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The correlation energy c.
„

the chemical-potential shift due to the correlation, p„the compressi-
bility ~, and the renormalization factor at the Fermi surface, zF, are calculated for the paramagnetic
valley-unpolarized state of the multivalley electron gas that may be realized in a doped multivalley
semiconductor or multivalley semimetal. The calculations are based on an improved version of the
effective-potential expansion method, which is known to give accurate c.„p„~,and zF for a
single-valley electron gas at metallic densities. The valley degeneracy is found to be a good parame-
ter to connect the total energies of the electron gas of both paramagnetic and ferromagnetic states
with that of the charged-boson system. Based on this connection, the possibility of a valley-

polarized state is discussed.

I. INTRODUCTION

Many-body effects in the electron gas have been stud-
ied for a long time. By now the ground-state energy of
the system is well known at metallic densities. The
Green's-function Monte Carlo (GFMC) calculation of
Ceperley and Alder' played a decisive role in its deter-
mination, but other calculations, in particular, the
coupled-cluster one by Emrich and Zabolitzky, gave vir-
tually the same result. The effective-potential expansion
(EPX) method proposed by the present author could also
provide accurately the ground-state energy as well as oth-
er quantities such as the pair-distribution function.

In this paper we present an improved version of the
EPX method in which the long-range part of the electron
correlation can be included better than the previous ver-
sion in Ref. 3. Since the Coulomb interaction V(q) has a
long-range tail, i.e., V(q) ~ q, this improvement is vital
to obtain accurate results for quantities such as the renor-
malization factor at the Fermi surface. In fact, a
prescription of this improvement was already given when
superconductivity in the electron gas was discussed, but
substantial progress has been made here. We also prove
that the static approximation employed in Ref. 4 in the
calculation of the short-range part of the electron corre-
lation is valid.

We apply the improved EPX method to a multivalley
electron gas, which may be realized in a doped multival-
ley semiconductor or multivalley semimetal. There are
three major reasons for this study. First, many-body
eff'ects in the electron gas are usually divided into the ex-
change and correlation effects, but their relative impor-
tance changes with increasing valley degeneracy g, . The
correlation effect, especially the one described by the so-
called ring diagrams, is expected to dominate in the
large-g, limit with a fixed number of electrons in each
valley, but other terms such as those corresponding to the
exchange and ladder diagrams are also known to be im-
portant in the usual electron gas in which g, =1. Thus it
is interesting to know the critical value of g, at which we

can safely neglect terms other than those associated with
the ring diagrams. Such a critical value will be deter-
mined here. Second, if 2g, were larger than the total
number of electrons, the total energy of our system would
be equal to that of the charged-boson system. Thus we
can connect the results of the boson system' with those
of the fermion system by changing g, with a fixed total
number of electrons. Namely, g, may be regarded as a
parameter to convert the results for fermions into those
for bosons. Third, there have been interesting proposals
for superconductivity in multivalley systems. Since
superconductivity is a typical many-body effect, we have
to understand the normal state in sufficient detail before
we make a reliable prediction for the occurrence of super-
conductivity.

In Sec. II we specify our model system. In Sec. III we
give our trial function for the paramagnetic valley-
unpolarized state. An expression for the energy expecta-
tion value with respect to our trial function is given in
Sec. IV. (Terms higher than first order are shown explic-
itly in Appendixes A and B.) In Sec. V we give our re-
sults for the correlation energy c„the chemical-potential
shift due to the correlation, p„the compressibility ~, and
the renormalization factor at the Fermi surface, zF. In
Sec. VI our results for c, and zz are compared with those
in the random-phase approximation (RPA) to determine
the above-mentioned critical value of g, . The connection
with the charged-boson system is discussed in Sec. VII.
The possibility of a valley-polarized state is also men-
tioned. Finally, in Sec. VIII we summarize our results
and discuss the problem of superconductivity in the mul-
tivalley electron gas. In this paper we use units in which
%=1.

II. MULTIVALLEY ELECTRON GAS

We consider a system of X electrons embedded in a
uniform positive-charge background. The electrons oc-
cupy the bottoms of the g, equivalent valleys in the con-
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H=Ho+ V,
where

(2.1)

duction band. The effective mass of the valleys will be
denoted by m *. The electrons interact with one another
through the Coulomb interaction with the static dielec-
tric constant e0. All the valley-exchange interactions will
be neglected. Then the Hamiltonian of the system is
written in second quantization as

In the absence of the interaction, electrons are equally
distributed to all the g, valleys. In each valley electrons
occupy the states from the bottom up to the Fermi
momentum kz —=(3' X/g„)'~ . This is the paramagnetic
valley-unpolarized state and will be denoted by lo). In
the following we measure momenta and energies in units
of kF and effective rydbergs (Ry*) m *e /2eo, respective-
ly. We define the density parameter r,* in terms of this
kz and the effective Bohr radius e0/m *e as

~0 g EkCko Ck(x (2.2) r,*=m*e /ae0kF, (2.4)

and

k, o.

V= —,
' g g g V(q)C„+~~C„~~.Ck Ck

q (WO) k, cr k', cr'

(2.3)

with 8k=k /2m* and V(q)=4m. e /eoq . The volume of
the system is taken to be unity. We specify an electron by
momentum k, spin s ( = 1, & ), and valley
i( = 1,2, . . . , g, ), and represent its annihilation operator
by Ck with cr =(i,s). We note that the total degeneracy
of the system is 2g, . g

1/3
S U S (2.5)

with a=(4/9m. )'~ =0.521. Then the system can be de-
scribed by the two parameters ~,

* and g, . The choice of
r,* for the density parameter is useful when we discuss
the effect of g, with a fixed number of electrons in each
valley. For the discussion with a fixed total number of
electrons, however, it is more convenient to use the con-
ventional density parameter r, —=m*e /aeo(3m N)'~
rather than r,*. They are related to each other through

III. TRIAL FUNCTION IN THE EPX METHOD

(3.1)

In the presence of the interaction, lo) is no longer a good trial wave function even for the paramagnetic valley-
unpolarized state. The effects of the electron correlation should be included. In the EPX method such effects are treat-
ed by the introduction of the correlation factor U(0, —~ ) in the definition of a trial function as

oo ] 00

le, )=U(o, — )lo)= y, g U (o, — ) lo),
n=0 m =1

with

U (0, —oo )= ' f e "dt, f e
'

dt T[V&(t&) . V&(t )]L
m~ oo

m 0 0+t 0 0+t+ f e 'dt) f eo ™dtT[V(ti)V((t~) ' ' ' V((t )]L
(m —1)!

