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Qnasiparticle properties of the electron gas at metallic densities
in the effective-potential expansion method
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An extension of the effective-potential expansion method is made to treat low-lying excited states
in pn interacting many-electron system. This extension provides a prescription for the microscopic
calculation of the Landau s Fermi-liquid parameters. By a systematic evaluation of those parame-
ters for the electron gas at metallic densities, we obtain results for the compressibility that are very
close to the exact values. We also obtain the results for the spin susceptibility and the eA'ective

mass. Those results are compared with those obtained by other methods.

I. INTRODUCTION

The eff'ective-potential expansion (EPX) method' has
been applied very successfully to the ground-state proper-
ties of the electron gas at metallic densities. ' In the
present paper we treat its low-lying excited states using
the same method and calculate Landau's Fermi-liquid pa-
rameters from first principles to obtain the quasiparticle
properties such as the compressibility v, spin susceptibili-
ty g, and effective mass m . Since many calculations
have been done for those quantities, we mention first both
our ultimate goal and the superiority of our method over
others in order to justify yet another calculation on the
electron gas.

In spite of the practical usefulness of the density-
functional theory (DFT) in the local-density approxima-
tion (LDA), many attempts have been made to improve
on the DFT-LDA. They are made mostly in the frame-
work of the DFT, but an approach outside the DFT may
be necessary to treat strongly correlated systems such as
the high-T, copper oxide superconductors. The main
problem in the DFT is the absence of a prescription to
calculate the so-called exchange-correlation energy E„.
DFT-LDA employs the results of E„,of the electron gas
obtained by other methods such as the Green's-function
Monte Carlo (GFMC) method. Thus a new approach
to replace the DFT is required to have such a prescrip-
tion in a self-contained manner. Before the approach is

applied to real solids, its validity should be checked by
the calculation of the electronic properties of the electron
gas.

About two decades ago, Hedin and Lundqvist' '" dis-
cussed an approach which might supersede the DFT. In
fact, among all the many-body theories associated with
the concept of the band structure only their approach has
been applied to real metals. ' ' Its basic idea is due to
Hedin, " who rearranged the perturbation series in the
bare Coulomb potential V for the electron gas into an ex-
pansion in an effective potential 8'based on a variational
principle. The expansion was successful to some extent.

Its lowest order, or the so-called 68' approximation,
gave useful results on the correlation effect.

Unfortunately, however, Hedin's theory is not a partic-
ularly good one for the electron gas relative to the
present standard of many-body theories. Many-body
effects in the electron gas cannot be treated satisfactorily
un1ess we include appropriate sums of the ring, exchange,
and ladder diagrams for the processes of the momentum
transfer q in the regions of q =0, q =k„,and q ~ 2kF, re-

spectively, in the language of the perturbation-theoretic
approach, ' where k~ is the Fermi momentum. In
Hedin's theory the ring diagrams are included completely
through the random-phase approximation (RPA), " but
other diagrams are neglected in the 68' approximation
or they are treated very crudely in the next-order approx-
imation.

The EPX method is conceptually very similar to
Hedin's theory, but there is an important difference in the
choice of an expansion parameter. Hedin chose the
dynamically screened Coulomb potential W(q, co), where
co is the energy transfer. His choice, however, is not good
enough for the quantitative purpose as seen by the fact
that the 68' approximation" as well as an improvement
on it by the inclusion of some next-order terms' gave a
ground-state energy lower than the more accurate one
obtained in GFMC calculations. Since Hedin's expan-
sion in 8' is based on a variational principle, the energy
obtained must be larger than the exact energy, if the con-
vergence of the series is good enough. The violation of
the upper-bound property for the ground-state energy in-

dicates that his series should not be cut oft at such low or-
ders as the first or second. In fact, W(q, co) has a
plasmon pole, and thus it becomes very large in some re-
gion in the (q, co) plane. On the other hand, the EPX
method is formulated in terms of the static potential
W(q, O) or V in its notation. This is a very good expan-
sion parameter, and the upper-bound property holds in
the EPX method. '

In Hedin's theory, it is not easy in practice to go
beyond the GR' approximation, because not a
simplification, but only a rearrangement of terms is done
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in the usual perturbation expansion. In the EPX method,
however, a considerable simplification is made by the
choice of a very simple, but physically acceptable, trial
many-body wave function. Thus we can rather easily
perform higher-order calculations for a systematic im-
provement.

Let us now compare the EPX method with the
perturbation-theoretic and equation-of-motion meth-
ods, ' which have been most often used to calculate ~, g,
and m of the electron gas. In those methods the so-
called local-field correction G(q) is always introduced to
treat the vertex corrections which come from the ex-
change and ladder diagrams. It is true that G(q) is useful
for a qualitative understanding of the exchange and
correlation effects, ' but we have to realize that this is
only an approximate treatment. We can never expect
that all the vertex corrections are written only as a func-
tion of q. Besides, the best choice for G(q) depends on
the channel. Namely, G(q) for the electron-electron
channel is different from that for the electron-hole chan-
nel. ' Further, when we derive Landau's Fermi-liquid in-
teraction from an expression for the ground-state energy
with G(q) included, special care is necessary for the
spin-dependent part. In fact, there are some ambigui-
ties in that treatment and an error has been pointed out. '

Thus, if possible, it is better to avoid the use of G(q). In
the EPX method we can do without G(q). The vertex
corrections in an expansion in V are calculated faithfully
in which the Pauli principle, the f-sum rule, and Ward's
identity are satisfied order by order.

