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A quantum Monte Carlo simulation scheme for spin systems is presented. The method is a gen-
eralization of Handscomb s method but applicable to any length of the spin, i.e., when the spin
traces cannot be evaluated analytically. The Monte Carlo sampling is extended to the space of spin
vectors in addition to the usual operator-index sequences. An important technical point is that the
index sequences are augmented with the aid of unit operators to a constant, self-consistently deter-
mined length. The scheme is applied to the one-dimensional antiferromagnetic spin-S Heisenberg
model. Results at low temperatures are reported for S=1 and S =

2
and system sizes up to N=64.

The computed magnetic structure factor in the S= 1 chain is in agreement with earlier ground-state
calculations. For S =

—,
' we find the exponent y =0.49+0.04 for the divergence of the antiferromag-

netic structure factor. Further, the susceptibility as a function of the wave number is computed.
For S= 1 the staggered susceptibility y(~) at T=O is found to take the value 20.0+1.5 in units such
that y(q) ~T ' at high temperatures (with the temperature scale defined by kz =1). For S = —we

obtain the exponent y =1.45+0.05 for the divergence of the staggered susceptibility.

I. INTRODUCTION

Quantum Monte Carlo simulation is an important tool
in nonperturbative investigations of spin systems at finite
temperatures. The problem is calculating the quantum-
mechanical thermal expectation value of an observable

where P is the inverse temperature and Z the partition
function,

(1.2)

As the Hamiltonian generally consists of noncommuting
terms,

M
H = g H, , [H, ,H j&0 for some i,j,

direct evaluation of e ~ is impossible, except for small
systems for which the Hamiltonian can be diagonalized
numerically.

Several Monte Carlo algorithms for (1.1) have been
proposed. Early simulations of the ferromagnetic spin- —,

'

Heisenberg model were performed by Handscomb' in the
1960's, with a method based on the Taylor expansion of
e ~ . Writing the Hamiltonian in terms of spin permu-
tation operators, the Monte Carlo simulation is carried
out in a space of index sequences corresponding to strings
of permutation operators, the traces of which are easily
calculated. Over the past decade most progress in the
field has been made along the lines of the Suzuki-Trotter
approach. There the generalized Trotter formula is
used to map the quantum system onto a classical system
with an additional "imaginary time" dimension. The
spin- —,

' Heisenberg model on various lattices has been ex-

tensively studied with this method. ' A number of
computations on higher spins have also been carried

t 11—15

Lately several improvements of Handscomb's scheme
have been reported. Simulations have been performed on
the spin- —,

' antiferromagnetic Heisenberg model on
different lattices, ' ' the XY model, and the spin-S ex-
change model. ' The basic limitation of the method, i.e.,
that the traces of the products of terms of the Hamiltoni-
an must be known, has not been removed, however. A
scheme, which overcomes this problem, is presented in
this paper. Writing out the traces as sums over diagonal
matrix elements in a suitably chosen representation, the
Monte Carlo simulation is carried out in a combined
space of spin states and index sequences. The method is
applicable to any spin and any spatial dimensionality. A
fast algorithm for performing a random walk in the
configuration space is presented for the spin-S Heisen-
berg model.

The plan of the paper is as follows. In Sec. II we

briefly review Handscomb's scheme and give a general
outline of our new method without making assumptions
relating to specific models. In Sec. III the scheme is ap-
plied to the one-dimensional antiferromagnetic spin-S
Heisenberg model. The simulation algorithm is described
and tests on small systems are compared with exact data.
In Sec. IV results on the magnetic properties of the spin-1
and spin- —,

' models are reported for lattice sizes up to
%=64. The last section is devoted to discussion.

II. OUTLINE OF THE METHOD

In the first part of this section we review Handscomb's
simulation scheme. In the second part we formulate a
new method also based on the Taylor expansion of e
but relying on Monte Carlo sampling of both operator
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Tr QH(
n=0 IC j

(2.1)

where C„denotes a sequence of indices (l&, l2, . . . , l„)
with 1 ~ l ~ M, where M is the number of the operators
H; as a sum of which the Hamiltonian is written. For an
operator 3, satisfying

strings and spin states. Unlike in the work on
Handscomb's method, the Taylor series is cut at an ade-
quate length, and the space of operator strings is extend-
ed to allow for unit operators. In this way operator aver-
ages are written as sums over diagonal matrix elements of
operator strings of a fixed length, which considerably
simplifies the construction of a fast simulation algorithm.
We show that there are "cycles" of terms of equal contri-
bution to the partition function. A configuration space is
defined in which a configuration corresponds to such a
cycle of matrix elements. Expressions for observables are
derived and an algorithm of generating configurations is
described without referring to any specific model.