(3.2)

where T is the symbol for the time-ordered product in the
usual sense, and V, (t) and V, (t) are, respectively, defined
as

&Hot — —iHot
V, (t)=e '

V, e (3.3)

and

V, (t)=e '
V, e (3.4)

with the long- and short-range parts of the effective po-
tential V& and V, . The subscript L to the square bracket
denotes, on the one hand, the instruction to consider only
terms in which m Vs in the bracket are connected with
one another, and on the other hand, it indicates to ex-
clude any term in which Vs in the different square brack-
ets are linked. In this choice the electron correlations up
to infinite order are included for the long-range part. V&(q) = V(q)/[ —,'+ —,

' exp(q /q, )] . (3.5)

This treatment is necessary for the correct screening
property at q =0, namely, to avoid divergences caused by
the q behavior of the bare Coulomb interaction in the
calculations of the quasiparticle properties at the Fermi
surface. On the contrary, only the two-electron correla-
tion is considered for the short-range part in order to
make calculations tractable. The present choice comes
from the following physical observation: While very
many electrons are involved in the long-range correla-
tion, the two-electron correlation dominates in the short-
range part.

Basically, we use a variational principle to determine
both V& and V, . In order to make the variational pro-
cedure easier, we choose the same form for V& and V, as
that in (2.3) for V with the replacement of V(q) by V&(q)
and V, (q), respectively. The optimum form for V, (q) will
be determined by the solution of a Euler-Lagrange-type
equation as we shall show later, but we give a form for
V, (q) as
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The cutoff momentum q, is a variational parameter, but
its optimum value is explored only in the small-q region
to make the contribution from complicated exchange
terms small. Note that we gave Vi(q) as
V(q)exp( —

q /q, ) rather than (3.5) in Ref. 4. The ob-
tained total energy does not change so much between the
two choices for Vi(q), but (3.5) is found to be a better, if
not the best, choice.

{a) Hartree- Fock Terms

where ~ . Ho, ——.V,

(b) Ring Diagrams

IV. ENERGY EXPECTATION VALUE

The energy expectation value Eo with respect to ~C&o&

can be expanded in the effective potentials V& and V, with
the use of the generalized linked-cluster theorem. ' In
powers of V„wehave

(C,iHie, & E(n)
(c,ic, &

where E'"' is the nth-order term in V„but it can still be
expanded in V, up to infinite order.

here

with ~ '. Vg

(c) Exchange Diagrams

h e

(d) Self- Energy Diagrams

A. Zeroth-order terms

The terms included in E' ' are represented in Fig. 1

with the use of Feynman diagrams. The Hartree-Fock
terms EHF —= (O~H ~0 & are shown in Fig. 1(a), and the ring
terms in Fig. 1(b) are calculated as

(e) Diagrams with More Than One ~~
+ + + +

FIG. 1. Feynman diagrams for the terms in E' '.

- dn [11(q,~I)]'V(q)Vi(q)E„''(V)= ——g
™

2 —oo 2&l e(q, Q) (4.2)

- dnE„''(Ho)= —g g J . J . 8k[6k (co)] Gj, + (co+0)

II(q, A) Vi(q)
In[@(q,0)]—

2 — 2vri
'

e(q, Q) (4.3)

where Gk (co) is the single-particle Green s function in the noninteracting system, and the dielectric function e(q, Q) is
defined through the polarization function II(q, 0) in the RPA as

e(q, 0)=1+II(q,0)VI(q ) . (4.4)

In the numerical evaluation of (4.2) and (4.3), it is more convenient to perform the Q integral along the imaginary axis
rather than the real axis. " On the imaginary axis, II(q, iII) is calculated as

n„(1—n„+ )b, (k;q)
II(q, iQ) =2+ 0 +[6,(k;q)]

where nk =—8(kF —
~k~ ) is the momentum distribution function of a free-electron system, and b, (k;q) is defined as

h(k; q)—:IEk+q

(4.5)

(4.6)

The sum of (4.2) and (4.3) is of the order of 10 mRy* per electron, and those ring terms are predominantly important
for Vi(q) which is not zero only for small q. In fact, all the exchange and self-energy terms were neglected in Ref. 4, in
which the cutoff momentum q, was restricted to the region of 0 &q, &0. 1kF. In this paper, however, we include the
terms (c) and (d) in Fig. 1 in order to explore the optimum q, in a wider range. The contributions from other terms hav-
ing at least two thick wavy interactions shown in Fig. 1(e) are estimated and found to have values (mostly much) less
than 0.01 mly' per electron for any r,* and g, considered here if q, is less than 0.3kF. Thus we neglect them and
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search an optimum value for q, in the region of 0 & q, & 0.3k~.
The exchange term (c) is expressed as

(0) 1 ~ ~ dQ ~ dQ' dao VI q V(q')2, &
— 2vri —m 2mt

'—~ 2ni e(q, Q) [e(q' Q')]2

(~)Gg+q (~+&')Gk+q (co +0) Gk+ + (co+0+n') . (4.7)