Calculations of ~, y, and m* are also done in the
modern variational approach in which the trial function
is usually taken in the form of the Jastrow wave func-
tion. In this approach the expectation value of the
Hamiltonian is evaluated by either the Monte Carlo
methods ' or the Fermi hypernetted-chain (FHNC)
methods. ' The FHNC methods, combined with the
theory of correlated basis functions (CBF), are good
enough to provide very accurate correlation energy.
But we already know that because of the absence of the
energy denominators in the definition of the Jastrow
function, we cannot obtain accurate values for the quasi-
particle properties near the Fermi surface in the system
with the bare interaction having a q singularity at
q =0 such as the Coulomb potential. Such energy
denominators are included in the trial function in the
EPX method.

This paper is organized as follows. In Sec. II we derive
the basic formulas for the quasiparticle energy and
Landau s Fermi-liquid interaction by making an exten-
sion of the EPX method to treat low-lying excited states
of an interacting many-electron system. In Sec. III a mi-
croscopic expression for Landau s Fermi-liquid interac-
tion is shown. It is given by an expansion series, and all

the terms up to second order are represented diagram-
matically. We introduce a static screened interaction as
the largest contribution to the spin-parallel Landau in-
teraction function. In Sec. IV we evaluate Landau's
Fermi-liquid parameters for the electron gas at metallic
densities and obtain our results for v, g, and m*. Those
values are compared with those in other approaches.
Summaries of this paper are given in Sec. V. We employ
units in which A'= 1.

II. ENERGY FUNCTIONAL

A. Hamiltonian

where

and

HO —X &kC~.C~.
k, o.

(2.2)

V= —,
' g g g V(q)C„+ C„Ck., C

q(WO) k, o. k', o-'

(2.3)

with ek=k /2m and V(q)=4vre /q . The volume of the
system is taken to be unity. We specify an electron by
momentum k and spin o. and represent its annihilation
operator by Ck . In the following we measure momenta
and energies in units of k~ and rydberg (Ry) me /2, re-
spectively. Then the system is described only by one pa-
rameter r„defined by r, =—me /uk+, with
a=(4/9')'i =0.521. In this paper we consider r, in the
range 1 —6.

B. Trial function and energy for the ground state

In the EPX method a trial function for the ground
state is given with a state described by the plane-wave
Slater determinant

~
0 & and a correlation operator

U(0, —~ ) as'

oo
1

oo
n

~e, &=U(0, — )~0&—= g y U (o, — )
n=O ' m=1

(2.4)

where U (0, —~ ) is defined as

The electron gas is a system consisting of X electrons
embedded in a uniform positive-charge background. The
electrons interact with one another through the Coulomb
interaction. Thus the Hamiltonian is written in second
quantization as

(2. 1)

N

(0, —~)= ' f e "dr, . f eo ™drT[Vi(r&) VI(r )]L

0 0+t+ f e 'dr, . f eo ™drT[V,(r, )VI(r, )
. . V, (r )]~,

(m —1! (2.5)
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with the long- and short-range parts of the effective po-
tential VI and V, . We do not explain either the meanings
of the symbols in (2.5) or the physical considerations to
reach this form. Both of them were given in detail in
Ref. 16, which will be referred to as I hereafter.

We can write the energy expectation value Eo with
respect to ~40) as a power series in V, as

(eoiHieo)
(e,ie, &

The nth-order term in (2.6) is given by the sum of the
terms, each of which is represented as a multidimensional
integral of momentum variables for the integrand com-
posed of several nk 's, nV, (q)'s, and numbers of V&(q)'s
up to infinite order. Here nk is the distribution func-
tions of a free-electron system, i.e., 0(kF —

~k~ ), and V, (q )

is given by

V, (q)
V, (q)—=

[e(q, 0) j
(2.7)

with the dielectric function e(q, O), defined through the
polarization function II(q, II) in the RPA as

e(q, fl) =1+II(q,Q) Vi(q) . (2.8)

Thus we may regard Eo as a functional of those func-
tions:

Eo=&ot V~(q»V, (q»nk. } (2.9)

Since all the important terms in Eo up to eighth order
were given explicitly in I, this functional is essentially a
known quantity to us.

In I we determined the optimum values for V&(q) and
V, (q) by changing them in (2.9) with nk fixed to
9(k~ —

~k~ ). The obtained results for the optimum Vi(q)
and V, (q) were shown in Fig. 5 in I. We note that Vi(q)
is not zero only for small q; i.e., q less than about 0.2kF,
while V, (q) is very small in that region.