The suggestion of Handscomb' is to expand e ~ in a
Taylor series and write all powers of H as sums of prod-
ucts of the operators H, in (1.3). The partition function is
then

where sgn is the sign function. A small value of the
"mean of the signs, " (sgn[ W(C„)]), leads to large sta-
tistical Iluctuations in the Monte Carlo average (2.7).
This "sign problem" also occurs in the context of the
Suzuki-Trotter scheme. ' Fortunately many models of
interest can be written in a form where all weight factors
are positive.

A severe limitation of Handscomb's method is that the
traces of the operator strings are not easy to evaluate in
general. For the spin- —,

' Heisenberg model, the Hamil-
tonian can be written in terms of operators such that the
trace of any string can easily be calculated analytically.
For higher spins this is not possible, however, and the
original formulation of Handscomb's method cannot be
used. Below we outline a simulation scheme, closely re-
lated to Handscomb's, which avoids this impasse. By
writing the traces in (2.4) and (2.5) as sums over diagonal
matrix elements, we construct a simulation scheme in
principle applicable to any spin system.

Consider a Hamiltonian written in the form (1.3) with
the operators H; satisfying the following requirement. In
a suitably chosen representation with the basis vectors

=
[ ~a) ], H; operating on a basis vector gives either

zero or a vector proportional to a basis vector, i.e.,

H, ia &
~ i'm' &, ia &, ia' & eX (2.8)

Tr 3 +HI =0
j=1

if Tr QH, =0,
j =1

the thermal expectation value can be written as

(2.2)
For definiteness we now choose the eigenstates of the z
components S ',j= 1, . . . , N, of the spin-S operators on a
lattice of N sites,

( & ) = g g ~(c„)w(c„),
n =0

I C„j
(2.3) i~&= s„s„.. . , s &, (2.9)

where S is an eigenvalue of S '. In order to satisfy (2.8),
the operators H; can be chosen as products of S "s and
ladder operators S - and S,j = 1, . . . , N.

Following Handscomb we expand e ~ in a Taylor
series. The series is cut at the Lth term with L chosen
large enough to reduce the truncation error below the
statistical error of the Monte Carlo simulation. Further
along in this section, an algorithm of finding an optimum
value of L will be described. The traces over the spin
configurations are written out as sums over diagonal ma-
trix elements. The thermal average of an operator 3 is

where

W(C„)=— Tr g Ht
1 ( — )'
Z nt

(2.4)

and

A(C„)=
Tr . +H& if W(C„)&0,

j=1 J

0, if W(C„)=0 .

(2.5)

If all the traces in (2.4) and (2.5) can be handily evaluated,
the average can be estimated using importance sampling
in the space of index sequences of all lengths. If the
"weight factors" W'(C„) are positive for all C„, the
thermal expectation value is the arithmetic mean of the
function A(C„) in a random walk with the probability
distribution W'( C„):

( a ) =( w(c„)) (2.6)

Several algorithms for generating sequences have been
proposed. " ' If there are both positive and negative
weight factors,

~
W(C„)

~

can be taken for the distribution,
and the expectation value is

( sgn [ W'( C„)] A ( C„))
~
~

(2.7)
& sgn[ W( C„)]& ~~

(~)= g g g, ( ~~gH, ~ ),
u n=O IC„j j= 1

(2.10)

where Cn, as before, denotes a sequence of indices
(l&, lz, . . . , l„) of length n with each l varying according
to 1 l ~M, M being the number of terms in the Hamil-
tonian. Our intention is to estimate the average using im-
portance sampling in a combined space of spin vectors
and index sequences. In order to simplify the construc-
tion of a fast Monte Carlo simulation algorithm, we in-
sert L —n unit operators in every operator string of
length n & L and define HO=I. The Taylor expansion up
to order L will then be taken care of by a summation over
all index sequences CL of length L with zero added into
the range of the indices l in Cl, i.e., 0+l ~M. There
are („) such extended index sequences corresponding to
each original index sequence of length n arising from all
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the choices of the positions of the unit operators in the
string. A factor („) ' must therefore be included in each
term of the Taylor series. We get

(~)= (
—p) [L —n(CL ) ]!

a I CL I

X( ~WgII, ~

j=1
(2.11)

where n(CI ) is the number of nonzero indices in the se-
quence Cl . Provided that a function A (a, CL ) can be
found such that (2.11) is equal to

( A ) =g g A ( a, CL ) W( a, CI ),
a CL

with the weight factor

(
—p) [L n(CL ) ]!—

W(a, C,)=, (a~gH, ~a&,z L!
(2.13)

FIG. 1. Symbolical representation of a cycle of spin states
with the evolution determined by the operators corresponding
to the index sequence (I l, . . . , Il ).

the average can be calculated using importance sampling
over spin vectors ~a ) EX and index sequences Cl of
length L. We will now show that terms contributing to
(2.12) come in sets of terms of equal weight factor and
that each such set can be generated out of the spin vector
and the index sequence of any single term of the set. We
define binary counterparts H,' to the operators H, ac-
cording to