Before performing the 0' integration, we expand V(q')/[e(q', 0') ] in terms of XII(q', I1'):—II(q', 0') —II(q', 0) as

V(q ) = V(q') —2V(q'), b II(q', 0')+ .
[e(q', 0')] &(q', 0)

where

(4.8)

V(q)—=
V q (4.9)

[e(q, O)]

Because V(q) becomes very small for small q while V&(q)/e(q, O) remains finite only in such a region of q, the product of
these two interactions is always small in the whole q region. An example of the values of this product is shown in Fig. 2
for the case of r,*=5 and g„=l. Such a product appears in all the terms except the first one in the expansion (4.8).
Thus we can neglect those terms and may replace V(q')/[e(q', 0')] by V(q') in (4.7). This is nothing but the static ap-
proximation employed in Ref. 4, but no justification of it was given there. Unfortunately, the same argument cannot be
applied to VI(q )/e(q, 0), and we have to perform the 0 integration as it is in (4.7). By changing the integral along the
imaginary axis, we can rewrite (4.7) as

E,'„'(V)=gg f . V(q')nk (1—
nk+q )

-dn
0 77 6q lQ

0 +h(k; q)b.(k+ q', q)
[0 +[A(k;q)] ] [0 +[A(k+q';q)] I

—0 +b, (k;q)b, (k+q';q)
[0'+ [blk;q)]'] [Q~+ [h(k+q', q)]']

(4.10)

1p

C

0
tll

C

g

q =Q.]$8kF

0.6
(a&)

' (a2)

where

(a) Ring Diagrams

C)
U

U

Vs

(b) Exchange Diagrams

U

pg

(b)) -— (b2) (b3)
asmW

(b~) (b, ) (b6)

0 ] 2 3

q (units of kF)

FICx. 2. Example for the values of V(q) and V&(q)/e(q, O) in
units of 4m.e /FpkF as a function of q. The inset shows the prod-
uct of the two functions. The case of r, =5 and g„=1 is shown.

(c) pelf- Energ y Di ag rams

(c&) (c2 )

FIG. 3. Feynman diagrams for the terms in E"'.
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By a similar argument, we obtain the self-energy term (d} as

—n'+ [a(k;q) ]'E'"( V}= X X k ( k+q, )(nk+q+q', nk+q',
q, q k, ~ o ~ ~ q 'n ' ' ' [n'+[A(k;q)] j

(4.1 1)

Evaluated values of (4.10) and (4.11) are less than 0.4 mRy* per electron.

B. First-order terms

In Fig. 3 we show some of the terms in E'" by Feynman diagrams. The ring terms (a)) and (a2) can be combined into

V, (q)
V, (q) =

[e(q, O) ]

Thus we may replace V, (q )/e(q, n) by V, (q) in (4.12), and we can perform the n integration in (4.12) easily to obtain

(4.13)

E„"'(V)+E„"'(H ) = ——y f . [ V(q) —V (q)], [11(q,n }]' .(, ) 1 - an
(4.12)

2 —~ 2mi [e(q, n)]
As in (4.7), we expand V, (q)/[e(q, n)] in terms of bII(q, n)—:II(q, n) —II(q, O). Since V, (q) is at most V(q), we can
repeat exactly the same argument as that following (4.9} to show smallness of the product of V, (q) and V&(q)/E(q, O),
where V, (q) is defined as

nk (1 nk—+ )nk (1 nk )—
E( )(V)+E( )(Ho)= X X X [V(q) Vi(q)]V (q)

q k, o. k', o'
(4.14)

This is the expression (4.5) in Ref. 4 derived in the static approximation. This term has a value larger than 100 mRy
per electron and gives the largest contribution to the correlation energy.

The same argument is applied to the term (b)) in Fig. 3 to obtain

nk(7(1 nk+q )nk '(1 nk —
q (7 )

E,'„"(V)=yy y S..V, (q)V(~k —k —q~)
q k, o k', o'

(4.15)

with 5 =5,, 5„.This exchange term has the absolute value of about (3g„) ' of that of (4.14). Another exchange
term (b2) in Fig. 3 is given by

'

-anE,'„"(H,)= —2g g f V, (q')n„(1—n„+, )
o m eqin

b (k; q)b, (k+ q'; q)
[n +[6(k;q)] jIQ +[6(k+q', q)] j

+ [b.(k; q) —b (k+ q'; q) ]

n [n —b(k;q)b(k+q', q)]
[n~+[h(k;q)]2j [n +[6(k+q', q)] j

b (k; q)b (k+ q', q)
I
n'+ f b, (k; q) ]' j f

n'+ [b,(k+ q', q) ]' j

—[b(k;q)+b(k+q', q)]

n [n +b, (k;q)A(k+q', q)]
{Q2+[b(k;q)] j fn +[6(k+q', q)] j'

This term has the absolute value of about 0.2 mRy* per electron.
The term (b3) in Fig. 3 is written as

a Q f a Q f a co VI ( q ) V, ( q
'
) V( q

'
)11( q ', n '

)E(1)(V)—
—~ 2mi —~ 2mi —~ 2vri 'e(q, n) [E(q', n')]3

(4.16)

X Gk (co)Gk+q (co+n')Gk+q (co+n)Gk+ ~q (co+n+n') . (4.17)

The symbol "Xe" in the diagram (b3) indicates that we should multiply e(q', n') in the final expression to avoid the
double counting of the screening factor. Thus [e(q', n')] instead of [e(q', n')] appears in (4.17). We find that this fac-
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tor can be replaced by [e(q', 0)] . The evaluated value of the term (4.17) is about the same as that of E,'„"(Ho).Howev-
er, the contribution of this term is mostly canceled by those of the diagrams (b4) and (b5) in Fig. 3, which are the ex-
change partners to the term (b3). Thus the term (b3) can be neglected together with those of (b4) and (b~). We can also
show that the self-energy term (c,), given by

I

[Gk (co)] Gk+ (co+0')Gk+ (co+f1),
[e(q', 0') ]

(4.18)

can be neglected. If we expand V, (q)/[e(q, A)] and
V(q')/[E(q', 0')] as in (4.8), the leading term of (4.18)
vanishes exactly. The next terms are almost canceled by
the exchange terms (c2) and (b6). By a similar argument,
we find that the contribution from all the other first-order
terms is very small. From the experience of evaluating
these terms, we find it safe to neglect the ring-exchange
diagrams in which VI connects two electron lines in one
polarization bubble. All those ring-exchange diagrams
will not be considered in higher-order terms from the
outset.