(2.11)

We can calculate the first term in (2.11) in a method simi-
lar to that in (2.6). Namely, compared to the calculation
of Eo, we only need to consider the existence of an extra
electron at k in addition to the Fermi sphere. This
change of the electron configuration in the noninteracting
system can be included in the energy calculation by that
of the occupation number nk as explained by pell-
Mann in the calculation of the specific heat of the elec-
tron gas at high densities. Then the argument in Ref. 30
shows clearly that ck is given by

&E0I V/(q), V, (q), nk. }

6n

The same is found to hold even for ~k~ (kF. Note that in
(2.12) both Vi(q) and V, (q) are kept fixed, because
U(0, —~ ) is fixed to its ground-state value in (2.10). Ac-
tually, even if they are not fixed, there is no change in the
result of (2.12), because those functions are chosen to give
the optimum value for Eo, and thus the derivatives of Eo
with respect to them vanish. The above argument ex-
plains the reason why the correlation factor U(0, —~ ) in
(2.10) is chosen to be equal to that for the ground state
from the outset. The same situation always occurs in the
variational treatments.

The interaction energy fk k ~ between the two quasi-
particles specified by k~ and k 'o. ' with

~
k ~, ~k

'
~
) kF can

be defined as

( @ko'k cl ~~~ +'kcrk'cT' &

fkak'0' =
( q) ic, ) 0 Eka k'o'

kirk 'o ' ko k 'a'

(2.13)

By a similar argument leading to (2.12) from (2.11), we
obtain

Eo
kak '0' (2.14)

C. Trial function and energy for low-lying excited states

In the absence of the interaction, all the excited states
are given by the addition of electrons to and/or the sub-
traction of them from ~0), i.e.,

C'„.C"„. C„C,, (0) for fk/, /k /, . . . )k,
and /pf, /p '/, . . . (kF. In the presence of the interaction,
we follow Landau's conjecture and write the trial func-
tion for low-lying excited states as

This equation is found to hold even for ~k~ and/or ~k'~
less than kF. Thus (2.14) provides the Landau interaction
function if both ~k~ and ~k '~ are taken to be equal to kz.

To conclude this section, we note that the Fermi-liquid
theory is reformulated in the present framework. In par-
ticular, the EPX method provides an explicit form for the
operator U(0, —~ ), by which each of the low-lying ex-
cited states in the interacting system is mapped one to
one from the corresponding state in the noninteracting
system.

; P'TP

= U(0, — )c'„.c'„. c„c,, ~o&, (2.10)

in which U(0, —~ ) is the same as in (2.4).
The excitation energy Ek for the state ~4k ) with

~k~ )kF is given by the difference between the energy ex-
pectation value with respect to ~C&k ) and the ground-
state energy Eo:

III. FERMI-LIQUID INTERACTION

According to the usual diagrammatic analysis, the
Landau interaction function fk k ~ ~ satisfies an integral
equation which is shown in Fig. 1, where z is the renor-
malization factor at the Fermi surface, Ik k. ~ is the irre-
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ducible particle-hole interaction, and Gk - is the full
Green's function in the interacting system. By taking the
functional derivative of (2.14) with Eo in the expansion
(2.6), we obtain an explicit expression for fk k ~ term by
term from zeroth order in a tedious but straightforward
way. In the following we show the result of such a calcu-
lation. To avoid too many equations in this paper, most
of the terms are given only in the diagrammatic form ar-
ranged in such a way as in Fig. 1.

k'0' k'o''

ko ko

Z X

k'0' k'o'

ko

k'o' k'o'

k "0'"

it

ko ko

Gk-a-

A. Zeroth-order terms

Let us combine the Hartree-Pock terms EH„with the
ring terms E„' '( V) and E„'~(HO), which are shown in

Figs. 1(a) and 1(b) in I. Their contribution to the Landau
interaction fk

'k', , is obtained as

FICi. 1. Integral equation to determine the Landau interac-
tion function fk k ~ in terms of the so-called irreducible
electron-hole interaction Ik k ~ and full Green's function in the
interacting system Gk- -. In the formal analysis, Ik k ~ should
be multiplied by z in the first term to obtain fk k ~, where z is
the renormalization factor at the Fermi surface.

[ V, ( k —k 'I)]'
v( k —k'I)+11(lk —k'I, o)

[e( k —k', 0)]
2V(q) —Vt(q)+ II(q, n)[ V/(q )]—g f . , Vt(q)[Gk'+q, '(+)+Gk' —q, o'( +))Gk+q, «»—oo 2&l [E(q,A)]

(3.1)

where Gk (0) is the single-particle Green s function in the noninteracting system, and V(q) is defined as

V(q) = (3.2)
[e(q, o)]

Although fk
'k'. , will be evaluated as it is in (3.1) in Sec. IV, only a small change is found even if we neglect the terms of

the order of V& /e or higher. Thus, for simplicity, only the terms up to first order in V&/e are drawn for fk 'k ~ in Fig.
2(a). Note also that we did not show those diagrams which can be obtained by the interchange of the two different in-
teraction lines. Namely, only the diagrams having the topologically different structures are given. Simplifications of
similar kinds will also be applied to the diagrammatic expressions for other terms in fk k.