1, if (a' H, ~a)WO

(2.14)

i.e., on acting on a basis vector, H,' either delivers zero or
a basis vector. Consider (a, CI ) for which W(a, Cr )WO.
One can easily see that the following equality holds:

(l~+ „.. . , lI, l„.. . , l~) obtained by cyclically permuting
the sequence CI =(l, , l2, . . . , II ) p times. The propagat-
ed states satisfy the boundary condition
~a(L) ) = ~a(0) ) = ~a). Although all the combinations
[a(p), CI (p)], P =0, . . . , L —1, give terms of equal
weight factor in (2.12), the functions A [a(p), CL (p) ] need
not be the same for every p. The Monte Carlo simulation
is formulated so as to sample the cycle average,
(1/L )+~ =) & [a(p), CI (p)].

We define a configuration space [C ] in which each
configuration C is specified by a cycle of spin states
a(0) ), . . . , ~a(L —1) ) with the boundary condition
a(L) ) = ~a(0) ), and an index sequence Cl
=(l, , lz, . . . , ll ) such that H

& ~a(p —1))= ~a(p)), as
P

depicted in Fig. 1. Assuming that all weight factors are
positive, we define

(a Hi Hi III a)=(a Ht Hi Ht HI Hi ~!a),

(2.15)
p [L n(CI )]!—

f(C)=ln (2.19)

where H/ is the adjoint of H,'. We write (2.15) as
1

and

g (C )=ln(~(a(p)~H( ~a(p —1))~), p =1, . . . , L .

W(a, Cl ) = W[a(p), CI (p)],
where ~a(p) ) is the pth propagated state

(2.17)

(2.16)

where ~a(1) ) is a propagated state H i ~a), which is one
l

of the basis vectors. Thus W(a, CI )= W[a(1), CI (1)],
where Cl (1) denotes the index sequence obtained by
cyclically permuting the sequence CL once. In general
we have

(2.20)

The weight factor of a configuration is then

1 L
W(C)= exp f(C)+ gg (C)z p=1

(2.21)

(~ ) =(~(C)) (2.22)

and the thermal expectation value (2.12) is obtained as
the average of a function A (C ) over configurations with
the probability distribution W( C ):

CL (p) denotes

I
(p)&=~H'I &,

j= i

the index

(2.18)

sequence

We now consider the function A(C') corresponding to
some observables of interest. If 2 is diagonal we clearly
have



43 QUANTUM MONTE CARLO SIMULATION METHOD FOR SPIN SYSTEMS 5953

L —1

A(C)= —g (~ (p) & l~r (p)) .I. (2.23)
L (L +1)

L —1

g S;(p)
p=0

L —1

g S, (p)
p=0

Defining

SJ(p) =(~tk(p)ls; ~k(p) &, (2.24)

L —1

+ g S, (p)SJ(p)
p=o 8'

(2.32)

a spin correlation function is

L —1

C(i, j)= (S;S;) = —g S;(p)s, (p)L p=O 8'
(2.25)

Consider the response function G (i,j ) of spin i to a field
in the z direction which couples only to spin j. The

susceptibility at wave vector q can be evaluated accord-
ing to

The energy and the heat capacity can be found from the
well-known formulas

(E)= — lnZ, (C ) =P lnZ .
ap'

(2.33)

The results are formally equivalent to tho"e obtained in
the context of Handscomb's method,

—iq (r,. —r. )

g(q) =—ge ' ' G(i,j),N, (C)=(n(C ) ) —(n(C )&
—(n(C ))

(2.34)

where r, is the position of the ith lattice point. The
single-spin response function at zero field is

B.=O
J

The Monte Carlo simulation requires a fast algorithm of
generating configurations according to the probability
distribution W(C ). Starting with an arbitrary
configuration, small changes are made in the spin states
and/or in the index sequence. The changes must be
chosen such that any configuration can be reached by a
series of them. The probability of a change is determined
so as to satisfy the detailed balance principle,(,)

1 BZ
Z BJV yt' =o

(2.27) W(C )P(C ~C') = W(C')P(C' —C ), (2.35)

which yields

G(i, j)=—g g g (mls;H™s;H" -l~)
Z o o(n+1)!

where P(C~C ) is the probability of a transition from
configuration C to C'. Let b, denote a change that takes
the configuration C into C' and —6 its reverse:

—(s;&(s;) . (2.28) (2.36)

Cutting the sum over n at n =L and assuming (S;)=0,
this can be written as a sum over index sequences CL:

The transition probability P(C ~C') can be viewed as a
product of two probabilities:

P(C ~C') =P, (C, b)P, (C, C'), (2.37)P( —P) t L n( C~ )]!—
Z (L +1)!