D. Determination of ihe effective potentials

In all the terms so far considered, V, (q) instead of
V, (q) appears. This function is not large for any q: For
large q, V, (q) is at most V(q) and is small. For small q,
V, (q) is also small because of the screening factor in
(4.13). Thus V, (q) is a good expansion parameter in the
whole region of q. If it is a small parameter, we can ob-
tain a reasonably good value for V, (q) even if we neglect
all the terms higher than second order in (4.1) in the solu-
tion of the Euler-Lagrange-type equation

C. Second-order terms

Since V, enters into the correlation factor in (3.2) in a
different way from VI, the Goldstone diagrams are more
convenient than the Feynman ones to express the second-
and higher-order terms. In Fig. 4 we give all the impor-
tant second-order topologically different diagrams. (Only
one term among topologically equivalent diagrams is
shown. ) The static approximation to the dielectric func-
tion t is found to be valid in the terms in Fig. 4. Then the
actual expansion parameter is V, (q) rather than V, (q).
For this interaction V, (q), all the direct terms are accom-
panied by its exchange partners. Thus the Pauli principle
is satisfied order by order for the short-range part of the
correlation. An explicit expression for each diagram is
given in Appendix A.

5Eo

5V, (q)
=0. (4.19)

We solve (4.19) numerically with all the terms mentioned
in Secs. IV A —IV C for each value of q, in (3.5). We then
calculate Eo to this order and search an optimum value
for q, . In Figs. 5(a) and 5(b) we plot the results of V, as a
function of q for r,*=1, 3, and 5, and g, = 1 and 4. As ex-
pected, V, (q) is reduced much from the bare potential
V(q) shown by the dotted curve. The optimum values
for q, are given in Fig. 5(c) as a function of r, for various

g, . The values of Vl(q)/e(q, o) are also shown by the
dashed curves in Figs. 5(a) and 5(b). We can see a cross-
over from VI(q) to V, (q) to treat the correlation effect
with the increase of q. Note that (4.19) reduces to the
Bethe-Salpeter equation in the ladder approximation for
large q. ' '

(a) H o Ter ms E. Higher-order terms

(b) Ring Family

(c) 5elf —Energy Family

(d) Ladder Family

FIG. 4. Goldstone diagrams for the terms in E"'.

As can be seen in Figs. 5(a) and 5(b), the obtained V, (q)
has its maximum at q around 0.5k+. This indicates that
the contribution of higher-order ring and self-energy fam-
ilies may not be neglected. The reasoning used to select
the important diagrams in the third- and fourth-order
terms was given in Sec. III of Ref. 3, and it will not be re-
peated here. After appropriate screening factors with
respect to e are included and some simplification is made
for some of the exchange terms, we obtain the expressions
for these terms, which are given in Appendix B. (The
static approximation for e is also found to be valid in
these terms. ) We evaluate these ring, the ring-exchange,
and self-energy diagrams up to eighth order with V, (q)
determined in Sec. IV l3.
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—0.120
—0.0896
—0.0738
—0.0636
—0.0563

CC
—0.122
—0.0904
—0.0738
—0.0634
—0.0560

g =1
—0.121(—0.1 17)

—0.0899(—0.0855)
—0.0738(—0.0695)
—0.0634( —0.0593)
—0.0561(—0.0520)

—0.211(—0.200)
—0.152(—0.142)
—0.122(—0.113)
—0.103(—0.0944)

—0.0891(—0.0816)

g =4
—0.332(—0.310)
—0.230(—0.211)
—0.180(—0.163)
—0.149(—0.134)
—0.128(—0.1 14)

g, =6
—0.421(—0.387)
—0.286( —0.257)
—0.221(—0.196)
—0.182(—0.160)
—0.155(—0.136)
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TABLE II ~ Parameters b„b2,and b3 in (5.1) for the approximate evaluation of E, for various g, .
Results of c, in this approximate formula are shown at r,*=10,20, and 50. The results of c,, for g, =1
in the GFMC method (Ref. 1) are also given in the column indicated by GFMC for comparison.

b)
b2

b3

&, (r,*=10)
E, (r,*=20)
,(,*=50)

GFMC

—0.03722
—0.02300
—0.01140

g =1

9.905
3.256
0.7309

—0.0372
—0.0233
—0.0116

gU =2

3.249
2.528
0.4315

—0.0573
—0.0350
—0.0172

g, =4

1.192
1.741
0.2381

—0.0811
—0.0489
—0.0238

g„=6
0.7879
1.478
0.1752

—0.0973
—0.0582
—0.0283

0.5620
1.292
0.1368

—0.112
—0.0662
—0.0319

The momentum distribution function n (k) is defined as

(e„ic„'.c„.ic, &

n(k)= = g n'"'(k),(c,ie, &

(5.3)

and the terms in (5.3) can be represented by the same dia-
grams as those for the expectation value of Ho (the sym-
bol "X") in Sec. IV. We will show in a following paper'
that our results for n (k) are as accurate as those for E, .
In Table III we show the results of the renormalization
factor at the Fermi surface zF obtained from the magni-

tude of the discontinuity of n(k) at k =kF. (Numbers in
parentheses are the values in the RPA, as shall be ex-
plained in Sec. VI.) With the increase of g„,zF becomes
larger. This indicates a sharper Fermi surface. However,
the number of electrons excited from deep inside of the
Fermi sphere to the outside of it is increased with g, as
shown in Fig. 9 in which n (k) is plotted for g, = 1, 2, and
4 at r,*=3. Since such excitations are related to the
short-range correlation eFect, this behavior of n (k) indi-
cates that the important range of the correlation eAect
becomes shorter with the increase of g, .

