

The definition of g suggested by Eq. (13a) seems to pro-
duce better results (with little statistical scatter; see Fig.

For finite systems this expression leads to the following
finite-lattice estimates for g:

(13a)

dU, /dK

20

10 20 30 10 20 30

FIG. 4. Log-log plot of the derivative of the cumulant
dUL/dE vs the lattice size L. The derivatives have been calcu-
lated by optimized reweighting at E, =0.6929+0.0001.

FIG. 6. Log-log plot of the susceptibility
g'=(& K)((M ) —(M) ) (calculated by optimized reweight-
ing at E, =0.6929+0.0001 vs the lattice size L.
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FIG. 7. Variation of the susceptibility maxima y' „calculat-
ed by optimized reweighting, with lattice size L.

FIG. 8. Variation of the eA'ective transition temperature
T, { calculated by optimized reweighting) with L ' . The

max

correlation length exponent has the value v=0. 706(9) con-
sistent with result of the fitting procedure displayed in Fig. 4.

I P/v (15a)

(15b)

6) when applied at the critical temperature. The suscepti-
bility y' given by Eq. (14b) is probably not well defined in-
side the critical region, when g L F-rom. the slope of
the log, ~' versus logioL line we obtain the value of the
exponent ratio y'/v=1. 997+o oo5, which is clearly larger
than the e-expansion estimate. ' However, our Monte
Carlo data were obtained from simulations at K =0.6916
and 0.6925: that is, in the disordered phase where Eq.
(14b) is only approximately valid; see, for example, the
discussion in Ref. 22. [Another discrepancy between the
values of y and y' was found some time ago in the Monte
Carlo study by Paauw et al. ' From the temperature
dependence of y' (y) determined in the ferromagnetic
(paramagnetic) part of the critical region they found a
straight-line fit on a log-log scale with y'= 1.05(4) which
was smaller than y = 1.37(4)]. In the light of the above
observations it was interesting to check whether the
finite-size scaling predictions concerning positions and
maxima of the susceptibility in the critical region are va1-
]d:

The log-log plot of y', „versus L (Fig. 7) demonstrates
again that the finite-size scaling ansatz, Eq. (15a), is borne
out well. From the linear fit to the points for 10~L 24
we obtain y'/v=1. 986(17). This result is much closer to
the e-expansion estimate ' than the value of y'/v calcu-
lated at K, =0.6929(1). Also, the points on the log-log
plot tend to show much less statistical scatter than the
points on the graph of g' versus I.. Moreover, another
finite-size scaling prediction, Eq. (15b), works very well
(see Fig. 8). Assuming the value of the critical exponent
v=0. 706(8) and using a least-squares fit, we obtained (for
points with 8 ~L + 24) the value K, =0.6930(2), which is
almost identical to our cumulant-crossing estimate.

It is interesting to compare the exponents v, /3/v, y/v,
and y /v obtained from the finite-size scaling analysis at
E =0.6929 with those calculated at the critical coupling
K "=0.6916 and K =0.6925. Employing the least-
squares-fitting routine to the data at these couplings for
10~ L ~ 24, we obtained estimates (Table I) which were
significantly different from those obtained at K =0.6929.
[The errors quoted combine standard deviations of the fit
and the change of the slope after the L = 8 (L = 12) data
points were included in (excluded from) the fitting pro-

TABLE I. Standard renormalization-group estimates (Refs. 7 and 9) and estimates obtained in this
study of the three-dimensional critical exponents in the Heisenberg model.