IC~ I p =0

L
xS;(0)S (p)(al gH, la&,

k=0 p, (c,b. ) =p, (c', —6), (2.38)

P, (C, b, ) being the probability of picking the change 6
and P, ( C, C ') the probability of accepting the new
configuration C'. If P, ( C, 6) satisfies

L
G(i, j)= g g S, (0)SJ(p) W(C )

oL +1 (2.30)

or, with the average of S (m)S (m +p) over all positions
m of the state cycle in the place of S;(0)SJ(p),

L L —1

G(ij)=g g g S(m)S (m+p)W(C) .
!c! =o =o L(L+1

(2.31)

With the boundary condition S (L)=S (0), the Monte
Carlo average emerges as

(2.29)

where S;(p) is the matrix element defined in (2.24). Writ-
ing (2.29) as a sum over the configuration space I C I gives

the probability of accepting the transition is given by the
Metropolis algorithm,

W(P')yW(8), if W(C') & W(C )

!I, if W(C') ~ W(&) .

(2.39)

Contrary to most classical Monte Carlo simulations, the
balance requirement (2.38) is not trivially satisfied here
for all types of changes. P, (C, b, ) must therefore be ex-
plicitly constructed in general. In the next section an al-
gorithm for the Heisenberg model will be presented
where most of the changes required indeed satisfy (2.38)
trivially. Only one type of change needs an additional ac-
ceptance criterion which turns out relatively simple how-
ever.
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S,.'(p) =-S.(p)+6, , p =0, . . . , L —1 . (2.40)

If all 6. which leave all S'(p) within the range

During the simulation all the spins S (p), with

j = 1, . . . , X and p =0, . . . , L —1, defining a cycle of
states la(0)), . . . , la(L —1) ), are stored along with the
index sequence C~. The random walk can be started
from an arbitrary configuration. The types of changes
that guarantee ergodicity are model dependent. Below
we introduce the concepts of global and local changes,
which will be exemplified in the next section.

A change will be called global if all the spin states of
the configuration 8 are affected, the index sequence
remaining the same. A lattice site j is randomly selected,
and the spins S (p),p =0, . . . , L —1, are fiipped accord-
ing to

—S, —S+ 1, . . ~, S are chosen with the same probability,
(2.38) is trivially satisfied, and the probability of accept-
ing the transition to the new configuration C is given by
(2.39) with

w(e )

~ &
=exp &[g,«') —g, (~)]

p=1
(2.41)

with the functions g defined in (2.20).
A change in the index sequence is a local change. A

set of indices within a limited range [p, ,p3] (or [p, , L]
and [l,p2] for p, )p3) of the sequence are replaced with
a new set of indices in such a way that only the spin
states within the corresponding range are affected. Given
that a probability P, (C, A) of selecting the change b, is
defined so as to satisfy (2.38), the probability of accepting
a local change is given by (2.39) with

8'( C')
8'(C )

exp f(&') f(&)+ —g [g, (C') —g, (C )]
P =PI

exp f(C') —f(C)+ g [g, (C') g, (P)]+—g [g, (P') —g, (P)]
p =1

(2.42)

If the Hamiltonian conserves the magnetization, all the
states in the cycle have the same total spin-z component
which therefore can only be altered globally. This opens
the possibility of investigating subspaces of different z
components of the total spin by allowing only such global
changes as preserve the total magnetization.

We now turn to the question of determining L. It is
clearly desirable to choose L as small as possible without
compromising the accuracy of the calculation. This can
be done by starting the simulation with a small L and
continually monitoring the number of indices zero in the
sequence. If this number becomes smaller than some low
number, L is increased by adding zeros to the index se-
quence and correspondingly states to the state cycle.
This process is continued until equilibrium is reached.
The actual simulation is then carried out with the value
of L thus obtained. If, at the end of the simulation, the
number of nonzero indices has not reached L, one can
conclude that the finite L has not degraded the outcome.

where S, is the spin-S operator on site i of a lattice of N
sites, and SN+1=S, for periodic boundary conditions. In
the antiferromagnetic case J)0. We define the operators

A A
H, b

—JS bS b+1+c
J ~+~~2b= —S b S
2

J~~3b= —Sb S
2

(3.2)

where c is a constant chosen as described later and in-
cluded in order to make all the weight factors positive.
In terms of these operators the Hamiltonian reads

N 3
H= g QH, b

—Xc . (3.3)
b=l t=1

The constant Xc in the Hamiltonian only sets the zero
level of the energy and will be dropped hereafter. In the
representation chosen in the previous section, the opera-
tors H, b satisfy the condition (2.8) with

III. APPLICATION TO THE SPIN-S
ONE-DIMENSIONAL ANTIFERROMAGNETIC

HEISENBERG MODEL
r Sb ) Sb + i

=hi(Sb Sb+i)I. . . , Sb, Sb+i, . . . &,
In this section the simulation scheme is applied to the

spin-S one-dimensional antiferromagnetic Heisenberg
model. The algorithm is described and results of test
runs on small systems are compared with exact data.