0
1.0

0
U)

-0.2—

0.5

-03—

—04—
0

-0.5
0 2 3 4 5 6

rs

0 1 2 3 4 5 6

"s
FIG. 7. Chemical potential shift due to the correlation effect

p, in Ry* units as a function of r,* for g, =1, 2, 4, and 6. The
dashed curves give the values of the sum of 0.0484 and p, in the
RPA.

FIG. 8. Calculated results of the compressibility ratio ~F/~
as a function of r,* for g, =1, 2, 4, and 6, where ~F is the value
in the noninteracting system. The values in the Hartree-Fock
approximation are given by the dashed line.
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gv =2
0.87(0.87)
0.77(0.78)
0.70(0.71)
0.63(0.66)
0.57(0.62)

g, =l
0.87(0.86)
0.77{0.76}
0.68(0.69)
0.60(0.64)
0.54(0.59)

0.88(0.88}
0.80(0.80)
0.74(0.74)
0.70(0.69)
0.66(0.65)

TABLE III. Renormalization factor at the Fermi surface zF
as a function of r,* for g, =1, 2, and 4. It is obtained from the
magnitude of the discontinuity of n (k) at k =kF. Numbers in
parentheses represent the results in the RPA as given by (6.5).

g =4

VI. COMPARISON WITH THE RESULTS IN THE RPA

In this section we make g, large, while r,* is fixed. Ac-
cording to (2.5), r, approaches zero in the large-g, limit.
Thus the high-density expansion of Gell-Mann and
Brueckner' is valid in this case and c., is given only by
the ring terms [Fig. 10(a)] and the second-order exchange
diagram. The sum of the ring terms gives the energy in
the RPA as

f . Iln[1+ V(q)II(q, Q)] —V(q)II(q, Q) j .
2

(6.1)

This is the sum of (4.2) and (4.3) with VI(q) replaced by V(q). The second-order exchange diagram is given by

nq (1 —nk+ )nk .(1 nk. —
~ )

E,"„'=—g g g 5 V(q)V(lk' —1~ —ql)
q k, o. k', o'

(6.2)

We can calculate the integral in (6.2) analytically' and obtain the value of 0.0484 Ry' per electron, which is indepen-
dent of both r,* and g, . By comparing (E„+E,'„')/N with e, in the EPX method, we find that for g„+4, they are very
close as shown in Fig. 11. The same is true for p„asshown in Fig. 7. Since E„/Nbecomes much larger than E,'„'/N
for large g„c., is almost given by the ring diagrams for g„4.This indicates that the critical value of g, mentioned in
Sec. I is 4 at least for r, (6.

Now let us make a deeper investigation of the unexpectedly small value 4 for the critical g, . In the usual
perturbation-theoretic approach, the most important terms in the expansion series for c., at large g, are the ring terms
in Fig. 10(a), i.e., the diagrams with the maximum number of polarization bubbles in each order of V(q). In Figs.
10(b)—10(d) we give all the leading correction diagrams in which the number of bubbles becomes smaller by one than
that for the ring diagrams in each order of V(q). These terms give a correction of the order (2g, ) . In the second-

(a) Ring Oiagrarns

g„=1
rs

(b) Exchange Diagrams

c 05—
(c) Self-Energy Diagrams

(d) Ladder Diagrams

I

0.5
I

1.0

k (uni ts of kF )

1.5

FIG. 9. Example of the calculated n (k). The cases of g, =1
(solid curve), 2 (dotted curve), and 4 (dashed curve) are con-
sidered at r,*=3.

--CO--

FIG. 10. Feynrnan diagrams for the ring terms given in (a) in
which the number of bubbles becomes maximum in each order
of V(q). The next maximum number of bubbles is realized in
the exchange terms (b), the self-energy terms (c), and the ladder
terms (d).
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(6.3)

This term can be evaluated in the same way as in (4.10). The third-order self-energy term E,'3' can also be evaluated
with a replacement similar to (6.3) in (4.11). The third-order ladder term E&' ' is given by

E(3)—1
d 0 d 0' dcu dao' V(q)

1+ V(q)II(q, Il

order diagrams, the exchange term in Fig. 10(b) is already considered in (6.2), while the self-energy term in Fig. 10(c)
vanishes exactly. Since the results in Fig. 11 show that there are no other large corrections to the RPA results, we have
a strong indication that the sum of all the terms higher than second order in Figs. 10(b)—10(d) is very close to zero.
This indication cannot be proven rigorously now, but we can give support to it by the calculation of third-order terms
in which one of the bare interactions is replaced by the screened one to avoid divergence. The third-order exchange di-
agram E,'„'is given by (4.7) with the following replacement:

V(q') V(q)
&(q, &) [e(q', Q') ]~ 1+ V(q)II(q, 0)

X V(q') V( Iq' ql )Gk (co)G~+q (co+A)Gk+q (co+0')Gk (co')

X [Gk. q
(co' —Q)Gk q

(co' —0')+6k+ .(co'+Q)Gk+ (co'+0')] . (6.4)

Since the 0-dependent interaction cannot be treated for this term at present, we use the static approximation for
II(q, 0). Then the integral in (6.4) can be performed in the same way as in (A5) —(A7). In Fig. 12(a) we show the results
of E,'„',E,' ', and EI ' as a function of r,* by the dashed curves for g, =1. The sum of them (the solid curve) is almost a
constant and close to zero. The same is true for other g, as shown in Fig. 12(b). Thus we may conclude that there is a
strong cancellation among the terms of the exchange, self-energy, and ladder terms. As a result of this cancellation, the
leading correction to the RPA terms in (6.1) is given only by (6.2). Note that such a cancellation does not seem to exit
in the next correction terms of the order (2g, ),because E, is difFerent from the sum of (6.1) and (6.2) for g, = 1 and 2.
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FIG. 11. Correlation energy c, in our calculation (solid
curves) compared with the sum of the RPA result (6.1) and
0.0484 Ry* (dashed curves) as a function of r, for g„=1,2, 4,
and 6.

