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Chemical and magnetic ordering in amorphous systems
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A statistical method for the analysis of the chemical and magnetic ordering in multicomponent
amorphous substances is developed. The model assumes that the amorphous state is that of a crys-
tal with a high level of defects. The Hamiltonian allows for the existence of multiparticle and multi-

spin interaction potentials. The magnetic interactions are of the Ising type. The spin value is not
limited. Multiparticle radial distribution functions and multispin correlation functions are used for
the description of the atomic and magnetic structure. The internal energy is represented as a low-
temperature expansion.

I. INTRODUCTION

The Auctuations of the local atomic ordering in solid
solutions cause Auctuations in the electronic structure,
including the magnetic interactions. Thus, for instance,
using Mossbauer spectroscopy, in Ref. 1 has been proved
that in the case of iron these fluctuations appear in the
first and second configuration shells. The inverse
phenomenon —a change in the atomic ordering connect-
ed with the magnetic interactions —is also well known
(Refs. 2 and 3). From a theoretical point of view, the
problem is very complicated and, therefore, rather rarely
undertaken, especially for amorphous substances. Natu-
rally, the consideration of such problems needs certain
model approximations.

In this paper we restrict ourselves to interactions of the
Ising type (including the multispin interactions), which
depend on the local atomic and spin configurations. Re-
garding the chemical interactions we assume the possibil-
ity of the existence of multiparticle interactions. All pos-
sible types of atomic and spin fIuctuations were taken
into account for the determination of the atomic and
magnetic structure.

The description of amorphous substances is closely re-
lated to the structural model assumed. Our investigation
is based on a model of a crystal with an arbitrary number
of difFerent structural defects. These defects are regarded
as new kinds of atoms, and the diA'erence between these
and the real atoms is such that their total number is not
fixed but is controlled by the conditions of thermal equi-
librium. This model has been discussed in detail in a pre-

I

vious paper, but here we apply the method of a low-
temperature expansion of the internal energy of the sys-
tem so that our approximation can cover a larger temper-
ature range.

II. LOW-TEMPERATURE EXPANSION

By a low-temperature range region we mean a range
region, where the normalized (by kT) potentials of the
chemical or magnetic interaction are much greater than
unity.

The basic idea of the expansion proposed in this paper
can be reduced to a definite operator transformation,
which automatically leads to the renormalization of the
terms in the expansion of the internal energy of the sys-
tem.

Let us define the operator X

Z —1X=
Z+1

=—(1—X),Z+1 2

AZ= —(1+(Z)) .
1 —X

(2)

where b,z =Z —(Z ), we obtain

where Z =exp( H /k T) and —H is the Hamiltonian of the
system; k is Boltzmann's constant and T is the absolute
temperature. Taking into account the identities

(z) —1

(z)+1 (z)+1 ~z(1 —(x))+(X'—(x)) 1+(z)—
1 —X

(3)

Using an expression for the internal energy given in Ref. 4 in the form

U = —kT ln(exp( HjkT) ) = —kT l—n(Z ),
we obtain

(4)

U = —kT ln 1+X+ —ln 1 —X2(X—(X) )

1 —X
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It is evident from Eq. (5) that the internal energy can be represented as a series in powers of the operator X with re-
normalized expansion coefficients (see Sec. III).

III. INTERNAL ENERGY QF THE SYSTEM

The assumed according to Ref. 4 model treats the amorphous substance as a crystal, whose sites are occupied by
atoms or defects. This means that the Harniltonian of the system can be expressed in a form analogical to the Hamil-
tonian of a crystal (Ref. 5), namely

H = —$$ y;"S", C'", + ,' $$—( J,(' —S";S,+ Vfj ) + .
l P 1,J P)V

+ g g (
JPv'' iS/lSv. . . SA, +VPv ''A. )PPQv. . . Qi. + (6)nl

1,J, . . . , kP)v). . . )k

where S"; and C'~ are spin and concentration operators, respectively, J,".::I, and V(". . .'.'I, are magnetic and chemical in-
teraction potentials.

The first term in Eq. (6) represents an interaction with an external magnetic field, the second represents two-particle
and two-spin interactions, and the next, the general term, represents arbitrary multiparticle and multispin interactions
accounting for the local atom and magnetic configurations.

