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We study the motion of a pair of unbound vortices in two-dimensional classical spin systems with
easy-plane exchange symmetry (XY symmetry). Assuming a velocity-independent shape we derive
an equation of motion for one vortex in the presence of the other. The results are compared with a
direct molecular-dynamics simulation on a 50X 50 square lattice at zero temperature. For both the
ferromagnet and the antiferromagnet there exists a critical value A, of the anisotropy parameter A
which separates two regimes with different stable vortex structures. For A <A, the spins creating a
vortex are essentially in the easy plane and the motion of a pair of vortices is mainly determined by
repulsive or attractive forces for equal or different vorticities, respectively. For A > A, the vortices
have additional out-of-plane spin components which depend on A. In the ferromagnetic case these z
components are parallel to each other and act effectively on the other vortex like a magnetic field.
Together with the attraction or repulsion discussed above, this effective field leads to rotation of the
vortices around each other, or to a translation parallel to each other, depending on whether the
products of the vorticity and the sign of the out-of-plane components are equal or different for the
two vortices. For an antiferromagnetic out-of-plane vortex, however, the z components of the spins
are antialigned and therefore do not give an effective magnetic field, here the vortices move essen-
tially on straight lines. In our simulations we observe the above discussed trajectories. The fluctua-
tions around these trajectories due to the discreteness of the lattice are more pronounced for A <A,
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than for A > A,.

I. INTRODUCTION

In many areas of condensed-matter physics and materi-
als science, it is important to understand the relationship
between microscopic (atomistic) and macroscopic proper-
ties. This connection between underlying elementary in-
teractions and macroscopic responses often rests on the
structure, dynamics, and interactions between collective,
coherent excitations of an intermediate (‘“‘mesoscopic’)
scale. In nonlinear systems these collective excitations
include not only spatially extended modes such as spin
waves or phonons, but also spatially local structures such
as dislocations or vortices, which may have quasiparticle-
like characteristics. It is then important to develop phe-
nomenological theories based on the collective

variables—these theories approximate the complete
many-particle description in terms of a tractably small

number of dominant modes.

The recent heightened interest in quasi-two-
dimensional magnetic materials has provided opportuni-
ties to apply the above approach. Here the underlying
Hamiltonian may take the form of spins with Heisenberg
interactions and Landau dynamics, and collective excita-
tions may be, e.g., vortices, domain walls, and spin waves.
Inelastic neutron scattering allows measurements of dy-
namic structure functions.

Examples from the rapidly growing class of quasi-two-
dimensional magnetic materials are (1) layered magnets, !
like K,CuF,, Rb,CrCl,, (CH;NH;),CuCl,, and
BaM,(XO,), with M=Co,Ni,... and X=As,P,...; (2)
CoCl, graphite intercalation compounds;? (3) magnetic
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lipid layers,® like Mn(C,3H;50,),; here even monolayers
can be produced, which are literally two dimensional as
concerns their magnetic properties. The above materials
fall basically into XY or ‘“easy-plane” symmetry, de-
scribed by the anisotropic Heisenberg Hamiltonian

H=—J 3 (S5SX+S)S!+ASZLS?).

(mn)

(1.1)

Here {m,n ) label nearest-neighbor sites and (x,y,z) spin
components. J>0 and J <0 correspond to ferromagnetic
and antiferromagnetic couplings, respectively, and
0= A <1 for XY spin symmetry.

The XY symmetry leads to a well-known topological
phase transition* at a temperature Ty (the Kosterlitz-
Thouless transition). Below Tgy, vortex-antivortex spin
configurations appear as thermal excitations in bound
pairs; for T > Tg 1, these bound states dissociate and the
density of unbound vortices increases with 7. At
sufficiently high 7, the mean spacing between unbound
vortices approaches the vortex core size and diffusive
spin dynamics results. However, close to Ty, the un-
bound vortex density is small enough that a phenomenol-
ogy built on weakly interacting vortices moving ballisti-
cally between interactions is possible. A model of dy-
namics built on such a “vortex gas” has been construct-
ed,’ assuming a Gaussian velocity distribution from
vortex-vortex random interactions. This model suggests
a vortex contribution to dynamical spin correlations in
the form of a ““central peak,” i.e., scattering intensity cen-
tered at zero frequency. Central-peak scattering calculat-
ed in a vortex phenomenology for 7' R Txr has been satis-
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factorily compared with a combined Monte Carlo
molecular-dynamics simulation for both ferromagnetic®®
and antiferromagnetic’ models [Eq. (1.1)]. Here Landau-
Lifshitz dynamics is assumed, viz.,

ds
2t [S,H] .

Our aim here is to derive effective equations of motion
for the collective (center-of-mass) vortex variables and to
test predictions of vortex-vortex and vortex-antivortex in-
teractions against molecular-dynamics simulations of the
full spin system. Vortex equations of motion follow the
general procedure suggested for magnetic systems by
Thiele,® Huber,® and Pokrovsky, Feigl’'man, and Tsvel-
ick.!®© Namely, vortex solutions of (1.1) are used to
motivate an ansatz spin profile which is substituted in
(1.2) and allowed to evolve under constraints of a finite
number of collective variables: For simplicity we restrict
our discussion here to a center-of-mass variable, exclud-
ing additional shape variations. We consider only a
square lattice and we include damping terms in Eq. (1.2).

There is some similarity here to vortex dynamics in
other contexts, including incompressible fluid flows,!!
flux lines in superconductors,'> and vortices in
superfluids. !> However, there are important differences.
First, the spin model (1.1) is on a discrete lattice: This
leads to lattice pinning effects in certain situations which
can dominate vortex-vortex interactions. Second, the
spin system contains variables S* and S”, in which the
vortex singularity resides, but also an out-of-plane com-
ponent S? Importantly, this leads to two types of stable
vortex structures, depending on A, with distinct dynam-
ics. For A<A, (=0.72 on a square lattice) static vortices
are purely in-plane; for A > A_ an additional out-of-plane
component develops: The size of this S* component in-
creases with A, allowing a continuous crossover to the
isotropic Heisenberg limit (A=1), where the topological
excitations are merons and instantons'# rather than vor-
tices. Thus, for A> A, vortices are characterized by two
“quantum numbers’’: g, the vorticity (i.e., vortex or an-
tivortex), and p, the sign of the out-of-plane component.
As we show below, the interaction between two vortices
depends on both p and g and can result in either parallel
motion or mutual rotation. For A <A_, vortex motion is
dominated by attractive or repulsive forces along the con-
nection line.