The Heisenberg Hamiltonian is

2bl . ~ b~ b+1~

—h3(Sb, Sb+, )l. . . , Sb+1,Sb+, —1, . . . ),
3b l' ' Sb&Sb+1& ' ' ' ~

(3.4)

N
H= JgS, .S, +i,

i=1
(3.1)

where

A3(Sb, Sb+i)l . . Sb —1,Sb+, + 1, . . . )
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h, (S„Sb) =JS,Sb +c,
h~(S„Sb)=—Q[S(S+I)—S,(S, +1)][S(S+1)—Sb(Sb —1)],J

(3.5)

h3(S„Sb)=hi(Sb, S, ) .

For S=—,', also the sums H2b+H3b satisfy (2.8), which
means that only two types of operators are needed in the
sum (3.3). We will describe the algorithm for the general
spin, however, as the simplifications for S=—,

' are obvi-
ous. Binary counterparts H&& to the operators H, b are
defined according to (2.14). H OO=Hoo is the unit opera-
tor. CL now denotes a sequence of index pairs
(b' ), („' ), . . . , (b' ), where t; =1,2, 3 and b, =1,2, . . . , X
or t, =b, =0. The number of index pairs not equal to (o)
is denoted by n (Cl ). A configuration in the space [ C I is
defined as a sequence of index pairs referring to an opera-
tor string together with a cycle of spin states
~a(0)), . . . , a(L —1)) satisfying H', b ~a(p —I))

P= ~a(p) ) and the boundary condition ~a(L) ) = ~a(0) ).
The weight factor of a configuration is

(
—p) [L n(C—L ) ]!

W(C )=

(3.6)

The operator string must contain the same number of
raising and lowering operators for every spin. Think of
the index pair (b ) as creating a directed link from site b
to site b + 1 (or from X to 1 if b =N and the pair (b ) as
creating one from site b +1 to b (or from 1 to N). The
links created by the whole sequence must then form
closed loops on the lattice in order for each site to have
as many inward as outward directed links. On a chain
with open boundaries, all such closed loops can be built
out of 2-link loops of the type shown in Fig. 2(a). For
periodic boundary conditions, additional "ring-loops" as
depicted in Fig. 2(b) are required. For a chain with open
boundaries and for a ring with an even number of sites,
all closed loops contain an even number of links, which
means that the total number of operators H2b and H3b is
even. If the constant c in (3.2) is chosen to satisfy
JS +e (0, all weight factors will be positive. This ap-
plies to any lattice where all closed loops connecting in-
teracting neighbors contain an even number of bonds.
With e chosen as above there are no restrictions on the
type (z ) index pairs.

Assuming that the constant e is chosen so as to make
all the weight factors positive, the functions g defined in
(2.20) are

0, ift =0,
g (C )= log[ —h, (Sb (p —1),S„+,(p —1))], if t =1,

P

log[h, (Sb (p —l),S„+.,(p —1))], if t =2, 3 .
it'

(3.7)

A random walk in the configuration space [ C ] consists of
global and local changes as described in the previous sec-
tion. Global changes are made according to (2.40). In
the evaluation of the ratio of the new and old weight fac-
tors (2.41), only the matrix elements of operators acting
on the flipped spin j have to be taken into account.
Defining as [p ] the subset of positions whose index pairs

(b ) contain a bond b with the fiipped spin j, the ratio is
Pj J

W(C') =exp g [g (C') —g (C)] (3.8)

W( C')
pex[f(&') f(&)+g~(C') g—~(C )] . —(3.9)

The requirement (2.38) is trivially satisfied.
(2) Two-pair changes are needed in order to insert and

delete index pairs of type (b) and (b). Two positions p,
and p2 with p, (p2 are randomly chosen and their index
pairs are replaced with two new pairs such that the new

FICx. 2. "Elementary loops" of which all closed loops on a
one-dimensional lattice can be built: (a) for open boundaries, (b)
one of the additional ring loops required with periodic bound-
ary conditions.

If both the values +S appear among the spins S,.(p),
p =0, . . . , L —1, the spins of the jth row cannot be
Aipped globally. In order to rapidly find the spins that
can be Aipped, the distributions of the spins in the
different states —S, —S+ 1, . . . , S are continually
recorded for every j.