FIG. 12. (a) Calculated r,* dependence of E,'„',E,' ', and EI' '

for the case of g, =1. They are given by the dashed curves, and
their sum is plotted by the solid curve. (b) The sum of E,'„',E,"',
and EI ' as a function of r,* for the cases of g, =1, 2, and 4,
which are, respectively, shown by the solid, dashed, and dotted
curves.



ELECTRON CORRELATIONS IN A MULTIVALLEY ELECTRON. . .

Since it is a constant, (6.2) does not contribute to ~ given by (5.2). Thus ~ is determined completely only by the ring
terms for g, &4. The same also seems to be true for z„.This can be shown by the comparison of our results for zF with
those in the RPA. When the important vertex corrections as given by the exchange and ladder diagrams are almost
canceled by the self-energy corrections, the momentum distribution function is given by the sum of the ring diagrams
without any self-energy corrections as in Fig. 13."' Then we obtain

ZF
1 —8XRpA( kF, co ) /Bco

where co is set equal to kF /2m *, and XRP&( ~k~, co) is given by

(6.5)

"+q' 1+ 11 n—oo 27Tl
(6.6)

In Table III the numbers in parentheses give the results
of (6.5). Although the values in the EPX method are al-
ways very close to those of (6.5) for small r,*, it is true
only for g, ~ 4 for large r,*.

2cq
II(q, iQ) =N

A+c (7.1)

when each valley has at most one electron at the bottom
for 2g, ~ X. Then we obtain Eo in the large-g, limit as

VII. FERMION-BOSON CONVERSION
AND VALLEY-POLARIZED STATES

In this section we--change g„while the total number of
electrons is fixed to X. Namely, we consider the total en-

ergy Eo as a function of g, for a fixed value of r, instead
of r,'. It is well known that at very low densities
(r, &) 1), Eo depends only on r„because the Coulomb in-

teraction dominates over statistics. Thus Eo is the same
whether it is for the charged-boson system, the paramag-
netic electron gas with the valley degeneracy g„orthe
totally polarized ferromagnetic electron gas. Here we
take a step forward and show that for any r„EOchanges
smoothly from the value for the ferromagnetic electron
gas at g„=—,

' to the value for the charged-boson system at

g, = ~ through the value for the paramagnetic electron
gas at g, = 1 as g, is increased.

I.et us consider the high-density case (r, (& I) first.
For fermions, Eo is given by the sum of EHF and (6.1). In
the large-g„ limit, however, EH„is zero. We also note
that the 0 integral in (6.1) can be easily done, because the
polarization function (4.5) has the form

where

FIG. 13. Feynman diagrams for the momentum distribution
function in the RPA without the self-energy corrections.

E =—' g [[E +2NE V(q)] ~ e N—P(q—))'
q (AO)

(7.2)

This is nothing but the ground-state energy for the
charged-boson system at high densities, which was de-
rived by the Bogoliubov method' with a condensation of
a macroscopic number of particles at zero momentum. .
Tllus Eo for fermions is proven to approach the value for
bosons at high densities with the increase of g, . Note
that the functional form of Eo in terms of r, changes with

g, . For finite g„,Eo behaves like 0.0622g, lnr„while (7.2)
leads to —0.8031/r, ~ .

For r, of the order of unity, we have numerical data of
Eo for various g, by combining the results for s, in (5.1)
with EHF. In Figs. 14(a)—14(c) we plot our results for Eo
at ~, = 1, 2, and 5 as a function of g,

' by the crosses, to-
gether with those in the GFMC by the open circles for
the charged-boson system at g, =. ~, the paramagnetic
electron gas at g, = 1, and the ferromagnetic electron gas
at g, =

—,'. (At r, = 1 we used the values for the bosons and
ferromagnetic phase given by the hypernetted-chain cal-
culation of Zabolitzky instead, because the GFMC data
are not available for them. ) The results in the Hartree-
Fock approximation and RPA are also shown by the
dashed and dotted curves, respectively. Clearly, all the
data of Eo with Fermi statistics converge to the result for
the charged-boson system at each r, as g, is increased.

An unexpected fact in Fig. 14 is that even for g, as
small as 10, Eo is already close to that for the bosons.
This may be explained as follows: In the interacting bo-
son system, the particles occupy the states with finite mo-
menta besides the condensation at zero momentum. If
the average extent of the momentum distribution be-
comes larger than kF, there is only a small difference in
the correlation energy between the bosons and fermions.
In terms of energies, the same condition can be stated
that the interaction energy 1 jr, becomes larger than the
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Fermi energy of each valley, 3.7g, r, . This condition
is rewritten as g, larger than 7r, , which is of order 10
for r, of order unity.