The structure of the remaining sections is as follows.
In Sec. II we derive effective equations of motion for in-
and out-of-plane ferromagnetic vortices and pair interac-
tions. In Sec. III those predictions are compared with
direct molecular-dynamics simulations. In Sec. IV these
results are extended to the antiferromagnetic case by in-
troducing two sublattice spin variables. In this case it is
found that vortex-vortex interactions are purely attrac-
tive or repulsive along straight lines for all A. Section V
contains a short summary.

I1. PAIR INTERACTIONS
OF FERROMAGNETIC VORTICES: THEORY

(1.2)

A. Equation of motion for a single vortex

A theory which describes the motion of localized exci-
tations in classical magnetic systems was first developed

by Thiele,® who explicitly considered domain walls.
Based on this approach, Huber’ and Pokrovsky,
Feigl’man, and Tsvelick!® made similar calculations for
the motion of vortices. In XY-symmetry magnetic sys-
tems, the vortices occur in two different phases: In the
low-temperature phase there exist pairs, each consisting
of two vortices with different vorticities which start to
dissociate above the Kosterlitz-Thouless transition tem-
perature Txy. Just above Ty there are only a few free
vortices which can be treated as an ideal gas of particles
with an average distance 2, where £ is the correlation
length.

In this paper we consider the motion of free vortices on
two-dimensional anisotropic Heisenberg systems with fer-
romagnetic or antiferromagnetic nearest-neighbor ex-
change interactions. The dynamics of these kinds of sys-
tems is described by the Landau-Lifshitz-Gilbert equa-
tion

dM, Sw dM

=—yM, X
dt M, X5m T

n X Mn ,
dt M, |

(2.1)

n

where M,, is the magnetization vector and is proportional
to the spin S,, and w is the energy [given by Eq. (1.1)] per
unit volume. The parameter a describes in a phenomeno-
logical way the damping of the motion of the vortices due
to spin fluctuations. For the subsequent calculations we
consider vortices with a fixed shape and, following the
ideas of Thiele,® we obtain an equation for the average
velocity of a single vortex in the continuum limit:

GXv+D-v+-LF=0.
mgy

(2.2)

With the magnetization field M expressed in terms of the
spherical coordinates ¢(r) and 6(r), which describe the
in- and out-of-plane structures, respectively, the gyrovec-
tor G and the dissipation matrix D are defined by

G=fd2r sinf(r)grad6(r) X gradé(r) , (2.3)
and
Dyy=—a [d*[V,0(r)V,6(r)
+sin?0(r)V, ¢(r)V,4(r)] . (2.4)

v is the gyromagnetic ratio, and m,, is the local magnetic
moment per unit area, which, on a square lattice (lattice
constant a) and at low temperatures, has the form’®

me= (2.5)
0 a 2
The static force between two vortices is
_ 2 Ry,
F=27JS*q,q, R2 (2.6)

12

which was calculated for the planar XY model,* but
should also be valid for systems with small A, where the
static vortex is purely in-plane (A describes the coupling
between the z components of the spins and has values of
0=A<1 for our systems). For systems with a A larger
than the critical A,, the vortices have a stable static out-
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of-plane structure, which is confined to an area of a few
lattice constants around the core (2.9). If the distance be-
tween the vortices is large, so that their cores do not
overlap, they will only be sensitive to the in-plane struc-
ture of the other vortex, which should give the same force
(2.6) as for A<A,.

If we make the transformation, M goes to —M, then
the first term of Eq. (2.1) becomes positive, and going fur-
ther in our calculation, the gyrovector also changes its
sign. That means that all the motion which is caused by
G changes its direction. In a microscopic picture the
magnetization is the sum over all the magnetic moments
in the sample, and in a classical system these magnetic
moments are caused by moving and/or rotating charges.
Thus the sign of M is determined by the sign of the
charge of the particle. The same change of the sign of
the first term in (2.1) is obtained if one makes a transfor-
mation from time ¢ to —¢. The solutions of (2.1) there-
fore remain unchanged if one changes the signs of both
the charge and time; they differ if one applies only one of
these two transformations.

Though Eq. (2.2) describes the motion of one vortex in
the presence of an arbitrary number of other vortices,
which produce the force F, we focus in this paper only on
pairs of free vortices which should give us already a good
understanding of the dynamics of a dilute gas of vortices.

Out-of-plane vortices

To find the excitations in a system described by the
Hamiltonian (1.1), we express the spins using spherical

coordinates:
S, =S (cos¢,cosb,, sing, cosf,,, sinf, ) . (2.7)

For A> A, we find stable localized solutions with, in the
continuum limit, the static form®

o(r)=gq arctan—i:— s (2.8)
c,r?
pll— 3 as r—0,
rU
sinf(r)~ —_— (2.9)
c,Vr,/re N s rs oo
) N 1/2
=— | — 2.10
CI Y Py 210

We call these ‘‘out-of-plane” vortices due to their
nonzero z component. r, is the radius of the vortex
core,® and the constants ¢; and c, are determined by
matching® the two asymptotic solutions in Egs. (2.9) at
r=r,. The integer ¢ ==*1,%2,. .. denotes the vorticity,
and a vortex with negative g is called an antivortex. In
the present paper we only allow values |g|=1, which
agree with observations for temperatures 7' R Tx, where
we have a dilute gas of vortices and where we can assume
that they will follow Eq. (2.2). pis +1 if the out-of-plane
structure is above the xy plane, and —1 if it is below.
The deformation of the shape for a slowly moving vortex
is very small® and can be neglected for our purposes.
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Inserting Eqgs. (2.8) and (2.9) in (2.3) gives the gyrovec-
tor’

G=2mpgqge, , (2.11)

where e, is the unit vector perpendicular to the plane.
For the dissipation matrix we find

Du=Dadu » (2.12)

L
7 In— +const
rll

Doz_a

>

where D, is increasing with the total radius L of the vor-
tex; r, is a cutoff of the order of one lattice constant and
denotes the lower bound on the range where the continu-
um approximation is valid. The constant in (2.12) is
mainly determined by the out-of-plane structure and is
for r, << L much smaller than the logarithmic term.