The following types of local changes are made.
(1) A single index pair can be replaced by another if

both the original and the new pair belong to the subset
[ (0), ( i ), . . . , (& ) J . A position p is randomly chosen in
the current sequence. If the corresponding index pair
does not belong to the subset above, the change trial is
canceled. Otherwise a new index pair is chosen from the
subset and the weight factor ratio is calculated as
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index sequence gives only closed loops of links on the lat-
tice as described above. The possible new pairs belong to

a subset of two-pair combinations where each combina-
tion can be exchanged for another. These subsets are

(')( ),
(0)(b ),
(o)(b),

(b)(', )I,
(b)('. )I,
(g)(,')I,

( b )( '
) , (

'
)( b ) ] ,

( g )( '
) , (

'
)( g ) ] ,

(3.10)

in a short-hand notation where the subsets with the in-
dices m and n actually contain all combinations of
m, n = 1, . . . , X, but each choice of the indices a and b
constitutes a separate subset. If every new combination
in the appropriate subset is chosen with equal probability,
the balance condition (2.38) is satisfied. If neither the old
two-pair combination nor the new one contains an index
pair of the type (b ) or („),the weight factor ratio is

W(C') =exp[f(C') —f(C )+g (C')

+g~ (C') —
g~ (C)—

g~ (&)] . (3.11)

~ mi
JJ

~ J

J

..
J ~

4

\
1

'~

~ ~

'~
'~

J
J

FIG. 3. graphical representation of a typical half-ring
change, where a set of N/2 links are replaced with oppositely
directed links such that the number of inward and outward
directed links is preserved at all sites.

Otherwise the new index sequence may Aip spins outside
the allowed range, which would correspond to a "forbid-
den" state cycle. The spin states to be affected can be
chosen either in the interval [p, ,pz

—1] or [p2, L —1]
and [O,pl —1]. The effect of the change on the states in
the interval chosen is checked. If the new cycle is forbid-
den the change is cancelled. If not, the change is accept-
ed or rejected according to (2.39) with the ratio of the
new to the old weight factor calculated according to
(2.42).

(3) In order to create the ring loops of Fig. 2(b), which
appear with periodic boundary conditions, we apply
"half-ring" changes of the type graphically depicted in
Fig. 3. A set of index pairs corresponding to a half-ring
of links of one type are replaced with the set of indices
corresponding to the "missing" half-ring of oppositely
directed links. In this type of change, requirement (2.38)
is not trivially satisfied as the total number of ways of

N/2
N =gn(t, b;), (3.12)

where n(t, b;) is the number of index pairs (b ) in the
I

current sequence. These numbers are continually record-
ed. The number of ways of restoring the original pattern
of links from the sequence after a change is

N/2

N~ = Q [n(t', b,')+ I], (3.13)

where t' =2 if t = 3 and vice versa and b,
' is an index not

appearing among the b s in R. To satisfy (2.38) the
change should be canceled with the probability

&R
P =1-

cBncel
R R'

(3.14)

If the change is not canceled, one of each of the index
pairs (b ) in the sequence is picked at random and re-

placed by one of the (', )'s. After checking that the re-

suiting new state cycle is not forbidden, the ratio of the
weight factors is calculated according to (2.42).

We define a Monte Carlo step (MC step) as a random
sequence of L two-pair changes, L single-pair changes, L
half-ring changes, and Ã global changes. The simulation
is started with all index pairs at (0) and with a random
spin configuration. The length of the cycles is extended
according to the process described in the previous section
until L has remained constant for I1 MC steps with I&
typically on the order of 10 . For this process, the tem-
perature is set slightly lower than the actual simulation
temperature in order to ensure a large enough L. After
raising the temperature, the system is again thermalized
in I2 MC steps, with typically I2=2I, . After these pre-
liminaries, data for averages is collected every fifth MC
step. The run is divided into = 10 bins of = 10 MC steps
each. The statistical error is obtained as the standard de-
viation of the average of the bin averages.

constructing half-rings is not the same in both directions.
The following algorithm is applied in order to satisfy
(2.38). A set of N/2 index pairs R = [(b ), . . . , (b )]
with t =2 or 3 and b, Wb for i' are randomly selected.
The number of ways of forming a half-ring made up of
these index pairs is



43 QUANTUM MONTE CARLO SIMULATION METHOD FOR SPIN SYSTEMS 5957

Observables are calculated according to Sec. II. The
correlation functions are normalized according to

15

(3.15)

which gives C (k, k) = 1 as the interaction is isotropic.
The magnetic structure factor at wave number q is

10

S(q)= —ge'" "qC(k, l) . (3.16)

The susceptibility at wave number q is calculated accord-
ing to

(3.17)

which gives g(q)~p at higher temperatures for all S.
We choose the coupling constant J in (3.1) as

3
S(S+1)

(3.18)

which gives the energy scale normally used for S=—,'.
The energy is calculated both according to (2.34) and ac-
cording to

—=3C(k, k+1), (3.19)

which holds for the isotropic interaction. The energy cal-
culated in two different ways provides a good check on
the simulation, as does the required value unity for
C(k, k).

A program for general S was constructed and another
taking advantage of the simplifications with S=—,'. In or-
der to check the programs, tests were run on small sys-
tems for which exact data for comparison were computed
by exact diagonalization. The tests consisted of 2X10
MC steps for fixing L, 4X10 steps for thermalization,
and 10 bins for data taking, 2X10" steps each. The re-
sults presented are for S=—,', 1, —,', and system sizes

0
0

FIG. 5. Staggered susceptibility for S= 2, N=10 (solid cir-

cles), S = 1, N = 8 (open circles), and S= —', N =6 (solid

squares), along with the exact results (solid curves).

