
PHYSICAL REVIEW B VOLUME 43, NUMBER 7 1 MARCH 1991

Monte Carlo investigation of critical dynamics in the three-dimensional Ising model
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We report the results of a Monte Carlo investigation of the (equilibrium) time-displaced correla-
tion functions for the magnetization and energy of a simple cubic Ising model as a function of time,
temperature, and lattice size. The simulations were carried out on a CDC CYBER 205 supercom-
puter employing a high-speed, vectorized multispin coding program and using a total of 5X10'
Monte Carlo spin-Aip trials. We used L XL XL lattices with periodic boundary conditions and L as
large as 96. The short-time and long-time behaviors of the correlation functions are analyzed by fits
to a sum of exponential decays, and the critical exponent z for the largest relaxation time is extract-
ed using a finite-size-scaling analysis. Our estimate z=2.04+0.03 resolves an intriguing contradic-
tion in the literature; it satisfies the theoretical lower bound and is in agreement with the prediction
obtained by e expansion. We also consider various small systematic errors that typically occur in
the analysis of relaxation functions and show how they can lead to spurious results if sufhcient care
is not exercised.

I. INTRODUCTION

Dynamical properties of spin models are a traditional
subject of statistical physics. Although analytical work
in this field began some time ago, ' quantitative
verifications of theoretical results and predictions by
means of Monte Carlo simulation techniques have been
published only recently and are still much less reliable
than Monte Carlo results for static properties. An eluci-
dating example is the three-dimensional (3D) Ising model
whose static critical exponents are numerically very well
known. Within the past few years several attempts em-
ploying different Monte Carlo methods have been made
to find a reliable numerical estimate for the dynamic
critical exponent z. The values obtained vary between
2.17 (Ref. 3) and 1.95 (Ref. 6), a region which is much
larger than the errors given in the papers. The values
tend to become smaller with increasing lattice size and
computer time, which suggests that the results may be
biased by finite-size effects and/or insufficient statistics.
The two most recent values were calculated on a CDC
CYBER 205 supercomputer and on the Santa Barbara
special purpose computer, on lattices up to
512X512X512 and with Monte Carlo runs with several
million Monte Carlo steps. The results were surprising in
that both values z = 1.95 (Ref. 6) and z = 1.99 (Ref. 7) are
smaller than 2 which had been accepted as a lower bound
for z for all dimensions d between one and four. This
lower bound is the result of an interpolation between
second-order e expansions around d =1 and 4. The va-
lidity of the e expansion results has been conclusively
verified by Monte Carlo simulations for d =2. (Togeth-
er with e-expansion results, the previous Monte Carlo re-
sults for d =3, however, imply that, as a function of d,
z —2 has zeros between d =2 and 3 and between d =3
and 4, which is not compatible with the e-expansion re-
sult. ) An alternative explanation for such small z values
might be found in systematic errors in the methods used.

Our motivation for this paper is therefore not only to
clarify the discussion concerning the numerical value of
z, which is even more important as the Santa Barbara re-
sults are suspected to be incorrect, ' ' "but to analyze the
possible systematic errors which occur in Monte Carlo
investigations of dynamical properties. The results of our
analysis explain the variety of previous numerical values
for z. In our calculation of z we take those systematic er-
rors into account and obtain an improved value for z,
which is in good agreement with the e-expansion result.

The paper is organized as follows: In Sec. II we de-
scribe our Monte Carlo method and the theoretical back-
ground upon which our method is based. In Sec. III we
describe our data analysis and present the results. We
discuss our results in comparison with other theoretical
and numerical work in Sec. IV before summarizing and
drawing final conclusions in Sec. V.