Besides the Hartree-Pock and ring terms, the exchange and self-energy terms [Figs. 1(c) and 1(d) in I] were included
in E' '. Their contributions to the Landau interaction function are shown diagrammatically in Figs. 2(b) and 2(c) to
first order in V&/e. The sum of all those diagrams is found to be negligibly small. The same is true even if we consider
the terms up to second order in V&/e. As for the diagrammatic structure in Fig. 2, the diagrams in Figs. 2(a) and 2(b)
are examples of the terms in Ik k . Each diagram given in (b, ) corresponds to that in (a;) as an exchange partner. The
term (c, ) provides the contribution of the renormalization factor, and that of (c2) is an example of the second diagram of
the integral equation for fk k, in Fig. 1. Although we have obtained the terms represented by the diagrams with the
self-energy correction in the other part of the electron line in (ci), they are suppressed for simplicity. Note also that the
contribution from the diagram given by the interchange of V with V&/e in (ci) vanishes if we neglect the 0 dependence
in V. Even if we include the 0 dependence, its contribution is very small.

B. First-order terms

The contribution from the first-order ring terms [Figs. 3(ai) and (a2) in I] is given as

[«Ik —k'I) —vt(lk —k'I)]v, (lk —k'I)II(lk —1 'I, o)

[~( fl —k'I, o)]'

—2g f 1 —3 [Gk.+q .(0)+Gk q ( —Q)]Gk+ (0) . (3.3)
[V(q) —Vi(q)]V, (q) II(q, Q)Vi(q)

—- 2iri [e(q, ~)]' E(q, O)

Since the product of V, (q) with V&(q)/e(q, o) becomes very small as mentioned at the end of Sec. II B, we can neglect
the terms having at least one such product. Then we can perform the Q integral in (3.3) to obtain
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fk"k' =2&..v( lk —k 'I ) v, ( lk —k 'I )e( lk k ', 0)II( k —k ', 0)

+2+ V(q)V, (q)
q

nk+q (1—nk +.q~ ) nk +q~ (1—nk+q~)"+
~k '+q ~k+q ~k+q ~k'+q

(1 —nk+ )(1—nk )

~k+q+ ~k ' —
q 2CF

k+ qcr k ' —qcT'

2~F ~k+q ~k —q

(3.4)

where cF is the Fermi energy kF/2m. The terms in fk'k, are shown diagrammatically in Fig. 3(a). The first term in
(3.4) is ~ep~esented in (a, ), in which we can neglect an extra factor of e( Ik —k I, O) because it gives rise to the contribu-
tion higher than first order in V~/e. The first two terms in the square bracket give the contribution from the electron-
hole scatterings as shown in (az), while the third and fourth terms give, respectively, those from the electron-electron
and the hole-hole scatterings as shown in (a3).

A similar calculation is done for the exchange term E,'„"(V) [Fig. 3(bi) in I], and the result is given as

fk'.:;"'.= —»..V, (lk —k'I) & [V(lk' —pl)+ V(1k+pl)]
P ~p+k —k ' ~p

—»..&V, (q) V(lk' —kl) k+q, ( k'+q, ') k'+q, '( k+q,

~k'+q ~k+q ~k+q ~k'+q

—V(lk' —k —ql)
(1—

nk+q )(1—nk, q, ) nk+q nk, q

~k+q+ ~k' —q 2EF 2CF ~k+q ~k' —q

(3.5)

Diagrammatic representations for the terms in (3.5) are given in Fig. 3(b). As in Fig. 2, the term (b, ) is an exchange
partner to that in (a;).

Other diagrams for E' "considered in Fig. 3 in I also give contributions to the Landau interaction function to first or-
der, but the sum of those contributions is found to be very small. Thus we do not write those terms explicitly here.
Note, however, that their contribution is included in the final results for ~, g, and m in Sec. IV.

C. Second-order Ho terms

The terms in E' '(Ho) [Fig. 4(a) in I] are structurally the same as those in the first-order ring and exchange diagrams.
(2:Ho)

Thus their contribution to the Landau interaction function is readily calculated to give fk k" ~ by the sum of (3.4) and
(2:Ho)

(3.5) with the replacement of 2V by —V, . We suppress the diagrams for fk k, because they are almost the same as
tho se for fk'~k'~ and f„"~"„"'~.