N =10, 8, and 6, respectively. Periodic boundary condi-
tions were implemented. Figure 4 displays the antiferro-
magnetic structure factors and Fig. 5 the staggered sus-
ceptibilities. The Monte Carlo results agree with the ex-
act data down to temperatures where the systems are
effectively in the ground state. In all figures T=P
without any factors |see Eqs. (1.1), (3.1), and (3.18)], i.e.,
the temperature scale is defined by k~ = 1.

For the system with S =1 and N =8, the order of the
Taylor expansion, L, ranged from 42 at T=3.0 to 398 at
T =0.1. The acceptance ratio for single-pair changes is
around 50%. For two pair changes it varies between
30% and 50%. At high temperatures the acceptance rate
of global changes lies around 50% and approaches zero
as the temperature decreases. For ground-state proper-
ties, no global changes are needed if the initial state vec-
tors are in the total 5'=0 subspace and p is chosen large.
The probability of half-ring changes approaches zero as

1.07—

1.06—

1.04—

1.03 — ss

1.00

0.99
0

FIG. 4. Antiferromagnetic structure factor for S=—', N=10
(solid circles), S= 1, N=8 (open circles), and S= 2, N =6 (solid

squares). The solid curves are the corresponding exact results.

FIG. 6. Correlation function C(k, k) as calculated in a run

with no half-ring changes for S = 1, N =4 (solid squares), N = 8

(open circles), and N =12 (solid circles). For the isotropic in-

teraction, C(k, k) should equal unity.
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the system size increases. If no half-ring changes are
made, only the subspace with identical numbers of ring
loops in both directions is sampled. This introduces
nonuniformity as only the xy part of the interaction is
affected. The importance of the subspace with an excess
of ring loops in one direction seems to decrease for large
systems, which is as expected since effects of the bound-
ary conditions should diminish as the system grows. Fig-
ure 6 shows the correlation function C(k, k) calculated
without half-ring changes in the subspace of identical
numbers of ring loops in both directions for S =1 and
X =4, 8, and 12. The nonuniformity vanishes rapidly as
the system grows, and the temperature range in which it
appears becomes narrower. Other calculated quantities
agree with the exact results in the same temperature
ranges as C(k, k). It should be safe, therefore, to leave
out the half-ring changes for large systems.

IV. RESULTS
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In order to demonstrate the power of the new method,
we carried out simulations on systems up to %=64 for
S= 1 and S=

—,'. An integer and a half-integer spin were
chosen in view of Haldane's conjecture suggesting that
essentially different behaviors would be found. Although
numerical investigations have been carried out before,
there still seem to be unclear points left, particularly with
S) —,'. Our simulations consisted of (2 —4) X 10 MC
steps, in some cases divided into several independent
runs. Although no half-ring changes were made for
N ~ 32, the correlation function C(k, k) did not stray out-
side the range of the statistical error from unity at any
temperature.

We computed the energy per spin and the magnetic
structure factors at several temperatures. The exponent
of the divergence of the antiferromagnetic structure fac-
tor was determined. Further, the q-dependent static sus-
ceptibility was studied, the staggered susceptibility in
particular. We find a finite value for the S = 1 staggered
susceptibility at T =0 and determine the exponent of the

0
0 6

0--
0

divergence in the S=—', case.
Figure 7 displays energies per spin in systems with

%=64. Within the statistical error, no differences can be
seen between system sizes A =32 and %=64 with either
S = 1 or S=—,'. The energies of Fig. 7 should therefore be
good estimates for the infinite systems. The low-
temperature results are consistent with the ground-state
energies reported by Liang.

In Fig. 8 we plot the magnetic structure factors S (q) at
different temperatures for S =1 and S= —', . For S = 1, the
spin correlation function decays exponentially even in the
ground state, ' ' "' which implies a finite structure factor
for all q. Our low-temperature results, corrected for the

FIG. 8. Magnetic structure factors as functions of the wave
number for N=64 at different temperatures (open circles for
S = 1, solid circles for S= ~). For S =1 the T =0.1 results (not

shown) does not differ from the T=0.2 data within the statisti-
cal error.

-1 0—
2.5—

-2.0—
~ 0

~ ~ ~
00000

0 1.5—

-2.5
0

FICz. 7. Energy per spin for N=64 with S =1 (solid circles)
and S =

~ (open circles). Statistical errors are less than the size

of the symbols.