II. BACKGROUND

A. Critical dynamics and relaxation functions

The critical dynamics of spin models are typically stud-
ied by means of relaxation functions of magnetization,
energy, or other observables at or close to the critical
temperature. Most of the previously applied Monte Car-
lo methods for determining the dynamical critical ex-
ponent z are dynamic Monte Carlo renormalization-
group (dynamic MCRG) methods, which are convenient
because they do not require the explicit knowledge of the
relaxation time ~. These methods are very similar to stat-
ic MCRG methods; they use dynamic scaling relations
between relaxation functions instead of static scaling rela-
tion between correlation functions. However, there is
one important difference. As opposed to the static case,
the limit L ~~ (L =lattice size, T = T, ) is not sufficient
to guarantee the validity of the dynamic scaling relations.
An additional condition which must be satisfied is that
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where A(t) is the magnetization or energy (M and E, re-
spectively) at Monte Carlo step t. I is an appropriate
normalization factor, k&Tg for the magnetization and

kz T C for the energy with y and C denoting susceptibili-
ty and specific heat, respectively. The limit for N~ &x& is
then

& A(0)A(t) &-& A &'

&A'& —&A &'

The time dependence of N„(t) can be expressed, in gen-
eral as"'

4 „(t ) =g a, exp( t lr; ), — (3)

where ~, are the inverse eigenvalues of the Liouville
operator of the given kinetic model and the a; are un-

known non-negative coefficients. Since the Liouville
operator in a finite system is symmetric, non-negative,
and finite, ' ' the spectrum of eigenvalues is bounded.
The smallest eigenvalue governs the long-time behavior
of 4~(t), i.e., is the inverse of the relaxation time rL
which is characteristic for the lattice size considered.

For very short times Nz(t) decays on a time scale
given by the initial relaxation time H. Usually r is
defined by the derivative of N„(t) in the limit t ~0:

dN„(t)
=N„(t)

dt

at
(4)

It is proportional to the fluctuation of the appropriate ob-
servable, ' ' i.e., proportional to the susceptibility or
specific heat for magnetization and energy, respectively.
It is not obvious how the limit in Eq. (4) is to be taken for

relaxation processes in the systems must be governed by a
single characteristic relaxation time, i.e., the scaling rela-
tions hold only for times sufficiently large that short-time
relaxation behavior is irrelevant. For dynamic MCRG
methods it is difficult to check whether both conditions
are satisfied. We will discuss this point in Sec. IV in more
detail. An alternative approach, which we chose, is to es-
timate ~ directly from explicit data for the relaxation
functions and determine the critical exponent z from the
scaling behavior of ~.

We studied the equilibrium time-displaced correlation
function &1&(t) of the magnetization and energy at T, in an
L XL XL lattice. In a Monte Carlo run with N succes-
sive configurations N(t) is calculated as

N —te„(t)=r-' (N —t)'y A(t )A(t +t)

Whereas the initial relaxation time depends on the
method chosen (as it depends on the algorithm used), the
critical exponent should be universal if 2 is determined
from the relaxation function at times short compared to
the relaxation time ~L.

In the thermodynamic limit all relaxation times ~,
diverge as

~ L z(i)
1

with z(i) z, the critical exponent of ~L. For z itself a
lower bound is known. Since a; 0, a lower bound for 7L
is given by

g a;/r;
—1 —P

Since 2 is proportional to the susceptibility in the case of
the magnetization, " ~ diverges with the exponent y/v
and thus

z ~y/v=1. 96 .

There is another inequality which can be easily de-
rived. Since N„(t =0)=1, the sum of all coefficients in*
Eq. (3) must be unity. It follows then for the smallest re-
laxation time ~;„,

+min ai +min — a

So far we have briefly summarized some exactly known
properties of 4z(t) as a function of t and lattice size. In
a Monte Carlo simulation there is another parameter
which may infiuence 4z(t) and thus the estimate of z
drastically, namely the length of the computer simulation
itself. As the two terms of Eq. (1) are taken from the
same data set,