Following Ref. 5 we introduce operators of the pseudoconcentration C", ", which satisfy the relations

S) =ySvC'(~

where S represent the consecutive projections of the spin operator on the axis of quantization.
The expressions for Z can thus be rewritten in the form of:

Z= I++g C";QZ(' C", + —,
' g g C";C Z("'++Zt'" C'" + g Z(' „nC/'"C'

1)J P)V

+ ~ ~ ~ CPCv. . . PA. ZPv ' '
A +~ ZPv ' ' ) CPco+

n! . . ~ i j k lj k ~ lj . - k, co i
1)J). . . ) k P) v). . . ) A

where

co)+). . . ) p

ZPv ' A. QPcovn. . . QAP
lj k uQ p i j k

Z/'„= exp( y/'S"„ Ik T) 1, —

Z/) =exp( —V("/kT) 1, —

Z/'; =exp[( —Vp~" +y/'S)' )/kT] —1 Z/' —Z/'. —

Z, J„„=exp[(J(,"S"S„—V(,'"+yI'S('+y, S„)/kT] —1 —Z/' —Z. „—Z/. —Z/. Z(. —
l)J)A

Z("k =exp[( —V,(,'k VP~" VJq V—k,(')—IkT] —1 Z('—ZJq Z—k,
(' . — —

The arbitrary coefficient Z, . ::k &. . . , where there are n terms i —k and m terms co —p, is constructed in the follow-
ing way.

(1) Construct a sum, symmetric in all indices of the type i,p, co, of all possible expressions of the type V(,' . . : k IkT and
J(".. .

'

k S~Q('i . . S /kT, where there are p terms i kand q term—s co —p, for which 2 &p & n, 1 & q & m.
(2) In the next step exponentiate of this sum, subtract 1 from the result as well as all possible combinations of the ex-

pressions Zj k Q p where there are s terms i —k and t terms co —p for which the condition s (n, t ~m, and
s+t (n +m holds.

In this way formula (8) gives the expansion of Z in a series of the operators of concentration and pseudoconcentra-
tion. The structure of the expansion of (Z)", for n arbitrary, is the same:

Ctyv. . . Qi. 'Z(n)Pv. . i+ ~ Z(n)Pv ) Pro+
i j k ij . -. k ~ lj -. ken

l)j). . . ) k 1M) V). . . ) k CO

After transformations it can easily be seen that all coefficients Z ".'". . k '„'(i. . . in formula (9) can be calculated from the
corresponding coefficients Z/J. ::I, &. . . by means of the transformation exp( . )~[exp( )]". This rule will be
used later for the determination of X.

Expanding X, defined by formula (1), in power series we obtain
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X= 1+2 g (
—1)"(Z)" .

n=l

Keeping in mind formulas (8) and (9) we obtain

(10)

X=g g C'~ g X)" C'", + . + QPv. . . Cti, XPv ' ' h. +g XPv' ' i. @co

1,J). . . , kP)v). . . )A, CO

co, Q, . . . )p

Xp.v i. p. copvn . .
ij . . k, coQ .

p i j k

The power series, defining X, . ::k „n. . . in expression (11), can be summed, and as a result we obtain directly, for the
erst three coefficients,

XP =tanh(y";S" /2kT), XP~ =tanh( —
VP~ /2kT), XP~„=tanh[( —VP~'+y;"S"„)2kT]—X)' —

XP~ (12)

Further, it is again easy to note that these coefficients X, . ::k &. . . can be obtained formally from the coefficients
Zj . .'. j, „~.. . , defined in expression (8), through the transformations Z~X and exp( )

—l~tanh[( . )/2]. This
rule holds also for all remaining coefficients Xj k Q p.

This algorithm allows the coefficients under consideration to be obtained in a recursive way, which is equivalent to
the diagram technique widely used in the theory of ordering.