For r, less than about 7.S, Eo decreases monotonically

with the increase of g„asshown in Fig. 14. Thus, at
those densities, the most stable state is the one with the
highest total degeneracy allowed for given g, and N.
This means that the paramagnetic valley-unpolarized
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FIG. 14. Total energy per particle in Ry units as a function of g, ' at r, =1, 2, and 5 in {a), (b), an (c), respectively. The results
are given by the crosses, and the solid curves are drawn as a guide to the eye. Those in the GFMC method (Ref. 1) for the charged-
boson system at g, = Oc, the paramagnetic electron gas at g, = 1, and the ferromagnetic electron gas at g, = —' are also shown by the
open circles. [At r, = 1, the results in the GFMC method are not available for bosons and ferromagnetic phase. Thus those in the
hypernetted-chain (HNC) method of Zabolitzky (Ref. 20) are used instead. They are given by the solid circles. ] For comparison, the
results in the Hartree-Fock approximation and RPA are shown by the dashed and dotted curves, respectively.
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FIG. 15. Total energy per particle in Ry* units as a function
of g„'at r, =10, 20, and 50. The meanings of the symbols are
the same as in Fig. 14.

state assumed in (3.1) has the lowest energy at the usual
metallic densities. At lower densities, however, the situa-
tion is not so simple. In Fig. 15 we show the results for
Ep/N as a function of g, ' at r, =10, 20, and 50. The
curve of Ep has a local minimum at g, in the range from
1 to 2 and a maximum at g, from 6 to 10. This indicates
that if the given g, is around the value to give the max-
imum of Ep, the ground state will not be valley unpolar-
ized, but will be a valley-polarized state in which elec-
trons go into only some of the valleys among several
equivalent ones to reach the minimum of Ep at a lower
value of g, . In particular, for r, larger than about 12, the
local minimum of Ep goes at g, equal to about 1. Thus,
for those densities with a given g, less than about 10, ei-
ther a paramagnetic single-valley or a ferromagnetic
double-valley state will appear. These two states are de-
generate because of the symmetry between spin and val-
ley variables in our model Hamiltonian (2.1).

We admit that our results for Ep in Fig. 15 at low den-
sities are not so accurate as those in Fig. 14 at metallic
densities. Thus the value 12 for the critical r, may not be
so reliable. However, we believe that the qualitative be-
havior of Ep as a function of g, is correct from the fol-
lowing considerations: According to the results in the
GFMC method, we know that Eo(g, =

—,') (Eo(g, =1)
)Eo(g, = oo ) for r, ~ 75. Thus Eo certainly has a max-

imum at some value of g, at low enough densities. The
existence of such a maximum leads to some kind of polar-
ized states. Then the problem is whether the maximum
in Ep appears for r, much lower than 75. To answer that
question, we note that the exchange effect is the driving

force to make Eo(g„=—,') lower than Eo(g, =l). The
same effect is also the driving force for the valley-
polarized state. The correlation effect, on the other hand,
works to destroy such polarized states, but its resisting
force is not so strong in the partially polarized state such
as the paramagnetic valley-polarized and the ferromag-
netic double-valley ones compared to the ferromagnetic
single-valley state, because the correlation energy is still
large in the former case, while it is very small in the
latter. Thus the partially polarized state will be realized
at r, much lower than 75.

VIII. SUMMARY AND DISCUSSION

In a technical aspect this paper provides a detailed ac-
count of the improved version of the EPX method. Both
the short- and long-range parts of the correlation are de-
scribed accurately in terms of the two effective potentials
V& and V, . The approximations employed in the old ver-
sion of Ref. 4 without any proofs are examined their va-
lidity. Many exchange terms neglected in Ref. 4 are con-
sidered explicitly, and all the important terms up to
eighth order in V, are considered. Now the EPX method
is shaped into a form that provides reliable results for the
quasiparticle properties at the Fermi surface at metallic
densities. We will develop a microscopic description of
Landau s Fermi-liquid theory in this formalism in a fu-
ture publication.

In a physical aspect we have investigated the correla-
tion problem in the multivalley electron gas seriously.
The valley degeneracy is shown to be a good parameter
for converting the results of the ground-state energy for
the fermions to those for bosons. Based on this conver-
sion, the possibility of paramagnetic valley-polarized and
ferromagnetic valley-unpolarized states is discussed.
Those partially polarized states are found to occur much
more easily than the totally polarized ferromagnetic
state, though at usual metallic densities the paramagnetic
valley-unpolarized state is found to be the ground state.
In the paramagnetic valley-unpolarized state with g, ~4
and r,* & 6, the RPA is found to describe the correlation
effect well. Because of a strong cancellation among the
leading correction diagrams to the RPA, such a small
critical value for g, is obtained.

The valley-unpolarized state was assumed in all the dis-
cussions of superconductivity in the multivalley electron
gas. In Refs. 6 and 8, the basic ingredient is either the
intervalley scatterings or the intervalley pairing. Thus
the question about the valley polarization is quite impor-
tant. We need to discuss it with the electron-phonon in-
teraction in addition to the Coulomb interaction. In the
case of Ref. 8, we also need to consider the effect of the
strong magnetic field. As for Ref. 7, on the other hand,
the system is just the same as described in (2.1), and su-
perconductivity was predicted to occur only with the
Coulomb interaction if r, was larger than, for example,
2.2 for g, =6. This value of r, is in the paramagnetic
valley-unpolarized region, and the approximation em-
ployed in Ref. 7 was essentially the same as the RPA.
Thus we may think that at least qualitatively the predic-
tion that superconductivity will occur in the multivalley
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electron gas is correct. As for the transition temperature
T„however, we cannot expect much, because the valley-
unpolarized state will be replaced by the valley-polarized
state long before the maximum of T, around 1 K is
achieved at very large r, . Then the problem is reduced to
that of superconductivity in the single-valley electron
gas. Thus the multivalley electron gas might not be so
interesting from the viewpoint of the plasmon mechanism
of superconductivity. From the viewpoint of the
fermion-boson conversion, however, it still seems to pro-
vide an interesting problem. In the charged-boson sys-
tem, we know definitely that superconductivity occurs
with the Coulomb interaction because of the Bose con-

densation. Thus there must be some relation of this su-
perconductivity to that in the electron gas. This will be
discussed in the future, but in relation to this problem we
point out the usefulness and feasibility of the Monte Car-
lo calculations for the low-density many-valley electron
gas compared to the single-valley gas.
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APPENDIX A: EXPLICIT EXPRESSIONS
FOR SECOND-ORDER TERMS