'

the calculated relaxation function is sys-
tematically small. This effect has been mentioned by
several authors' ' but has never been studied quantita-
tively. It can be described as follows: Consider a Monte
Carlo run with N successive configurations cut into M
pieces of P successive configurations, i.e., N=MP.
can then be split into contributions from relaxation func-
tions N „within the jth piece (j =1 to M) and a coarse-
grained relaxation function N, z describing the relaxa-
tion of the average values of 3 from piece to piece. Us-
ing the short notations n (j)=(j—1)P+1 and m (j)=jP
for the first and last time step, respectively, of the jth
piece, N.~ and N, ~ are given by

the discrete time scale in a Monte Carlo simulation. We
have tried two different methods, namely taking the (nu-
merical) derivative at t =1,2, . . . and secondly, fitting
the derivatives of &0„(t) to the explicit formula of
diaz (t)/dt written as a polynomial in t:

d@„(t)
dt

=1/v + g (
—1)"(1/n!)pa;r, "t" .

m( j)—t m( j)—t m( j)
4, „(t)=I ' (P t) ' g A(t')(t')A(t'+t) ——(P —t) ' g A(t') g A(t")

t'= n(j) t'=n (j) t"=n(j)+t
(10a)
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t =n(j)+t
(10b)

Using these expressions, Eq. (1) then becomes equivalent
to

(12)

The = sign in Eq. (12) means that d&z(t) is a random
variable with statistical fluctuations. Equation (12) is ex-
act for the expectation value of 4& „(t).

Assuming a single exponential decay for 4„(t), one
can easily derive a relation for the corresponding relaxa-
tion time v.L N estimated from a time-limited Monte Carlo
simulation with N configurations:

+L N +L~

I/rL ~=1/rL +c/N, N —+ ~, (13)

c is a dimensionless, and therefore L-independent, con-
stant. Thus, Eq. (13) can be written in a scaled version:

rL z/rt. =f(N 'rL )=1 c(N/rL ) ', —N/rL~~
(14)

B. Dynamic finite-size scaling

For temperatures away from T, there are two charac-
teristic length scales in the system, namely besides the
lattice size L, the (finite) correlation length. All preced-
ing formulas remain valid except Eq. (6) which has to be
replaced by the finite-size-scaling expression' '

r(c,L)=L'f(eL'~ ), ~=(T —T, )/T,

with

(15a)

f(x)~x ', x~~ . (15b)

From Eq. (3) it is obvious that the relaxation function

In the limit M~ao, N~ oo, P=N/M=const the left-
hand side of Eq. (11) converges to the expression for
4„(t) at infinite N, Eq. (2). The first term of the right-
hand side of Eq. (11) becomes the statistical expectation
value of 4„(t) calculated in a time-limited Monte Carlo
simulation of P configurations. The coarse-grained relax-
ation function is for t &(P approximately equal to the
variance of the average of A over P successive Monte
Carlo steps, i.e., according to the central limit theorem
for Markov processes' proportional to 1/P. Thus, by re-
placing N for P we get, for our original problem, namely
the dependence of @z(t) of the number of configurations
in the Monte Carlo simulation N, the relation

C&„(t)= ( A (0)A (t) ) —( A )'
(A') —(A)'

—const/N

itself can be written in a simple scaling form like Eq. (15)
only for sufficiently long times when all exponential terms
besides one can be neglected. This scaling form then fol-
lows in a trivial way from Eq. (15) for r=rL .

A finite-size-scaling analysis of equilibrium relaxation
functions for TAT, is an alternative to our method of
determining the dynamical critical exponent z. As has
become clear from the preceding considerations, it is
dangerous to assume a simple scaling form for the relaxa-
tion functions themselves. The finite-size-scaling analysis
rather should be applied to the relaxation times deter-
mined by a direct examination of the relaxation func-
tions. As there do not exist published data for finite-
size-scaling analyses for TAT, within equilibrium (for an
analysis of nonlinear relaxation see Ref. 3), we present
our data here, although they are of less accuracy than our
data at T, and do not improve our estimate of z taken
from the analysis at T, .