D. Second-order ring and ladder families

Among the second-order terms, the ring and the ladder families [Figs. 4(b) and 4(d) in I] provide many complicated
diagrams for Ik k. .. Diagrammatically, the Landau interaction function is given by cuts of the two electron lines in all
the possible ways in the diagrams to express the energy functional. We divide the contributions from the ring family
into two classes. One is the sum of the terms given by the successive cuts of the electron lines in the same electronic po-
larization bubble in the ring diagram and those given by exactly the same cut in the corresponding exchange diagrams.
We call the contribution the second-order static screened interaction fk

'"k,', . In our definition the static screened in-
teractions in zeroth and first orders are given by the sum of (ai) and (bi) in Figs. 2 and 3, respectively, and they are
represented by fk'"k' and fk"k' . The corresponding term in fk k' ~ will be written as fk k'. . The terms in fk'k'
are shown in Fig. 4(a) and are obtained as
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fk"."k'. = —2&..V, (lk —k'I) g & { V, (lk —k'l)[V(lk' —kl) —s„,v(lp' —pl)]
I

pi% p

—&,.[ V( lk
' —kl )e( lk

' —kl, O) —&,.V(lp ' —pl )][V, ( lp
—k 'I )+ V, ( lp+kl )]]

X
Ep+k —k ' ~p

n&' '(1 n& +k k )

p'+k —k' ~p'

+(v, (lk —k'I){2v(lk' —kl) —&..~(lk —k'I, o)[v(lk+p'I)+ v(lk' —p'l)]I
—&..v, (lp'+p —k'+kl){2v(lk' —kl) —5, [v(lk+p'I)+ v(lk' —p'I)]I
—& .I v(lk' —kl)«lk' —kl, o)[v, (lp —k' )+ v, (lp+kl)]

—~, [V(lk+p'l)V, (lp —k' )+ V(lk' —p'l)V, (lp+k )]I)

n& (1 tl&+k k )
X

Ep+k —k ' ~p

n& ~ ~ (1 —rip +k k

p'+k —k' p' ~p+k —k' ~p

(a) Contribution from Fock and Ring Terrris

k'0' k'o ' k'0'

(af ) (a2),' (a3 )

Other terms derived from the energy functional in the
ring family constitute another class of the Landau in-
teraction. Since those terms involve the dynamic scatter-
ing process of either electron-electron, hole-hole, or
electron-hole, we call the contribution the dynamic in-
teraction fk k".', . In a similar way we can define fk 'k '

fk" k"' ., and fk k,'. . In Figs. 4(b) and 4(c) the diagrams
for f ~k 'kd. ', and the contributions from the ladder family
fk

' k'. , are shown. Explicit representations for those

l

terms are too long to show here. Note that the terms
(b, ) —(b, o) and (ci)—(cs) give the components of the spin-
independent interaction, while other terms work only be-
tween the electrons with parallel spins.

The idea to separate fk'k.', from other second-order
terms is inspired by the discussion of Yasuhara, Ousaka,
and Suehiro. ' They paid special attention to the class of
diagrams in Ik k. .. which can be divided into two parts
by the cut of one interaction line with the momentum
transfer k '-k. However, the sum of such diagrams,fk"k ~,, is not the same as the static screened interaction
1n our definition, because the terms (b»), (b»), (bis), (b,9),
(c9)—(ci6), and (cz4) in Fig. 4 are not included in fk k.', .
This difference comes from that of the basic principle to
classify the diagrams: Our main concern is to treat the
direct and exchange terms in pairs. Thus, as long as its
direct (or exchange) partner is involved in either fk 'k '

~

where ---- = V /c and ~~ = Vg«2
(a) Contribution from Ring Terms

(b) Contribution f rom Exchan ge Term
k'o' k'o'

k'o'k'o'

(b, ) --- (b, )

ko ko k

r (b3) I

I

k&

k'0'

(a }

where

)

(a2) )

ko'

Vs«

(a3)

ko ko

(c) Contribution from Self- Ener g y Term

k'o' k'0' (b) Con t r ibu t ion f rom Exchange T er m

k'0' k'o'

(c )I (c2) )I

ko ko

(b(} (b )

FIG. 2. Diagrammatic representation for f„„~,to first or-
der in V& /e and in zeroth order in V, . The contributions from
the ring, including the Pock diagram, exchange, and self-energy
terms, are, respectively, shown in (a), (b), and (c).

FIG. 3. Diagrammatic representation for fk k in first or-
der in V, . Those terms are classified into (a) the ring and (b) the
exchange contributions.
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or f ' '", , we include its exchange (or direct) counterpartJ kok 'a', W

in the same class even if its structure may be classified as
the static screened interaction in the definition of Ref. 21.
In fact, our choice is superior to that in Ref. 21, because

has an unphysical divergence which can beJ kcrk'o-'

suppressed only when the corresponding divergence in
other terms in Ik k. is added to it. Such an unphysi-

cal divergence does not appear in our static screened in-
teraction.

E. Second-order self-energy family

As in the zeroth-order terms in Fig. 2(c), the self-

rgy diagrams [Fig. 4(c) in I] give the terms in the Lan-
dau interaction function f I, 'k ~ structurally very

(a) Static Screened Interaction (b) Pynamic Interaction

(a )

(b/) (b2) (b3) I

(b,) =, = (b&)

) (bq)

I
I

(b8

(a&) (ae)

I
I

(b,) '
(b/ (b, (b„)

(a9
(b/5

(c) Contribution from Ladder Family
(b/~)

~'

I (b/8)
1

(b )—/9

(c&)

(c3) (cg )

,
' (c~) ' (c~) (d/) (d2) (d3)

(d) Contribution from Self-Energy Family

(cy c/o C//) ~i) (C/2) (d ) (d, )

E

(d )