With (2.11) and (2.12) we obtain from (2.2) an expres-
sion for the velocity of one of the two vortices under con-
sideration (i=1,2):

__ (a*/H)F
Vi_—D6+G2(—Doer’i+Gie¢’i)
f419,
:7r(1+62) (eer’,-+qipiew) , (2.13)
with f=JS?a’%~!, e=—D,/2m, and e, e, unit vec-

tors parallel and perpendicular to the line connecting the
two vortices, respectively. Because of the definition of
the force, the unit vectors for vortices 1 and 2 are anti-
parallel, which means that the » components of the veloc-
ities are always pointing in opposite directions. The an-
gular parts of the velocities, however, depend on the
products p;gq;, and so we have two different types of tra-
jectories.

(i) p1g,=p,q, (or, equivalently, p,q, =p,q,): Here the
vortices rotate around each other, while the ‘“‘center of
mass”’ of both vortices is at rest:

v,+v,
Ve = =0. (2.14)
2
In the rest frame the velocities have the form
(_I)I-H'f )
v (t)=——{[€ cosa(t)—p,;q;_;sina(t)]e
r(1+€2) {l€q:19, Piq;3 ] 1,
+[eqlqzsina(t)+p,-q3;,-cosa(t)]e%} ,
(2.15)
with
g, =€y (t=0),
(2.16)

er0=e,’1(t=0) ,

and we obtain, for the distance between the two vortices

rt)=ri+ 2feqlqzt , (2.17)

1 €

and, for the angle between the two coordinate systems
(that is, the angle between the lines which connects the
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two vortices at times zero and t),

pi

2eq

, (2.18)

In |r2+-2L€

a;(t)=ay; + 2

g9t

i

where oy ,=ag 7.

(i) pyg;=—p2q,: For this case the velocity of the
“center of mass” has a component perpendicular to the
line connecting the two vortices:

_ /P14,

v AL (2.19)
Mmoo . (1+4€2) @!

Now the unit vectors e, and e, are already static and an
integration over the » components of the velocities gives
the mutual distance as a function of time, which has the
same form (2.17) as in case (i). The motion perpendicular
to the line connecting the two vortices is described by
(2.19) and has the form

172

P —(r2)i2

2.2
em. oo (2.20)

r

[r?) + ﬁ%q 1921

The motion in both cases (i) and (ii) can be divided into
to different parts. First, the vortices move along their
connecting line and the direction is determined by the
product of their vorticities (repulsion for equal, attraction
for different g¢’s), while the speed is proportional to the
damping parameter a. Because of the logarithmic poten-
tial between the vortices, which is infinitely extended in
two dimensions, a vortex-vortex (or antivortex-
antivortex) pair would separate for all times on an infinite
lattice. Second, there is also a velocity component per-
pendicular to their connecting line. Whether these com-
ponents appear for each vortex in the opposite or in the
same direction depends on whether the products of the
two numbers g; and p; of each vortex are equal
(q1p1=gq,p,) or not (g,p,=—g,p,), respectively.
(Therefore, in a magnetic system the product of the vorti-
city g and the sign of the out-of-plane component p of a
vortex corresponds to the vorticity in the hydrodynamic
case.'!) The sign of the product of the two vorticities
g,9, determines the direction of this motion [cf. Egs.
(2.18) and (2.20)].

We also can see that in each of these cases the veloci-
ties increase with decreasing distance. Because we per-
formed our analysis in the continuum limit, our results
are only valid for distances between the vortices of at
least a few lattice constants, where the effects due to the
discrete lattice are not so important. In particular, the
divergence of the angle a at

_1+e? ,

=55 7o 2.21)

for a vortex-antivortex pair, occurs in a range where our
theory is not correct—a calculation which deals with the
discrete lattice should give a finite  in this range.

C. In-plane vortices

For A <A, a pure planar vortex is stable in the static
case. If this kind of vortex is moving, it develops some
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additional out-of-plane components so that its structure
to first order in the velocity has the form® [(r,¢) are the
cylindrical coordinates]

o(r)=gq arctan% R (2.22)
“%r sin(p—mn) as r—0,

sinf(r)~ Lo (2.23)
_v_ sinlg=m) as r— oo ,
48JS r

where 7 is the angle between the direction of the velocity
v and the x axis, and §=1—A. For A <A, the vortex core
r, is smaller than one lattice constant, so that the large r
limit of 6(r) can be used in the integrals that give G and
D. We obtain

G=0, (2.24)
for the gyrovector because of the ¢ asymmetry, and
Dyy=D,8 ,
(2.25)
L
D,=—a |rln— +const | ,
ra

for the dissipation dyadic with a different constant than
in Eq. (2.12) due to the different out-of-plane structure,
but which is also small compared to the logarithmic term
for large L. Because of the vanishing gyrovector and the
diagonal dissipation matrix, the motion of the vortices in
this case is mainly determined by the static force (2.5).
This means attraction for ¢,q9, <0 and repulsion for
g9, >0, without any velocity component perpendicular
to the connecting line (rotation or translation) as in the
case A>A.:

F _ /a4

. (2.26)
D] #D,

III. PAIR INTERACTIONS
OF FERROMAGNETIC VORTICES: SIMULATIONS

For the numerical simulation we used the Landau-
Lifshitz Hamiltonian spin dynamics with Gilbert damp-
ing:

ds,
dt

F,=J 3 (e, +She,+1Ske,) ,
m

=S, XF,—aS, X(S, XF,) ,
(3.1)

where m denotes all nearest neighbors of the spin n and «
is the damping parameter. In our simulations a=0.1.1"
The increase of a with T does not change the qualitative
behavior of our analytical results (Sec. II) in the tempera-
ture range under consideration. We considered a 50X 50
square lattice with free-boundary conditions. The in-
tegration was performed with a fourth-order Runge-
Kutta method with time step 0.04 (in units of #%/JS). For
A <A, we initialized the simulation with two planar vor-
tices, each at the middle of a plaquette of four spins at
(x,y1) and (x,,y,), respectively: viz.,
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()— rtny—'_vi
¢(r)=gq,arcta X —x,

Yy =2

+g,arctan
q2 X —x2

(3.2)

When the vortices start moving, they develop out-of-
plane components, which have the form (2.23). We also
made simulations for A> A, with the same initial condi-
tions. Here the vortices develop out-of-plane components
after some time, described by (2.9), but with “random”
p’s, depending on numerical effects. To obtain well-
defined values for p, we initialized the simulations with a
superposition of vortices with different kinds of out-of-
plane structures: (i) single static out-of-plane structure
and (ii) pure in-plane structure with small z components
of the spins surrounding the vortex cores. We obtained
the structure of a single out-of-plane vortex by placing an
in-plane vortex with a small perturbation in the middle of
the lattice and integrating the equations of motion (3.1).
Because of the damping, this initial shape relaxes to the
in- or out-of-plane structure for A <A, and A > A, respec-
tively. For single static vortices on a 50X 50 square lat-
tice, we found with this method that A,=0.71540.005.
(This value can also be obtained by numerically generat-
ing the magnon spectrum in the presence of one in-plane
vortex as a function of A: Above A, one of these magnon
modes becomes imaginary, corresponding to the change
in the vortex structure. ')

The vortices emit spin waves at all times (especially
during the adaptation process), but these excitations are
strongly suppressed by the damping—this helps us to
identify the vortices more clearly. To determine their po-
sitions we used two steps: (i) We searched for all pla-
quettes with four spins whose total difference in the in-
plane angle ¢ is almost +2#(vortex) or —2(antivortex);
(i) to estimate the position of the vortex in this plaquette,
we used the fact that the difference in ¢ between two ad-
jacent spins is large if the vortex is close to this lattice
sites, and vice versa.

While the theory was developed in the continuum lim-
it, the simulation was performed on a discrete, finite lat-
tice. The discreteness effects can be described through a
periodic (Peierls-Nabarro) pinning potential.!” The vor-
tices have minimum energy if their core is in the middle
of a plaquette, and they have maximum energy if their
core is on a lattice site. The energy difference (Table I) is
biggest for A=0, decreases with increasing A, and is near
zero for A=~0.7.% For A <A, the core has an extension of
about one lattice constant, which has the effect that a
moving vortex causes big changes in the direction of the
spins close to its core—the energy is smallest if the “fer-
romagnetic order” is less disturbed. In the case A> A,
the out-of-plane structure, which defines the size of the
core here, is extended over several lattice sites and the z
components of the spins involved are ferromagnetically
ordered. Both of these effects give only small changes in
the energy while the vortex is moving through the lattice.
This behavior, which shows the strong dependence on the
underlying lattice, is valid for our classical simulations
performed at zero temperature. In a real system, howev-
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TABLE 1. Energy (in units of JS?) of a single vortex on a
50X 50 lattice for different positions r, of the vortex core (in
units of the lattice constant).

T, Energy
(25.5,25.5) 14.53
(25.5,25.0) 14.81
(25.0,25.0) 15.33

er, we can observe free vortices only above the
Kosterlitz-Thouless transition temperature Ty, which
has in our system a value ~0.8. For A=0 this is of the
order of the maximal variation of the energy difference as
a function of position on the lattice for a single vortex
(AE =0.8; see Table I). Therefore, the discreteness
effects are negligible in a real system. This is true even
for A=0 because the thermal fluctuations are large
enough to allow the vortices to overcome all the maxima
of the lattice potential. These thermal energy fluctua-
tions are small compared to the vortex energy which is
dominated by the contributions of the static structure.>®
Only for A—1 does the static vortex energy become of
the order of the thermal and motional energies,® con-
sistent with the crossover to isotropic behavior.

There are also strong effects due to the boundaries: In
an area of about ten lattice constants along the border
line, the vortex dynamics is quite different than in the
middle of the system. In some of the simulations (mainly
those which we initialized with two single static out-of-
plane vortices), we could observe an additional vortex,
which was created at one of the edges and which had also
some influence on the dynamics of the two vortices under
observation.

A. Vortex-vortex simulations (equal g’s)

We expect from our analysis above that we have
different dynamical scenarios depending on the anisotro-
py parameter A. For A> A, the motion of the vortices
mainly depends on their out-of-plane components. Fig-
ure 1(a) shows the trajectories of two vortices with equal
p’s. In this case we have p,q, =p,q,, which means that
they rotate around each other. We also expect that vor-
tices with equal g values repel each other, and so we
started with a small pair separation in the middle of the
lattice, to avoid effects of the boundary for as long as pos-
sible:

(x,,y,)=1(23.5,23.5),
(X5,y,)=(24.5.25.5)

(3.3)

(units in the lattice constant a). The time difference be-
tween neighboring points is 12 in our units (this is true
for all the ferromagnetic simulations, if not otherwise
noted), except for the first six points which are separated
by four time units. In Figs. 1(b) and 1(c) we have plotted
the velocity and a quantity (grn), which measures the
out-of-plane component of the vortices as a function of
time, respectively. gn is the average value of the S, com-
ponents of the four spins surrounding the vortex core
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normalized by S. The velocities have been averaged over
four time units, but still show some fluctuations due to
the discreteness of the lattice (the vortices move not more
than one lattice constant during this time) and errors in
calculating the exact position of the vortex center. Even
for A> A, the velocity depends a little on whether the
core is moving toward or away from the middle of a pla-
quette. In Fig. 1(c) we can see that after about 20 time
units the vortices adapt from the static out-of-plane
structure to their final, stable forms, which have smaller
out-of-plane components. The velocity is larger for
smaller separations and decreases with time, as expected
from (2.17). The small asymmetry of the trajectories for

(2)

oot S oeeny,
e ver
™

1.30

5997

large ¢ is caused by an additional antivortex created close
to (50.0,50.0) and pinned at the boundary.