C. Monte Carlo method

The Monte Carlo simulations were carried out with a
highly optimized multispin coding program' on the
CDC CYBER 205 vector computer at the University of
Georgia. It simulates the Ising model in the canonical
ensemble generating a new random number for each spin
update. The boundary conditions are periodic and the ki-
netic model is defined by the symmetric transition proba-
bility. As reported by other authors recently, the
multispin-updating procedure does not affect the kinet-
ics for long times. This conclusion coincides with our ex-
perience that the number of sublattices used in the im-
plementation on a vector computer does not inhuence the
relaxation times. However, relaxation times do depend
on the specific choice of the transition probability, '
i.e., on the kinetic model chosen, but without affecting
the results for critical exponents. Thus, our results for z
are universal (for local spin-Qip algorithms) whereas the
relaxation times themselves are not. The maximum speed
of this program is 18000000 updates per sec (38000000
updates per second in an updated version ). The simula-
tions were performed at the estimated critical tempera-
ture J /kT, =0.221 654.

In our Monte Carlo investigation of the long-time be-
havior of @z(t), we calculated &b~(t) and Nz(t) for lat-
tices with I =8, 12, 16, 24, 32, 48, 64, and 96. The num-
ber of Monte Carlo sweeps per lattice size were 3 000000
except for I. = 16 where 20 000 000 Monte Carlo
configurations were generated in order to study systemat-
ic errors intensively. The total number of single spin Aips
invested in this investigation is about 5 X 10' . An ap-
propriate number of configurations in the beginning of
the simulation (typically about 20 times the relaxation
time itself) was discarded in order to ensure that the sys-
tem was in equilibrium. The remaining number of sweeps
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corresponds to the number N in the preceding formulas.
The magnetization and energy were calculated after every
tenth sweep. As the relaxation times are at least of the
order of 100 for the lattice sizes simulated and more than
10 data points remained, the loss of information was
marginal. For our simulations with TAT, we used lat-
tice sizes L =16, 24, 32, and 48, the number of Monte
Carlo steps used was between 1 000000 and 500000 with
a smaller number for the larger lattices.

To study the short-time behavior of @„(r)at T=T,
we made separate Monte Carlo runs with a calculation of
magnetization and energy after every sweep but with less
accuracy. The number of sweeps varied between
1000000 and 80000 depending on the lattice size. The
simulations were only done for L = 16, 24, 32, and 48.

III. RESULTS AND ANALYSIS

A. The long-time behavior of N& at T,
and the determination of z

We were able to fit two exponential terms for @M and
three for NE. The fit interval was taken from t =10 up to
the largest relaxation time itself. For L = 16 we could ex-
tend the interval up to four times the relaxation time
without changing the fit parameters significantly. We
tested whether the number of exponential terms in the fit
function was sufficient by checking if the sum of the
coefficients a, was unity. This is always satisfied for NM,
but for NE the sum is smaller than one, i.e., three terms
are not sufficient to describe the relaxation function prop-
erly. However, Fig. 1 shows that the fit function and
data coincide well over the whole fit interval indicating
that the fit function is insufficient only for very early
times (smaller than 10). This fitting procedure has been
used effectively in the examination of relaxation in two-
dimensional Potts models.

The importance of considering more than one relaxa-
tion time is demonstrated in Fig. 2(a). It shows C&z for

In Monte Carlo work on critical dynamics, the long-
time behavior of @z (r ) is usually assumed to be exponen-
tial with one relaxation time ~L. Our analysis shows that
this assumption is dangerous because it might be valid
only at times where Monte Carlo data for the relaxation
function cannot be analyzed, as we will show later on.
According to Eq. (3) the true time dependence is deter-
mined by a finite, but very large, set of relaxation times.
In an analysis of numerical data for @z(t) this can only
be taken into account by a fit of the data to a function of
the form of Eq. (3), i.e., to a sum of exponential decay
functions. The feasibility of this procedure is limited by
(a) the quality of the data (and of the nonlinear least-
squares fitting method), and (b) the width of the interval
in which the different relaxation times are spread.