(c/3 c/g C/5 c/6) (d, ) (d )

~ & (c/8) l~ I & (c/9) ' (ceo)

(c&&)
I

d/~) = {d/5 )

The dia rams in (a), (b), (c), and (d) correspond, respectively, to the terms of the static
h 1screened interaction, and dynamic interaction in the ring

'

y,h rin famil the interaction from t e a er ami y, an

family.
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different from those of the ring and ladder families. In
Fig. 4(d) we show the terms in fk 'k. .. which can be
classified into three. The diagrams (di) —(d&) belong to
Ik k. .. They give corrections to the first-order terms by
the insertion of the self-energy correction to the internal
electron line. The diagrams (d6) —(d, o) give the effect of
the renormalization factor z by the insertion of the self-

energy correction to the external electron line, while
those of (dii) —(di&) are examples of the second diagram of
the integral equation for fk k, ~ in Fig. 1.

A very important cancellation works between the dia-
grams in the second and third classes. For instance, the
sum of the diagrams (d6), (d7), (dii), and (diz) is obtained
as

(2:S'd6) (2 S'CI7) (2:S'd]
&

) (2:S'd&2)
fk k

' +fk k' ' +fk k' " +fk k' " =& gg V, (q)|V(lk' —kl) —V(lk' —k —ql)]
q P, 7

(1 —nk+ )n, (1 np+—, )

I V, (q)e(q, o) —6,v, (lk+p+ql)]
(sp+q ep+ Ek+q EF )

+ I V, (q)6q, O) —&,V, ( lp
—kl )]

' ', +(k~k ')
(Ep+q sp Ek+q+sr )

(3.7)

(2:s;d6) (2:S;d7)
In (3.7) the sum of f„~k~ and fk k' ' is given by the
terms proportional to V(lk' —k ). The sum divided by—V(lk' —kl) is just twice the second-order contribution
to z, which was calculated from the magnitude of the
discontinuity of the momentum distribution function in
the interacting system in Ref. 3. Since the deviation of z
from 1 is not small in the electron gas at metallic densi-

(2:s;d6) (2:s;d7) .
ties, the sum of fi, k, ', and fi, k'. '. is by no means small.
However, their contribution is almost canceled by that of

(2:s;d&
&

) (2:s'd12)
fk „'.", and fk k,

" given by the terms proportional to
V(

I
k ' —k —

q I ) in (3.7). The same situation also occurs in
other orders. For example, in zeroth order, the term in
Fig. 2(ci) is almost canceled by that in Fig. 2(cz). The
present observation suggests that it is a sensible approxi-
mation to neglect the second diagram in Fig. 1 together
with z fixed to 1 in the calculation of fi, k ., as is often
employed without any justification. ' ' In other
words, if the effect of the deviation of z from 1 in the mi-
croscopic calculation off„„.is included, we also have
to consider the corresponding terms in the second dia-
gram in Fig. 1. Without those terms the inclusion of z
will not result in the improvement.

F. Higher-order terms

Up to second order we can perform all the multidimen-
sional integrals in the terms for fk k rather accurately
by the Gauss quadrature procedure even at the present
level of computer technology. However, it is not possible
to do the same for the terms higher than second order.
Fortunately, we know from the calculation of the
ground-state properties that only the ring family up to
sixth order as given in (Bl)—(B3) in I needs to be con-
sidered for the electron gas at metallic densities. As in
second order, we can divide the contribution of the
higher-order ring family into two parts. The primary
part is composed of the terms in the static screened in-
teraction which is a direct extension of fk 'k,', to higher
orders. We can obtain those terms explicitly by taking

the derivatives of nk (1—nk +q ) successively with
I I

respect to nk and nk ~ in the energy expressions
(Bl)—(83) in I. The multidimensional integrals in those
terms can be performed up to sixth order.

The other part is the dynamic interaction. The mul-
tidimensional integrals in those terms are as difficult as
those in the contribution from the ladder diagrams. Thus
we cannot obtain accurate values for them even in fourth
order. However, an estimate of those terms indicates
that the contributions of the dynamic interaction in
higher orders are small in the electron gas at metallic
densities. Therefore, we neglect those contributions in
this paper.

IV. CALCULATED RESULTS

A. Basic relations

Landau derived the formulas for the effective mass m *,
compressibility K, and spin susceptibility y as

m /m *= 1 —F )~
~ —F )~ ~,

vF/~=m /m*+F +Fo
and

(4.1)

(4.2)

yF /y =m Im *+Fot
i Fot i, — (4.3)

where ~F and gF are the values of ~ and g in the nonin-
teracting system, and the Landau parameter F& for
I=0 and 1 is defined as

kk'—X &('k EF )
k' kF'

(4.4)

with Ikl =k~. In accordance with the expansion of the
Landau interaction function into components such as
fk 'k ', we can define the corresponding expansion of the
Landau parameters by (4.4). We denote the components
by expressions such as Fl (0:rs ).
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Fig. 4(d, ). Since the self-energy terms as well as the Ho
ones are present only in even-power orders, the next-
order terms are in fourth order. Among the contribu-
tions from the fourth-order self-energy family given in
(B4) in I, we have tentatively evaluated the terms having
a structure similar to that in Fig. 4(d, ) and found that
their sum is small. Thus the higher-order self-energy
contributions will not be considered.