Figure 2(a) shows the trajectories of a system with the
same initial conditions, but with out-of-plane components
in different directions. This is a case where
P191=—P24,, and we observe that the vortices move in
the same direction perpendicular to the connecting line.
The rate of increase in the distance is large at the begin-
ning and becomes smaller later. We also see that the per-
pendicular motion slows down for increasing time. Both
behaviors agree with our theoretical results [Egs. (2.17)
and (2.20)].

For A <A, the dynamics of the two vortices is quite

(b)
—~
@«
0.4
&
N
>
B
=
3]
5]
2
[5)
>
0.2
0.0 , . A .
0.0 100.0 200.0 300.0 400.0 500.0
time

0.65

qn

0.00
0.0 100.0

200.0 300.0 400.0 500.0

time

FIG. 1. Vortex-vortex simulations on a ferromagnet with A=0.9, ¢, =g¢,=1, p; =p, =1, and initialized with two static out-of-
plane vortices at positions defined in Eq. (3.3): (a) trajectories (star, start positions; circle, vortex 1; triangle, vortex 2); the dashed line
is a guide to the eye and connects successive points by straight lines; (b) vortex velocities vs time (solid line, vortex 1; dashed line, vor-
tex 2); (c) out-of-plane components gn [see Sec. III after Eq. (3.3)] vs time; time is measured in units of (JS )~! and gn in units of S.
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different, as one can see in Fig. 3. In this case the vor-
tices experience strong lattice effects, which will stop
their motion after a relatively short time—the static force
between them decreases as 7;,' (r,, is the mutual separa-
tion) and beyond a certain distance is too weak to push
them over the walls of the “lattice potential.” We also
can see that for small A’s the trajectories are almost
straight lines and there are only small fluctuations caused
by the underlying lattice structure. The theoretical re-
sult, which yields motion along straight lines, is only val-
id in the continuum limit, but for these small A values the
vortex core is of the order of one lattice constant so that
this approximation is no longer valid.

The out-of-plane components are due to the velocity
(2.23) and increase with increasing velocity and A. As
can be seen from (2.23), all the spins on the left side of the
trajectory have negative z components, and all the spins
on the other side have positive z components. Hence,
along the direction of the motion, the out-of-plane com-

(a)

1.30

(b)

0.65 E

0.00 [

qn

-0.65 |

-1.30
0.0 100.0

time

FIG. 2. Same simulation as in Fig. 1, but with ¢, =—¢,=1:
(a) trajectories; (b) gn vs time.
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FIG. 3. Trajectories of vortex pairs on a ferromagnet with
A<A. (square, A=0.0; triangle, A=0.3; star, A=0.6),
¢1=¢g,=1, and initialized with two static in-plane vortices.
Only a part of the lattice is shown: 18.0<x,y, <30.0, and the
time between two successive points is four in our units.

ponents of the spins are antiferromagnetic ordered, which
is not very favorable for a ferromagnetic system. So, if
the spins on this line have a certain z component, depend-
ing on A and v, the out-of-plane vortex, which has a fer-
romagnetic out-of-plane structure, will have lower energy
and will become stable—the vortices will change their
shape. This scenario can be seen in Fig. 3 for A=0.6:
The initial separation is so small that the velocity that the
vortices develop at the beginning is big enough to cause a
change in their shape, and they start to rotate around
each other due to a nonzero gyrovector. But after a short
time the velocity decreases and soon is so small that they
become again in-plane vortices. For A=0.7, which is
very close to the static critical A,, this behavior is even
more distinct (Fig. 4): The vortices adapt their shape to .

FIG. 4. Trajectories for a vortex pair on a ferromagnet with
A=0.7 and initialized with two static in-plane vortices; other
parameters as in Fig. 1.



43 MOTION OF VORTEX PAIRS IN THE FERROMAGNETIC AND. ..

an out-of-plane structure for quite a long time and, be-
cause of their equal p values, rotate around each other.
But eventually the velocity, which is decreasing with
t 12 (for t >, and A > A,), is too small and the vortices
will stop as soon as they have changed their shape.

The stability of the in-plane vortex structure also de-
pends on the initial conditions: If we start with two pure
in-plane vortices with equal x or y coordinates, then they
will move on straight lines (along the x or y direction)
even for A SA,. If we use this kind of initial condition for
a A, which is bigger than A,, then we can see that the in-
plane structure is also stable for quite a long time: about
25 time units for A=0.8 and (x,,y,;)=(24.523.5),
(x5,y,)=1(24.5,25.5) [Figs. 5(a) and 5(b)]. During this
period, the vortices are moving on straight lines, but
finally the out-of-plane structure develops and the dy-
namics of the vortices changes accordingly.

B. Vortex-antivortex simulation (different g’s)

If we start with a vortex and an antivortex, they will
attract each other and finally annihilate. To make the
dynamical behavior in this case visible, it is necessary to
start with a bigger initial separation. In our simulation
we chose

(x,,y,)=(21.5,21.5) (vortex) ,
(3.4)
(x5,y,)=1(29.5,30.5) (antivortex) .