The first restriction is obvious. A fit procedure is
reasonable only if the number of exponential terms is
small. The analysis of the relaxation function must there-
fore be extended to large times where the corrections to
the dominant exponential term are small. Typically, the
data become worse with larger time displacements due to
statistical Auctuations, and fits to an exponential decay
become almost impossible if the data oscillate with in-
creasing time. The importance of the second point be-
comes clear in a comparison between the relaxation func-
tions for magnetization and energy, respectively. Al-
though the critical exponent for the largest relaxation
time is the same for both (=2.0), the initial relaxation
times diverge with y /v= 1.96 for the magnetization and
as a/v=0. 18 for the energy. Equation (9) then indicates
that the difference between ~1 and the smallest relaxation
time ~;„is much greater for the energy than for the mag-
netization. The broader the range of different relaxation
times, the more terms, i.e., the more fit parameters, must
be considered. More fit parameters means less
significance in the results at a given accuracy of the data.
Thus, for a given Monte Carlo simulation the analysis of
NM yields a better estimate for the dominant relaxation
time than that of NE.

Figure 1 shows data and fits of +M and NE for L =32.

(a)

0-TE

10o

+ M~
I I I I I I I I

1000 2000 3000 4000 5000
t (MCS)

f (t) 10'

10

E M

1000 2000 3000 4000 5000
t (MCS)

FIG. 1. Time-displaced correlation functions for magnetiza-
tion and energy for L =32 at T = T, . The dotted curves
represent the functions fitted to the data in a fit interval [10,&M ]
and [10,&s], respectively. ~M and rs denote the largest relaxa-
tion time for magnetization and energy, respectively.
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L =48 together with the leading term of the fit function,
the sum of the two most dominant terms and, finally, the
complete fit function including three exponential decay
terms. It is obvious, that corrections to the dominant
term are negligible only in the region where the data are
bad and a reasonable fit is not possible at all. That means
using more than one exponential decay term is necessary
in order to accurately analyze the data in the time region
where they are best. Additionally, it seems clear that the
common method of estimating relaxation times by in-

tegrating over all data can be considerably biased by con-
tributions from short-time relaxations which lead to an
anomalously small value for ~i. As discussed before, the
situation is much less pronounced for NM. Figure 2(b)
shows the data for L=48 together with the dominant
term of the fit function and the complete fit function con-
sisting of two terms.

The largest relaxation time obtained by the fit pro-
cedure corresponds to rL & of Eqs. (13) and (14). It de-

pends not only on the lattice size but additionally on the
length of the Monte Carlo simulation denoted by N. Ac-
cording to Eq. (12), this dependence can be canceled out

10

by a linear extrapolation to N~00 in a plot of 1/7L ~
against N . Moreover, one can improve the reliability
of the estimate for ri by using Eq. (14) as a finite-size
scaling formula. Similar to a standard finite-size scaling
analysis, we analyzed the data for different lattice sizes
for 15 different values of N and plotted the data accord-
ing to Eq. (14) for two lattice sizes into one plot. If the
estimates for ~L are correct, the data for the different lat-
tice sizes should collapse onto one curve. %'e took the
data for L =16 as reference data because of their ex-
tremely good statistics, i.e., the relaxation times of all lat-
tice sizes were estimated by varying rL in Eq. (14) and
plotting the data for the considered lattice size together
with those for L =16. For L =24 this procedure is
shown in Fig. 3. The shift in ~i z with respect to ~L is
—1% when N is 100 times the relaxation time. Thus
about 10000000 sweeps are necessary in order to get a
practically unbiased estimate for the relaxation time of a
96 X 96 X 96 lattice; 10 000 000 sweeps would require
more than 100 h CPU time on a CDC CYBER 205 using
the most sophisticated CDC programs. The results of
this analysis are shown in Fig. 4. The errors were calcu-
lated as follows: The set of Monte Carlo data were cut
into six pieces and each of them analyzed separately. An
error estimate for ~l was then obtained by a standard er-
ror analysis with the sample of six relaxation times. In-
dependently, an error was estimated in the finite-size-
scaling analysis according to Eq. (14). The greater error
was taken as the final error estimate.