An explicit expression for each diagram in Fig. 4 is given as follows. The terms in Fig. 4(a) are given by

(2) 1 nq (1 nk—+q )nk (1—nk q
~ )E"'(Ho) = g g g [ v, (q)«q, o)—& v, ( lk' —k —

ql )]v, (q)
b,(k;q)+h(k', —q)

(A 1)

The ring family [Fig. 4(b)] is obtained as

E„''(v)=g g g g v, (q)[v(q)v, (q)e(q, o) —5 ~ v(lk' —k" I)v, (q)e(q, o)
q k, o k', o' k",o"

—25 V(q)e(q, O) V, ( lk' —k —
ql )+2& & V( lk' —k"

I ) V, ( lk' —k —ql ) ]

nk (1 nk+ —)nz. (1—n„.q )nz. .(1—nz q
-)

[b (k; q)+ b (k'; —q) ][A(k;q)+ b (k";—q) ]

The self-energy family [Fig. 4 (c)] is given by

E."'«)=g y g g &..-V(lk' —k" l)v, (q)[v, (q)«q, »—&..V, (lk' —k —ql)]
q k, o. k', o' k", o."

nq (1—nk+q )nk. (1—nk q
~ )(nk- . —nq. q

~ )

[h(k; q) + b (k'; —q) ]

Finally, the ladder family [Fig. 4(d)] is composed of three terms:

E' '( V)=E' '(V)+E' '(V)+E' '( V)

(A2)

(A3)

(A4)

where

E,',"(v)=-,'g & & v, (q)v, (q')[v(lq' —ql) —~..V(lk' —k —
q

—q'I)]
q, q' k, o. k', o.'

nk (1—
nk+q )(1—nq+q, )nk (1—nq q

~ )(1—nk q )

[b(k;q)+b(k', —q)][6(k;q')+b, (k', —q')]
Eh~/(v)= ' g g g v, (q)v, (q')[v(lq' —ql) —s...v(lk' —k —q —q'I)]

q, q' k, o k', o.'

(1 nk~ )nq+q—nk+ q, (1—nq. ~ )nk q nk. q.

[b (k; q)+ b (k'; —q) ][6 (k; q')+ &(k'; —q') ]

and

E,'I", (v)= —g g & v, (q)v, (q')[v(lq' —ql) —&

q, q' k, o k', o'

(1 nk )nq+q nq+—q nk (1—nq. q
~ )(1—nk q. )

[h(k;q)+b(k', —q)][A(k;q')+b(k', —q')]

(A5)

(A6)

(A7)
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APPENDIX 8: EXPLICIT EXPRESSIONS
FOR HIGHER-ORDER TERMS

The higher-order ring family considered in this paper is the sum of E„'" "(V), E„'2"'(V), and E„'")(Hz ) with n from 2
to 4. These terms are, respectively, given as

E(2n —Il( V) — y y . . . y [ V ( )]2n
—

2[&( O)]2n
—4

q k), a2

X I V(q) V (q)[e(q, O)] —5 V(~k) —k2„+q~) V (q)[e(q, O)] —(2n —1)|i V(q) V, ( ~k) —k2+q~ )

+6 5 [2n —3+2@(q,0) ] V( lk, —k2„+ql ) V, ( lk) —k2+ ql ) ]

E(2n)( V)

[b(k, ;q)+b(k2, —q)][6(k2, —q)+b(k, ;q)] . . [b(k2„„q)+&(k2„',—q)]

[V, (q)] " '[e(q, O)] "

(B1)

q k&, o& 2n+1' 2n+1

and

X [ V(q) V, (q)[e(q, O)]' —& . V(Ik) —k2. +) I)V, (q)[e(q, O)]' —2n~. .V(q)V, (Ik) —k2+ql)

+5 5 [2n —2+2@(q,O)] V( ~k)
—k2„+,~ ) V, ( ~k)

—
k2+ql ) j

n (1 n-
))n(1 n — ) n (1 n—

k)o) k)+q, o.
&

k2o 2 k&
—q, o2 kpn+ ]apn+] k2n+] q~ 2n + )

X
[b(k, ;q)+b(k2, —q)][6(k2; —q)+&(k3,'q)] . [&(k2„,—q)+&(k2„+),q)]

E„'"'(Ho)= —,'g g g [V,(q)] " [e(q, O)] "

q k1, a)

X [ [ V, (q )] [e'(q, O)] —5 [2n —2+2m(q, O)]e(q, O)V, (q) V, ( ~k, —k2+q~)

+5 5 [2n —3+2@(q,O)]V(lk) —k2„+ql ) V, ( lk, —
k2+ql )]

(B2)

[&(k);q)+6(k2., —q)][6(k2, —q)+h(k, ;q)] [A(k2„,;q)+b(k2„,—q)]

Similarly, the higher-order self-energy term is given by

E(2n)( V) y y . . . y [ V (q)]2n
—

2[&(~ O)]2n
—4(E(F) E(F) )

k&, ~] k2n ~~2n

X [ [ V, (q)] [e(q, O)] —5 [2n —2+2@(q,O)]e(q, O) V, (q) V, ( ~k, —k2+q~ )

+~..&.. [2n —3+2~(q, O)]V(lk) —k2. +ql) V, (lk) —k2+ql)]

(B3)

where

[h(k), q)+b(k2', —q)] . [b(k2„)',q)+5(k2„',—q)][6,(k2„;—q)+&(k)', q)]
(B4)

E(F)=g v(lk —k' )n„ (B5)
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