For the spin-antiparallel parts, there is no contribution
from the static screened interaction. Thus we anticipate
that a convergent result for FI can be obtained even by
the calculation up to second order. The results in Figs.
5(c) and 5(d) show clearly the correctness of the anticipa-
tion. The largest contribution comes from F&t1(1:rd )

whose absolute value is only about one-fifth of that of
F&tt(1:rs). We can also see the rapid convergence by
comparing the values of the second-order terms with
F(t ~(1:rd ).

In Fig. 6 we plot our results for ~z/~, yF/g, and
m /m * as a function of r, . The dashed curves represent
the results with the Landau parameters summed up to
second order, while the dot-dashed and solid curves
show, respectively, those with the contributions from the
static screened interaction up to fourth and sixth orders,
in addition to the components of the Landau parameters
in Fig. 5. Because the component of the static screened

interaction in F ~ ~ is canceled rather strongly by that in
Fo, we have smaller changes in ~F/~ and gz/y than
that in m /m * with the increase of the order. We have
made rough estimates of the contributions from the
seventh- and eighth-order components of the static
screened interaction and find that those contributions will
make changes for the results in Fig. 6 by at most a few
percent. Thus the values given by the solid curves in Fig.
6 may be regarded as our final results. In order to make
an independent check of the validity of our procedure, we
also show the exact results ' for ~z/~ by the dotted
curve in Fig. 6. Those exact results are obtained from the
thermodynamic relation as explained, for example, in
(5.2) in I. By comparing our results for aF/~, including
all the four values of F& with the exact ones, we are
confident that our procedure works quite well.

Since the exact values are known, we need not discuss
~F/~ any more. However, we do not know the exact
values of either the spin susceptibility or effective mass.
Thus we have to make a detailed discussion of them.

C. Spin susceptibility

In Fig. 7 we plot the results of gF/y as a function of r,
in various approaches. For comparison, we show the re-

2.0

1.5—

-----: up to second order—- —:up to fourth order
: up to sixth order

r—

+rn/m

0.9

0.8

x 10
&C

0.5 0.6

0.5

-0.5
0

Exact Results for KF /K

I I I

2 3 4

p4
0

rs

FIG. 6. Our results for ~F /~, yF /g, and m /m * as a function
of r, . The dashed curves represent the results up to second or-
der, while the dot-dashed and solid curves show, respectively,
those with the contributions from the static screened interaction
up to fourth and sixth orders.

FIG. 7. Results of gF/y as a function of r, in various ap-
proaches. The solid, thin-solid, dotted, dashed, dot-dashed, and
double-dot-dashed curves give, respectively, the results in the
EPX, the Hartree-Fock approximation (HF), the RPA, the ap-
proach of Hedin and Lundqvist (HL) (Ref. 10), that of Vosko,
Wilk, and Nusair (VWN) (Ref. 9), and that of Kawazoe,
Yasuhara, and Watabe (KYW) (Ref. 34).
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suits in the Hartree-Fock approximation (HF) and RPA
by the thin solid line and dotted curve, respectively.
Vosko, Wilk, and Nusair (VWN) obtained the results by
the thermodynamic relation with the total energies of the
spin-polarized electron gas, which were estimated by an
interpolation scheme. Their results are given by the dot-
dashed curves. Somewhat old results of Hedin and
Lundqvist' (HL) are shown by the dashed curve. The re-
sults of Rice are about the same as those of HL. The
double-dot-dashed curve gives the results of Kawazoe,
Yasuhara, and Watabe (KYW). Their values for y are
probably the smallest among the significant calculations.
Our results indicated by EPX are given by the solid
curve.

In 1976, Kushida, Murphy, and Hanabusa summa-
rized the values for g in the electron gas in quite many
theoretical approaches. They found that there was a
"consensus" curve in the (r„y)plane among those many
theoretical results. They also found that the experimen-
tal results in the alkali metals agreed with the values on
the consensus curve. Since the results of VWN are virtu-
ally on the consensus curve, most people believe that
their results are, if not exact, very close to the exact
values. In our opinion, however, their results are not so
reliable. It is true that there is a definite difference be-
tween their values and those in the RPA in Fig. 7. The
difference, however, originates entirely from that in ~z/~.
We cannot find any difference between the values of
VWN and those in the RPA in the essential part, namely,
F&~~, as we shall show in the following way. Combining
(4.2) with (4.3), we can determine the values of Fot t in the
approach of VWN through

1 ~F XF
(4.5)

2 K

with the tabulated values for ~F/~ and g~/g in Ref. 36.
The values obtained for F~~~ are plotted in Fig. 8 by the
dot-dashed curve, but they agree with the results in the
RPA (dotted curve), Fo~ (RPA), at least up to two digits
and often even three. We have calculated Fot ~ (RPA) by
(4.4) with the Landau interaction function given by (3.1)
with the replacement of V& (q ) by V( q ). Namely,
Fot t (RPA) is given by

Fot ~ (RPA)

2 2
cx r

dzz
2m

[Q(z, u )]X du
2[z +(ar, /~)P(z, u )]

(4.6)

-O3

-p4
0

rs

FIG. 8. Results for F&~~ as a function of r, . The solid curve
gives those in the EPX through (4.4), while the dotted one
represents those in the RPA through (4.6). The dot-dashed
curve shows the results of Vosko, Wilk, and Nusair (VWN)
(Ref. 9) through (4.5).