Figures 6 and 7 show the trajectories of two vortices in a
system with A=0.9 for equal and different p’s, respective-
ly. In Figs. 6(a) and 7(a) we started with a superposition
of two static out-of-plane vortices. Though this seems to
be a good initial condition, for small times we obtain re-
sults that do not agree with our theory, which predicts
for these cases a monotonic decrease of the distance be-
tween the two vortices (2.17). In the simulations, howev-
er, we observe during the first four time units that the
vortices move perpendicular to their initial connecting
line before they increase their mutual distance for about
8—12 time units, and only after these steps do they behave
as theoretically expected. An explanation of this different
behavior is that the initial condition is not sufficient:
Namely, with these two vortices having the “single, static
shape,” the system has much more energy than it would
have with two moving vortices, and the process of adapt-
ing to this configuration is responsible for the repulsion at
the beginning of the motion.

In order to avoid this “excess” energy behavior, we
started with two vortices with the pure in-plane struc-
ture, where the four spins around each core had a z com-
ponent of 0.1p to guarantee that the out-of-plane struc-
ture of the vortices would develop in the desired direction
(£p). The trajectories for these simulations are shown in
Figs. 6(b) and 7(b) for equal and different p’s, respectively.
After a short adaptation process, which occurs within the
first four time units, the vortices indeed move along their
predicted trajectories, viz.: (1) For p,;q, = —p,q, they
move parallel and decrease their separation slowly. Be-
cause our system is too small, we cannot observe the final
annihilation process. (2) For p,q, =p,q, they rotate and
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finally annihilate each other. As one can see from Eq.
(2.18), the rotation angle « is changing faster for smaller
separations between the two vortices.

For A <A, the vortices move toward each other
without any systematic motion perpendicular to their
connecting line and finally annihilate. However, this can
only happen if the initial separation is small enough, such
that the attraction between them is bigger than the pin-
ning forces due to the lattice.

IV. ANTIFERROMAGNET

If the exchange coupling J in (1.1) is negative, then the
system is an antiferromagnet; i.e., we have two sublattices
with mutual antialigned spins. To calculate the excita-
tions and their dynamics, it is appropriate to parametrize
the spins by four angles as introduced by Mikeska:'®

(a)

asassssaan,,

1.30

(b)

0.00 —— .

qn

-0.65 |

-1.30

0.0 100.0 200.0 300.0
time

FIG. 5. Same simulation as in Fig. 4, but with A=0.8 and ini-
tial positions (x,y;)=1(24.5,23.5) and (x,,y,)=(24.5,25.5).
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S¥=(—1)"S{cos[®, +(—1)"¢,]
Xcos[0,+(—1)"0,]1} ,

SY=(—1)"S {sin[®, +(—1)"4, ]
Xcos[©,+(—1)"6,1} , 4.1)

SZ=(—1)"S{sin[6,+(—1)"0,1} ,

where the even n describe one sublattice, the odd »n the
other one. The capital angles describe the perfect antifer-
romagnetic structure, while the small angles describe the
deviations from this state. We are interested here in vor-
tices, and depending on the anisotropy parameter A, we
obtain two stable solutions as in the ferromagnetic case
(see Appendix).
(i) A <A, (in-plane vortices):

(=)

(b)

FIG. 6. Trajectories for a vortex-antivortex pair
(g;=—g,=1) on a ferromagnet with A=0.0 and p,=p,=1.
The initial positions are given by Eq. (3.4) and the initial shapes
are (a) static out-of-plane and (b) static in-plane with small per-
turbations [see Sec. III after Eq. (3.2)].

<I>(r)=qarctanf, ¢(r)=0, O(r)=0,

’ 4.2)
qJSrsm((p—e) as r—0,
O(r)~ :
__ v sin(g—e) as F—s o0
48JS e
(ii) A > A, (out-of-plane vortices):
cp(r)zqarctanf, b(r)=f (r,v)cos(¢p—¢),
m/2—c3r/r, as r—0,
O(r) ~r/r, (4.3)

e,V (r, /e

as r— o ,

0(r)=g(r,v)sin(p—e) .

(a)

(b)

LY
a

-,
4

FIG. 7. Same simulation as in Figs. 6(a) and 6(b), but here
with p; = —p,=1; in (b) the time between two successive points
is four in our units.
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¢3 and ¢4 are constants which match the asymptotic out-
of-plane solutions at r=r, [r, is given by Eq. (2.10)],
86=1++A, and the functions f(»,v) and g (r,v) are given
by Egs. (A10) and (A12). At the beginning of Sec. II, we
observed that the magnetization field M in (2.1) could be
expressed through the spin field. Here we have to aver-
age over both sublattices to get the appropriate field.

We will now discuss the two different A regimes (A <A,
and A>A,) separately. In the out-of-plane case [Eq.
(4.3)] the even and odd spins are perfectly antialigned in
the static case (the same is true for the in-plane case—see
below) and the resulting magnetization field is therefore
exactly zero. Though even and odd spins are located at
different lattice sites, in the continuum limit we have an-
gle fields which are defined on the whole plane for each
sublattice. For this reason we are able to calculate an
average at every coordinate r of the plane. The small de-
viations from the static structure due to the motion do
not contribute to the gyrovector, but give a finite,
velocity-dependent dissipation. Thus, from the three
terms in Eq. (2.2), only the dissipation term and the static
force remain, which causes pure repulsion or attraction
depending on whether we consider two vortices with
equal ¢’s [Fig. 8(a)] or a vortex and an antivortex (Fig. 9).
For the simulations with equal g’s, we used the initial po-
sitions from Eq. (3.1), while for the other simulation we
started with initial positions

(18.5,18.5) (vortex) ,
(32.5,33.5) (antivortex) .