FIG. 9. 1n[S(vr)] vs 1n(T) for S=—.Open circles are for
N = 32 and solid circles for N =64.
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FIG. 10. Static susceptibilities at different temperatures for
N=64 as functions of the wave number (open circles for S=1,
solid circles for S= 2). In the T=0.2-graph data for S=1,
T =0. 1 are included (open squares).

factor —', in units, agree with the ground-state structure
factors reported in Ref. 15. For S= —', , there is strong evi-
dence pointing to a di.verging antiferromagnetic structure
factor at T=O. ' ' Figure 9 displays 1n[S(m)] against
ln(T) for N=32 and N=64. Except for the lowest tem-
perature (T=0.2), no size dependence can be seen within
the statistical error. A straight-line fit through the five
lowest temperature points of the N =64 data delivers the
exponent y =0.49+0.04 for the divergence of S(7r). This
value differs considerably from the value 0.70+0.07 re-
ported in Ref. 13.

Figure 10 shows the static susceptibilities as functions
of the wave number at different temperatures for N =64.
As the temperature decreases, the peaks emerging at
q =~ initially look the same for S=1 and S=—,', in spite

0.20—

0.15—
0

0
C3

0.10—

0.05—

0.00
0

FIG. 11. Uniform susceptibility for S=1 (solid circles) and
S=

2 (open circles). The lattice size is N=64. Statistical errors
are at most the size of the symbols.

FIG. 12. Staggered susceptibilities for S= 1. The solid line is
the exact result for N=8. The Monte Carlo results are for
N=16 (open squares), N=32 (open circles), and N=64 (solid
circles). Statistical errors are on the order of the size of the
symbols.

of the eventual divergence at T=0 with S=—', . At T=0,
the uniform (q =0) susceptibility vanishes even in the
thermodynamic limit for S=1 as there is an excitation
gap, and the ground state is a singlet. ' For the gapless
S=

—,
' chain, one expects the same behavior as with S=

—,
'

where the uniform susceptibility takes a nonzero value at
T =0.2 Figure 11 displays the two g(0) as functions of
the temperature for %=64. In both cases, the %=32
and the %=64 data agree within the statistical error. We
do not have enough low-temperature data in order to
determine y(0) at T=O for S=—,'.

On account of the gap in the S = 1 chain, one expects
the staggered susceptibility to take a finite value at T=O.
Figure 12 is a plot of y(rr) as a function of T. Again, at
the temperatures studied, no differences can be seen be-
tween N =32 and X=64. Assume that the thermo-
dynamic limit is within the statistical error of the N =64
data. Then a linear extrapolation of the T=0.2 and
T=0. 1 results gives y(vr) =20.0+ 1.5 at T=0. For S= —'
the staggered susceptibility diverges. In Fig. 13, in[y(vr)]
is displayed against ln(T). A straight-line fit to the five
lowest temperature points of the N=64 data delivers the
exponent y = 1.45+0.OS which also differs from the value
reported in Ref. 13 (1.70+0.06). It is not clear that the
exponents y and y should not change slightly going to
even lower temperatures. Figures 9 and 13 show that
they obviously evolve within the range studied here.
Within the statistical error, our indices satisfy the rela-
tion y —

y =1.
Most of the computations were carried out on a VAX-

8800 and a VAX-3100 work station. We also used the
CRAY X-MP EA/432 at the Centre for Scientific Com-
puting in Helsinki. On the average the program running
on the VAX-8800 with S=1 and 2V =64 requires 0.1 s
per MC step at T= 1.0 (L =348), 0.3 s at T=0.5
(L =620), and 0.9 s at T=0.2 (L =1370). At T=0. 1

(L =2594) 1.1 s per MC step is required when no global
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In(T)

FIG. 13. In[g(m)] vs 1n(T) for 5= —. Open circles are for
N = 32 and solid circles for %=64.

changes are made. Data collection for observables at
every fifth MC step is included in the average. With
5=—,

' slightly more time is required. Since most of the
code cannot be vectorized, the gain in speed with the
CRAY is only a factor of roughly 7.

V. DISCUSSION

The simulation algorithm described here is easily gen-
eralized to lattices of higher spatial dimensions. Two-
pair changes can generate index sequences corresponding
to any closed loop on a two-dimensional quadratic lattice
with open boundaries. Only the last three subsets of
(3.10) have to be modified in order to allow for the types
of changes graphically depicted in Fig. 14. The one-
dimensional half-ring changes can be trivially generalized
to two-dimensional periodic lattices.

FIG. 14. Graphical representation of the additional loop
changes required in the case of a two-dimensional lattice.

In conclusion, a new quantum Monte Carlo simulation
algorithm applicable for any S and for any spatial dirnen-
sionality has been constructed. The usefulness of the
method was demonstrated applying it to the one-
dimensional antiferromagnetic spin-5 Heisenberg model.
Simulation results confirm earlier calculations of the
magnetic structure factor in the S=1 chain. For 5= —,

'
we find the exponent y =0.49+0.04 for the divergence of
the antiferromagnetic structure factor. Our results for
the S =1 staggered susceptibility suggest the finite value
g(~) =20.0+1.5 at T =0. For S=—,', the present calcula-
tion gives the exponent y =1.45+0.05 for the divergence
of y(~).
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