The values for ~i are plotted against L with logarith-
mic scales in Fig. 4. According to Eq. (6), they should
follow a straight line for asymptotically large L, and
indeed within the accuracy of our data we cannot see any
finite-size corrections for lattice sizes L ~ 12. An error-
weighted least-squares fit to the points obtained from the
analysis of N~ for L ~ 12 yields a value for the critical

10-'
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1.0&v
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FIG. 2. (a) Energy-energy time-displaced correlation func-
tion for I.=48. The time axes coincide roughly with the fit in-

terval. In addition to the complete three-exponential-fit func-
tion, the dominant term and the dominant plus the second dom-
inant term are shown. (b) The magnetization-magnetization
time-displaced correlation function for I =48. Here the fit
function consists of two terms only.

FIG. 3. Plot of scaled inverse relaxation times vs scaled in-

verse number of configurations of the Monte Carlo experiment
according to Eq. (14) with difFerent values for ~L. The lattice
sizes are 16 and 24.
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10

appears very pronounced when comparing our data for
4~ with those of 4E. Whereas for NM a fit to a polyno-
mial of second order in t was sufficient for the first 20
time steps, a fit for NE was not possible at all with a
reasonable number of terms (n (6). Instead, we took the
negative inverse of the numerical derivatives of NE for
very short times (t =1, 2, 4, 8) as an estimate for the ini-
tial relaxation time. The results of both procedures are
plotted in Fig. 5. For @M the divergence of i with I.

10

(MCS) 10 (a)

2
10

10 100

M 10
(M CS)

FIG. 4. Plot of the relaxation times for energy and magneti-
zation vs lattice size. The critical exponent z is given by the
slope of the straight line fitted to the data points.

exponent z of 2.04+0.03 in agreement with the @-

expansion result z =2.02. The data points obtained
from the analysis of NE are much less accurate but still
yield an estimate z =2.03+0.10 which is consistent with
the value obtained from N~. With such large errors we
cannot make a strong statement about the universality of
z but we can say that the exponents obtained from @M
and @E are consistent with a single value.

2
10

10
I

100

t= 16

B. The short-time behavior of @„ 100—

The determination of an initial relaxation time which
corresponds to that defined for a continuous time scale
requires a fit of the numerical derivatives of the relaxa-
tion functions to the polynomial given in Eq. (5). Wheth-
er such a fit can be carried out is mainly inAuenced by the
width of the interval in which the di6'erent relaxation
times are spread. The absolute value of the nth
coefficient of this polynomial [see Eq. (5)] is given by

Ttt (t)'
(Mcs)

x t=4

2

(1/n!)pa;w, . "~ (I/n!)wL" . (16)

When the relaxation times ~, are grouped in a very small
range close to ~L, then the coefficients drop with increas-
ing n approximately like the right-hand side of the above
inequality. For a wider range of different relaxation
times, the coefficients decrease slower and more terms
must be considered in the fit procedure. This di6'erence

10
I

50
I

100

FICx. 5. Scaling plot of the initial relaxation time for the mag-
netization vs lattice size: (a) magnetization, (b) energy.
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agrees with the expected theoretical value y/v for the
critical exponent. For +z this is true only for L, ~ 32 be-
cause our method of determining the initial relaxation
time induces a strong correction to scaling effect. We
took the derivatives at the same time for all lattices
whereas the inherent time scale of the system varies with
the lattice size. Lz o.~—

16
24
52
48

C. Critical dynamics for TAT,

When moving away from T„ the relaxation times drop
sharply, following approximately [see Eq. (15)]

—zv —1.28 (17)

The relaxation functions can therefore be described by a
single exponential decay at very short times as opposed to
the case at T, . For our data for NM away from T, it was
not possible to make a significant fit to more than one ex-
ponential term. Also, the dependence of the relaxation
times on the length of the Monte Carlo simulation could
not be significantly analyzed within the accuracy of our
data.

In Fig. 6 we show the relaxation time wl plotted versus
e. The temperature- and lattice-size-dependent relaxa-
tion times rt (E) for T)T, were plotted in a finite-size-
scaling plot as shown in Fig. 7. There the data are plot-
ted according to

rL(e)L '=f(EL '
) .