IV. FREE ENERGY

The internal energy is defined by formulas (5) and (11). For the configuration, entropy formulas given in Ref. 5 are
valid, namely,

S =g (S,"+S"),

where S," and S" are the n particle and n spin entropies, respectively. They are of the following form:

Sa

S"=—
m

PV 'A,
k PiJ

n&v'
i j, . . . , kpv, . . . , A, Prj k gtj . k

p|MV'
' A,

LJ
' ' k Q)Q ' ' ' P

Pij . . k ~ &j kcoQ p ppv
i j, . . . , kp, , v, . . . , X co, O, . . . )p tj . k, coO p Ij. . . k, coQ p

(14)

where P,~. . . k, g,~. . . k Pj k Q p and 6 k Q p
are the probabilities and correlation functions of chemical and

magnetic clusters, respectively.
The lattice sums in the expressions (11) and (14) are defined explicitly only in the case of an ideal crystal. In our case

the limits of the coordination spheres are somewhat diffuse and the number of atomic sites in each of them is not fixed.
Therefore, we must use integration instead of summation. Let us introduce the following notations

C"=N"/N, C"=N'/N, N =g N" +g N', il= g N" /N, (15)

where X"and 1V" are the common numbers of atoms of the type p and defects of the type ~ in the system.
From the definitions (15) and the condition of the isotropy of the amorphous substance as a whole, it follows that

g C'=1/g —1, (C";)=C", (C", ) =C" (16)

Taking into account formulas (5), (11), (15), and (16) we obtain, finally,
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g C"gX"Ci' +

1 ~ 1

n~ &V

X p" r . r J" r r + L~ r -r~C"
0 0

+. + $ Xi' (r' . r )P" (r . r~)'
p toQ p

ci))Q). . . )p

Xdr . dr~ (17)

where the coefficients X"n. . . (r r ) are constructed from the corresponding coefficients Xi,'k n" . b'y
m. .eans of the

transformation Vi'. . :I, ~ V"(r'. r ) and JP~'. .'.'k" —+J"(r . . r ). Here p"(r . r ) denotes the probability for form-
ing a multiparticle cluster, composed of atoms of the type v . A, placed at the points, defined by the vectors r . r,
along with an atom p (placed at the beginning of the coordination system). P n. . . (r . r ) describes the probability
of forming the corresponding magnetic cluster. The normalization constants V, .

V& have the meaning of average
volumes occupied by the atoms or defects, respectively. The summation is carried out over all types of atoms and de-
fects.

A procedure of integration, related to formulas (14) gives the following expressions for the entropy:

kX 1 1

n! zV

S"=—
m

oo oo "(r . . r )
V

Xf . . f p"(r . . . r )ln 1+ dr . dr
0 0 pP(rv. . . rk) gP(rv. . . rP. )

kN 1 1 1n!„zV Vz

X o ~ o p P r o ~ o

0 0

X $ Pi'n. . . (r' r )
CO)Q). . . )p

GP (rv. . . rk)coQ'''p
Xln 1+ dr dr

PP (rv. . . rA) GP (rv. . . ri. )coQ . p coQ p

(18)

where g"(r r ) and Gi'n. . . z(r . r ) are the corre-
sponding atomic and magnetic correlation functions.
The other notations are the same as in formulas (17).

Formulas (17) and (18) are basic for the calculation of
the parameters of the atomic and magnetic ordering —in
our case rl, g"(r . . . r ), and G"„n. . . (r . . r ). Their
values are defined by the minimization of the free energy.

V. CONCLUSIONS

It should be mentioned that if magnetic and chemical
interactions coexist in a given system, the critical temper-
atures of the magnetic transformation and of the order-
disorder transformation may di6'er significantly. For this
reason it is very important that the expansions in the
chemical and magnetic potentials should hold simultane-
ously in a given temperature range. For this purpose a
low-temperature expansion procedure was introduced.
This possibility was not taken into account in our previ-
ous paper.

It is well known that the number of the diagrams,
widely used in the theory of ordering, rapidly increase
with the consecutive approximations. The latter strongly
restricts the achievement of the desired accuracy. Furth-
ermore, this is valid for such complex systems as dis-
cussed above. In Ref. 4 we proposed, and in this paper
we generalized, a new technique [see formula (12)], which
gives a simpler way for the calculation of the coefficients
of the internal energy in a recursive way. This method
essentially increases the number of the expansions ac-
counted for in real calculations, which leads to a better
accuracy of the results obtained.
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