(x 1 1y1 )
(4.4)

(x5,92)=

The time between two following points for all these simu-
lations (Figs. 8-10) is four in our units. The asymmetry
in the velocities of the two vortices in Fig. 8(a) is caused
by an additional vortex, which is pinned at (46.5,49.5).
Figure 8(b) shows the averaged out-of-plane components
of the four spins around the vortex core. As expected,
this quantity is zero on the average. The fluctuations
around this value are due to the discrete lattice: If the
vortex core is not exactly in the middle of a plaquette,
then the four spins, which contribute to gn, have different
distances to the core and therefore have slightly different
z components.

For A <A, the in-plane angles describe a perfect anti-
ferromagnetic structure, which yields a vanishing gyro-
vector, but the out-of-plane angles show the same behav-
ior as in the ferromagnetic case: On one side of the direc-
tion of motion, all the spins point above, and on the other
side all the spins point below the xy plane. The magni-
tude of these components increases with increasing veloc-
ity, but decreases if A becomes larger. This is different
from the ferromagnet case. But here the two ferromag-
netic domains in the z components of the spins on the left
and right sides of the direction of motion will be less
favorable for the system because they will increase the en-
ergy, which depends on the magnitude of S, and A.

The trajectories of two vortices for A <A, (Fig. 10,
equal g’s) is very similar to the equivalent ferromagnetic
case: (1) the vortices move on straight lines with small
deviations due to the discreteness of the lattice; (2) the
motion will stop after a short time, because the force be-

(a)
.
0.06 . , :
(b)
0.03 1
2 0.00 ﬁ\ /%\\/\/\/\
) YVVY
~0.03 | ]
~0.08 . . L
0.0 20.0 40.0 60.0 80.0

time

FIG. 8. Vortex-vortex (g, =g, =1) simulations on an antifer-
romagnet with A=0.9 and initialized with two static in-plane
vortices: (a) trajectories and (b) gn vs time.

FIG. 9. Vortex-antivortex (¢, = —g,=1) simulation on an
antiferromagnet with parameters as in Fig. 8.
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FIG. 10. Vortex-vortex simulations analogous to Fig. 4, but
for an antiferromagnet.

tween them becomes too weak beyond some distance to
overcome the discreteness potential. Because the antifer-
romagnetic vortices move (almost) on straight lines for
both A<A, and A>A_, it is not possible to observe
whether there is a change in the structure for the fast-
moving vortex with A=0.6 (Fig. 10) contrary to the fer-
romagnetic case (see discussion in Sec. III).

V. CONCLUSION

In the present paper we discussed in detail the dynam-
ics of vortex pairs in XY-spin-symmetry magnetic materi-
als using both analytical and numerical methods. In the
analytical part we used an ansatz introduced by Thiele®
to obtain an effective equation of motion for the center of
mass of a single vortex in the presence of other vortices.

Below a critical value A, of the anisotropy parameter
A, the vortices are almost in-plane (A, =~0.72 for the fer-
romagnetic and A,=0.71 for the antiferromagnetic
50X 50 square lattice). This structure is responsible (i)
for an attraction or repulsion of the vortices depending
on whether the product of the two vorticities ¢, g, is posi-
tive or negative, respectively, and (ii) for a damping of the
motion which is proportional to the logarithm of the vor-
tex radius. The out-of-plane components which are due
to the velocity give a small contribution to the damping,
but do not change the form of the trajectories. This be-
havior is true for both ferromagnets and antiferromag-
nets.

For A>A, we also find attraction (repulsion) and
damping depending on whether ¢g,q, <0 (>0), but there
is now also the out-of-plane structure which yields
different results for the ferromagnet and antiferromagnet.
In the ferromagnetic case the z components of the spins
around the vortex centers act like an effective magnetic
field on the other vortex and vice versa. Now the vortices
rotate around each other or move parallel to each other
depending on whether p,g,=p,q, or p;q,= —p,q,, re-
spectively (p carries the sign of the out-of-plane struc-
ture). For the antiferromagnet the antialignment of the
spins in the two sublattices does not produce an effective
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field, and we find no velocity component perpendicular to
the line connecting the vortices.

All these features can be seen in our molecular-
dynamics simulations. However, in contrast to the
analytical work which was done in the continuum limit,
we see here, for A <A, strong discreteness effects of the
lattice: The trajectories of the vortices are no longer
straight lines (the centers of the vortices try to avoid lat-
tice sites), and for a certain distance the lattice pinning is
stronger than the force between the vortices. For A> A,
the out-of-plane structure which is extended over several
lattice constants and which yields a ferromagnetic align-
ment of the S components makes the vortices less sensi-
tive to the discreteness effects.

We restricted our analytical investigation here to vor-
tices with a fixed shape which can be described by one
collective variable (the ‘center-of-mass” coordinate).
This ansatz is good so long as the density of free vortices
is small and the vortex velocity is almost constant—both
of these restrictions apply to the A> A, regime (out-of-
plane vortices), where the agreement between analytical
and numerical results are very good. But also for A <A,
we obtain quite a good feeling for the vortex motion. A
next step to an even better understanding of vortex dy-
namics is to introduce additional collective variables
which also allow a change of the vortex shape—this ex-
tension is in preparation.
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APPENDIX: EQUATIONS OF MOTION
AND VORTEX SOLUTIONS
FOR THE ANTIFERROMAGNET

To derive the equations of motion from Eq. (1.1) in the
antiferromagnetic case for the continuum limit, we start
with the following ansatz for the spins:

Se"e“=(x cosa, x sina, m) N (Ala)

(y cosB,y sing3, n) , (A1b)
where even and odd denote the two different sublattices,
(a,m) and (f3,n) are pairs of canonical conjugate vari-
ables, and

x=(1—m?'?,

y=(1—n?1?,
The equations of motion then are simply given by [H is
the Hamiltonian defined in Eq. (1.1)]

Sodd —

a=3H (A2a)
om
o= OH
5 (A2b)
B=2—H , (A2¢)
n
._ _0H
" B (A2d)

or, if we use the variables introduced in Eq. (4.1), by
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=1JS {4 cos2¢[tan(© +0)cos(© —6) —tan(© —0O)cos(© +6) ] + 8A sin6 cos© +2AA(sin6 cosO)