Our calculations for TAT, were much less accurate than

0.01—

I

10

[1-T/Tc(L
100

FIG. 7. Finite-size-scaling plot for the relaxation time ~L for
T & T, as a function of e=(T —T, )/T, . The dashed curve is
predicted by Ref. 18.

those at T, . Thus, we did not determine an independent
estimate of z. For the straight line in Fig. 6 which
represents the asymptotic behavior of f(e/L '

) accord-
ing to Eq. (15b), we therefore used the value for z calcu-
lated at T, . This value is obviously compatible with the
data calculated for TAT, . In Fig. 6 we also plot rl for
T & T, . These data are less complete than those for
T & T, but allow us to estimate the dynamic critical am-
plitude ratio 3+ /A =3.35.

IV. DISCUSSION

1000-

~ o

100-

L

{MCS)

10-

{=) l 6
24
52

o 48

0.001
I

0.1

FIG. 6. Relaxation times rL for different lattice sizes as a
function of E= ~1 —T!T, ~.

Although our Monte Carlo estimate for z agrees well
with the prediction of the e expansion, it is still somewhat
disconcerting that previous Monte Carlo studies pro-
duced such a wide range of results. There can be several
reasons why different investigations disagree. First of all,
there are several asymptotic limits which must be
reached before one can expect to extract a correct esti-
mate for z: (1) scaling limit, i.e., T~T, , (2) finite-size-
scaling limit, i.e., L~ ac, (3) dynamic-scaling limit, i.e.,t~ ~. Failure to be in the asymptotic regime may bias
the analysis and yield an incorrect result; however, the
determination of whether or not these criteria have been
met is not straightforward. Note, in particular, that
Suzuki s dynamic-scaling ansatz implicitly assumes that
the time scale of dynamic processes is given by only one
characteristic time. Our results show that this is true
only in the very long-time regime and that MCRG
methods based on comparison between relaxation func-
tions obtained from different size lattices may give spuri-
ous results if the dynamic-scaling limit is not reached.
The analysis of "short-time" data generally leads to an
underestimate of z. This is most obvious when we look at
the size dependence of effective relaxation times at fixed
displaced time t as shown in Fig. 9 for Nz(t). For very
small t, the effective relaxation times diverge not with the
exponent z but with the critical exponent y/v which de-
scribes early time relaxation in the infinite system. In the
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most recent dynamic MCRG calculation, for instance, a
simple dynamic-scaling ansatz was used for lattices up to
32 X 32 X 32. The author reports on a considerable shift
of the estimate for the critical exponent z to smaller
values with increasing lattice size, leading to an extrapo-
lated value 1.95 which is smaller than the exactly known
lower bound ) /v=1. 96. According to our analysis, we
believe that this shift can be traced back to not matching
one or both of the last two conditions listed above.

Pearson et al. estimated the relaxation time by as-
suming an exponential decay and analyzing the time
derivative of the relaxation function to extract ~. We
have carried out a similar procedure for &Pz(r) for the
16X 16X 16 lattice at T, . Figure 8 shows the decay rate

10

l0 '-

I

100
I

200

~, '=l (t)= in@~(t) —in'&E(t +5t )
(19)

determined from data separated by 5t =20 Monte Carlo
steps (MCS) in time (St =20 was chosen since it corre-
sponds roughly to the value used in Ref. 6). Choosing the
value at -~L/2, as was done in Ref. 6, we obtain a relax-
ation time which is -7% too small. Although we were
not able to provide an error estimate because of the way
data were stored, the fluctuations which occur at long
times provide an estimate of the errors. An apparent
"asymptotic plateau" is reached beyond —120 MCS but
this yields an estimate for ~ ' which is also too large. If
we fix ~& at this value and then carry out a three-
exponential-decay analysis as shown in Fig. 9, we obtain
values for C&(t) which are systematically low for large t.
%'e believe that our procedure is superior in that it uses
values of g&(t) over a wide range of time to extract w.