Exponent'

e Expansion

(Refs. 7 and 9)

0.705(3)

1.966(14)
1.386{4)

0.517(6)
0.3645(25)

—0. 115(9)

4.802(37)

=0 6916

0.659(10)

1.890(12)
1.246(27)

0.559(7)
0.368(10)

0.023(30)

4.381(83)

This study

K =K =0.6925

0.689(9)

1.945(7)
1.340(22)

0.526(3)
0.362(7)

—0.067( 27 )

4.698(34)

K =0.6929(1)

0.706(9)

1.969(7)
1.390(23)

0.516(3)
0.364(7)

—0. 118(18)

4.819(36)

'The exponents y and p in all but the first columns (and the ratios y/v, p/v in the first) were calculated
using values v, y/v, and P/v (v, y, P). a=2 —dv (hyperscaling); 6=1+y/P (Widom's law).
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cedure]. However, the exponents calculated with use of
the multihistogram distribution reweighted to I( =0.6916
are consistent with our previous estimates of these ex-
ponents at this coupling, Ref. 30).

The specific heat per spin C is calculated from

T RF
C

NB
C

C =(L 3~&)( (g2) —(E )2) (16)
1.42

Previous studies of this model have demonstrated that
the specific heat exhibits a cusp. ' In the case of a cusp-
like singularity maximum of the specific heat, C
should scale in the critical region as

1.40
0.02 0.04

L -1/0.706

C max C max aL a/va (17)

The exponent o. is believed to be close to —0. 1, but in
our study we could not verify this value directly. (How-
ever, assuming the validity of hyperscaling we estimate
a = —0. 118+0.018 ). Specific-heat maxima calculated
from the probability distribution for different lattice sizes
show substantial scatter (Fig. 9). Moreover, three-
parameter fit did not work well. From the fitting routine
we obtained

FIG. 10. Variation of the effective transition temperatureT,„(calculated by optimized reweighting) with L
(v=0.706(9)).

temperature peaks in the reweighted specific-heat curves
(Fig. 11), which obstruct observation of the correct
specific-heat maxima.

CP'" =4.22(36) —3.75(21 )L (18) IV. CONCLUSIONS

which gives a=0 21(4), assuming that the correlation
length exponent v=0. 706. However, the quality of the fit
did not worsen substantially even if a/v=0. 1, (which
corresponds to a=0.070)—see Fig. 9. The values of pa-
rameters C " and a, found from a least square fitting
routine, were 7.78 and 6.86, respectively.

We have found similar problems trying to verify anoth-
er finite-size scaling prediction concerning size-dependent
shifting of the specific-heat maxima:

In this paper we have shown how extrapolation and re-
weighting of the numerical data obtained in extensive
Monte Carlo simulations on simple cubic lattices with
6 +L ~ 24 yield useful information about the equilibrium
critical properties of the classical Heisenberg ferromag-
net. The analysis shows that the discretization of the en-
ergy values does not provide a noticable obstruction to
the implementation of histogram analyses. Our highly
accurate calculations give a very precise estimate of the

Cmax c
L

(19)

Using a linear fit to the points 10 ~ L ~ 24 we obtained
K, =0.6931(10). However, this result is not very reliable
since the statistical scatter of the data was very large (Fig.
10). The errors for the specific-heat peak maxima were,
in some cases, very big (compare the results for L = 16
and L =18) due to the occurrence of spurious low-

2.8 C„.„(L=1 6)

3.0
2.4

C max

2.5

2.2

0.70 0.72

2.0
10 20

FIG. 9. Size dependence of the specific heat maxima C
calculated by optimized reweighting.

FIG. 11. Variation of the specific heat with K for L = 16, cal-
culated by optimized re weighting of data generated at
K =0.6916 and K =0.6925 (solid line), and data (only 10 MCS)
generated at the coupling K=0.7 (dashed line). The arrows at
the bottom indicate where the simulations were performed.
(The broken arrow refers to the broken line, and the solid ar-
rows to the solid line). The approximate location of the transi-
tion temperature T,„(L= 16) is shown at the top. Both
right-hand peaks are purely spurious and have no physical
meaning.
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critical coupling of the model, E, =0.6929(l), which
differs from previous results. The values of the static crit-
ical exponents obtained in this study (Table I) using this
value of K„however, are in excellent agreement with the
e-expansion predictions.
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