+tan(©+0)[sin2¢[ A(® —¢)cos(© —0)=2 grad(P — ¢ )grad(© — 0)sin(6 —0) ]
—cos2¢({[grad(® —¢)]*+[grad(©—0)]*}cos(0 —0)+A(6—0)sin(6—0))]

—tan(©—0)[sin2¢[ — A(P+¢)cos(O+0)+2 grad(P +¢)grad(©+6)sin(O+6) ]

—cos2¢({ [grad(q>+¢)]2+[grad(6+9)]2}cos(e+6)+A(6+9_)sin(9+9))]] ,

d=La—pB)

(A3a)

1
¥
1JS {4 cos2¢[tan(© + B)cos(© —0) +tan(© —O)cos(O+6)] —8A sin© cos® —2AA(sin© cosf)

+tan(© +6)[sin2¢[ A(P —p)cos(© —0)—2 grad(P — ¢ )grad(© —0)sin(6—0)]

—cos2¢( {[grad(®—¢)]*+[grad(©—6)]*}cos(6—0)+ A(O—0)sin(6—0))]
+tan(©—0)[sin2¢[ — A(P+P)cos(O+6)+2 grad( D+ ¢)grad(©+0)sin(6+0)]

—cos2¢( {[grad(®+¢)]*+[grad(©+6)]*}cos(O+0)+ A(O+6)sin(6+6))]} ,

mo
X y

o=

1
2

(A3b)

=1JS[—85in2¢ cosO cosf+sin2¢(A(O —0)sin(© —6) + { [grad(®—¢)]*+[grad(©—6)]*}cos(©6—0))
+cos2¢[ A(DP—¢)cos(O—0)—2 grad(P —¢)grad(©—0)sin(6—6)]
+5in2¢(A(O+0)sin(©+0)+ {[grad(®+ ¢) >+ [grad(©+6) ]*}cos(©+6))

+cos2¢[ — A(P+¢)cos(O+0)+2 grad(P +¢p)grad(© +6)sin(O0+6)]] ,

m R

x Yy

s 1
0=7

(A3c)

=1JS[ —8sin2¢ sinO sinf+sin2¢(A(O —0)sin(© — 6) + | [grad(®—¢)]*+[grad(©@—6)]*}cos(6—0))
+c0s2¢[ A(P—@)cos(©—0)—2 grad(P —¢)grad(© —6)sin(©— )]
—sin2¢(A(O+0)sin(O+0)+ {[grad(®+¢)]*>+ [grad(©+6)]*}cos(6+6))

—c082¢[ — A(D®+¢)cos(O+0)+2 grad(P +¢)grad(©+0)sin(6+6)]] .

As in the ferromagnetic case,>® we first look for static

solutions. We furthermore make the assumption that
here the static vortex solutions are only described by the
capital angles @ and O, because a local perfect antiferro-
magnetic structure (which results from this assumption)
should give minimal energy in the continuum limit. With
these considerations Egs. (A3) reduce to

cosOAD —2(grad® )(grad®)sin® =0 , (Ada)

sin?© + A cos?©

AO+(1—A)sinO(grad® )?
cos©O

—[4(1—A)—(grad®)*]sin@=0. (A4b)

Equations (A4) have a pure in-plane solution,

(A3d)

[

d(r)=¢q arctanf +oP,, (AS)

O(r)=0,

and an out-of-plane solution,

P(r)=gq arctan% +o,,
(A6)

cyr/r, asr—0,

e(r)~ e, . T r/r
7/2—cyV (r,/r)e "o

as r— o .

A numerical stability analysis shows that the vortex solu-
tion (AS5) is stable for all A <A, and the solution (A6) is
stable for A > A, with A, ~0.71 on a 50X 50 square lattice
(if the vortex core is in the middle of a plaquette of four
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spins, then the discrete solution is, because of the high
symmetry, comparable to the continuum solution).

To calculate the change of the vortex shapes due to a
small motion, we insert the static solutions (AS5) and (A6)
in Eq. (A3) and expand to first order in the velocity. For
A <A, (in-plane vortex) only one of the four differential
equations becomes velocity dependent:

2 .
MO+ [4(1+20)— p="La sinlg—e) 44
JS r
and we obtain
L, sin(p—e€) as r—0
gis’ e ’
o(r,p)~ (A8)

_ qu sin(p—e)

A1+AIS r sr—e,
while ®, ©, and ¢ are no functions of the velocity in this
linear approximation; € is the angle between the x axis
and the direction of motion. The vortex develops out-of-

J

_ g Si_n(;Lf)eL 2(grad®)(gradg)e>

VOLKEL, MERTENS, BISHOP, AND WYSIN 43

plane components which point on one side of the line of
motion above on the other side below the plane. A simi-
lar solution was found for the ferromagnet,® but there the
denominator in (A8) for the large-r limit contains a factor
(1—A) instead of (1+A).

For the out-of-plane vortex and for large r, we obtain
two velocity-dependent differential equations: one for the
angle 6, which has the same form than Eq. (A7) with the
large-r solution of (A8), the other for the angle ¢,

Ap+[8—(gradd)?] —E(a O)cos(p—e) , (A9)
with the solution
172
_Bf‘i._r”__._ (p—€) 3 r/n 1+ I
¢ JS82+1COS¢ € e 0|~ .
(A10)

For small » we obtain two coupled differential equations
from (A3), viz.,

JS
={80+410°—[(grad®)*+(grad®)?]120 — AO}0—2(gradO)(gradd)0*—OAH , (Alla)
and
—%(are)cos(gv—e)—2(grad(l>)(grad9)={ —80+[(grad®)*+(grad©)?1260— A6} ¢ —2(gradO)(gradd) — OAG .
| (A11b)
In lowest order in 7, the solutions of (A11) are
¢(r)=~v§%—%rcos((p—e), 6(r)=;§r—v%);]f:—4q2~)rzsin(¢—e) . (A12)
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