Our data show that corrections to finite-size scaling are
present for L = 8 so that an analysis such as that shown
in Fig. 4 yields too large a slope if the lattices used are
small and L =8 is included. Corrections are negligible
for L 12, but only if fully periodic boundary conditions

FIG. 9. Relaxation function for the internal energy for
L = 16. The solid curve shows the Monte Carlo data, the dotted
line is the original two-exponential fit, and the dashed line is the
long-time behavior, obtained from the "asymptotic decay"
determined from Fig. 8.

are used. It is not uncommon, however, for skewed
(screw periodic) boundary conditions to be used in one or
more directions because such a procedure leads to some
simplification in the programming. To test the effect of
such boundary conditions on the dynamics, we repeated
the calculations for the 12 X 12 X 12 lattice with skewed
boundary conditions and 9X10 MCS/site. Following
the common practice in high-eKciency programming for
the vector and special purpose computer, we implement-
ed the skewed boundary condition in only one lattice
direction leaving the remaining lattice boundaries period-
ically connected. The resultant time-displaced correla-
tion function is shown in Fig. 10 along with that for the
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FICx. 8. The decay rate I (w) defined in Eq. (19) extracted
from L =16 data.

FIG. 10. Relaxation function for the magnetization for
L = 12 lattices with periodic boundary conditions and with skew
boundary conditions. The solid curves represent Monte Carlo
data for runs of 9X 10 MCS; dotted curves are two-exponential
fits.
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fully periodic case. The relaxation time is clearly smaller
(-4%) with skewed boundary conditions, but the effect
should decrease as the lattice size increases. Nonetheless,
for smaller lattices this leads to an "effective" correction
to scaling. In summary then, Monte Carlo simulations
can easily lead to estimates for z which are either too
large or too small if statistical and systematic errors are
not carefully taken into consideration.

V. CONCLUSIONS

The main result of our investigation of (equilibrium)
critical dynamics at T, is the value 2.04+0.03 for the
dynamical critical exponent z of the 3D Ising model.
This is in excellent agreement with the e-expansion re-
sult z=2.02. Thus, our investigation gives strong evi-
dence that the e expansion is qualitatively correct and the
inequality z) 2 for 1(d &4 is obeyed. Our analysis of
systematic errors occurring in the Monte Carlo data of
relaxation functions gives a satisfying explanation for the
variety of previous Monte Carlo results for z, some of
which contradict the aforecited inequality. These sys-
tematic errors are related to the conditions which have to
be satisfied in any Monte Carlo investigation of equilibri-
um critical dynamics in order to get an unbiased result
for the dynamical critical exponent. These conditions are
sufficiently large lattice size to reach the scaling region,
sufficiently long times to get an unbiased estimate for the
dominating relaxation time, sufficiently long Monte Carlo
runs for good enough statistics, and a careful analysis of
the dependence of the calculated observables on the
length of the Monte Carlo simulation itself. If these con-
ditions are not met, the results of the Monte Carlo simu-
lation are not reliable. For too small lattices (L (12),
the estimated value of the critical exponent z is too large.

This was the case for the first dynamic MCRG calcula-
tions" where the lattice sizes used were L =8 and 16 and
the resulting value for z =2.08. For increasing lattice
sizes, corrections to scaling effects are less important but
it becomes more difficult to satisfy the last two condi-
tions. In the most recent dynamic MCRG calculatiov. ,
for instance, a simple dynamic-scaling ansatz was used
for lattices up to 32X32X32. The author reports on a
considerable shift of the estimate for the critical exponent
z to smaller values with increasing lattice size, leading to
an extrapolated value 1.95 which is smaller than the ex-
actly known lower bound y/v=1. 96. According to our
analysis we believe that this shift can be traced back to
not matching one or both of the last two conditions listed
above. Although we did not explicitly study the non-
linear relaxation of magnetization and energy into the
equilibrium in finite systems, it is suggestive that the re-
sults of our analysis of systematic errors are, in principle,
valid for nonlinear relaxation, too.

Lastly, we note that multigrid and cluster-fIipping
techniques are becoming quite effective for the study of
static critical phenomena in very large systems because of
reduced critical slowing down. However, any dynamic
exponent which is extracted from these is diferent than
the exponent z which is determined here. We would
nonetheless welcome high-resolution studies of relaxation
using these methods so that further progress can be made
in understanding dynamic universality.
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