P(z, u ) =—1+ Q(z, u )
1 1 —z+u
2 2

—u tan
2u

u +z 1
(4.8)

D. Effective mass

We can see clearly from (4.6) that Fo~ (RPA) is negative
definite, but the exact values for F~~~ should be even
smaller than those for Fo" (RPA). We believe that those
exact values are very close to our values indicated by
EPX (the solid curve in Fig. 8). This is because for the
processes of the momentum transfer q of the order of kF
[or z = —,

' in (4.6)], the actual interaction between electrons
with antiparallel spins becomes much stronger than the
effective potential in the RPA if we consider the effect of
the vertex corrections. In real-space representation the
same can be stated, that the screening effect does not
work so effectively as in the RPA between electrons with
short-range separation. In this way Fot~ (RPA) should be
the upper limit for the true F~~~. Combining the above
fact with (4.5) and using the exact values for ~F/~, we
have a firm statement that the results of VWN for y~ /y
give the lower bound. Probably the exact values for
yF /y in the electron gas lie close to our results.

with

Q(z, u )= ln=1
2z

u +(1+z)
u +(1—z)

(4.7)

The effective mass is an even more controversial quan-
tity than the spin susceptibility. In Fig. 9 we show the re-
sults for m*/rn as a function of r, in the RPA, Hedin's
approach, " and the EPX method together with the re-
cent results of Yasuhara and Ousaka (YO) by the dot-
ted, dashed, solid, and dot-dashed curves, respectively.
Before the appearance of YO, all the significant calcula-
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E
1.0

E

RPA

Hedin

second order always give at least qualitatively correct be-
havior as a function of r, for all the quantities so far cal-
culated for the ground-state properties.

Finally, we note that the monotonic behavior of I */m
is not always true for the multivalley electron gas. In
fact, as we have shown in I, the RPA gives a very accu-
rate description for the valley degeneracy g, larger than
about 4 at metallic densities. Thus, for such a situation,
m*/m behaves in much the same way as given by the
dotted curve in Fig. 9.

V. SUMMARY AND DISCUSSION

0.9

0.8
0

rs

FIG. 9. Results for m*/m as a function of r, in the EPX, the
RPA, the approach of Hedin (Ref. 11), and that of Yasuhara
and Ousaka (YO) (Ref. 33). They are, respectively, represented
by the solid, dotted, dashed, and dot-dashed curves.

tions had a tendency as in the RPA. Namely, I /m de-
creases first and then increases with the increase of r, .
The experimental values in the alkali metals seem to
agree with this behavior. However, the exact behavior ofI*/I in the electron gas is not necessarily the same as
the experimental one even in such metals. Yasuhara and
Ousaka discussed the incorrectness of the behavior ob-
tained in the RPA and its refinement in detail. '
Thus we do not repeat the discussion here. We only men-
tion that our present calculation gives support to their re-
sults. There is a small discrepancy between our results
and those of YO, but the difference is about the same as
the magnitude of uncertainty caused by the neglect of
many higher-order terms in our approach. Thus, at
present, we cannot say whether the difference is
significant or not. As for the monotonic behavior of
m */m as a function of r„we have rather strong
confidence in the correctness of the behavior mainly be-
cause the second-order calculation has such a tendency.
We have the experience that the calculations up to

In a previous paper we made an extension of the EPX
method to treat the finite-temperature problem, while in
this paper an extension is given to describe the low-lying
excited states of an interacting many-fermion system. In
particular, a microscopic representation for Landau's
Fermi-liquid parameter is provided. The general frame-
work is applied to the electron gas at metallic densities to
calculate quasiparticle properties such as the compressi-
bility ~, spin susceptibility y, and effective mass m . The
results obtained for ~ are very close to the exact values.
The same situation is expected to occur in both y andI ', though at present we do not have the exact values
for those quantities to compare with.

In the RPA the results for both y and I* in the elec-
tron gas are in rather good agreement with the experi-
mental ones in the alkali metals which have been con-
sidered as the best candidate for the electron-gas model.
However, recent elaborate calculations including the
present one in the EPX method suggest that there is a
considerable difference between the results in the RPA
and the exact ones. Thus we have to reconsider the ap-
plicability of the electron-gas model even to the alkali
metals. In fact, this is one of the motivations to develop
the EPX method as mentioned in Sec. I. Probably the
main issue in real solids is the interplay of many-body
effects with the Hartree potential, which is absent in the
electron-gas model. There might be some mechanism in
alkali metals which validates the use of the RPA even for
the short-range correlation.
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