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Discrete scatterers and autocorrelations of multiply scattered light
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The intensity autocorrelation function of light backscattered from the surface of concentrated
suspensions of small spheres is studied. In the past, calculations have been based on a model of light
diffusing in a continuous medium, which, in order to agree with experiment, relies on rather un-

physical, ad hoc assumptions about boundary conditions. Here, it is shown that for isotropic
scatterers the discrete nature of the scatterers is very important in determining the autocorrelation
function, a point that is neglected in the continuum diffusion model. In the case of highly aniso-
tropic scatterers, a one-dimensional diffusion model does not suffice to describe a photon's path,
which is characterized both by a slowly changing direction and position. Numerical simulations
that take into account the discrete nature of scattering events and the direction and position of scat-
tered photons, give autocorrelation functions that are close to those seen experimentally [D. I.
Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, Phys. Rev. Lett. 60, 1134 (1988)]. In addi-

tion, various limits of the autocorrelations are examined analytically.

In order to understand the behavior of light scattered
from concentrated suspensions of scatterers, one must
study multiple-scattering phenomena. ' In contrast
with dilute suspensions, where light is likely to be scat-
tered only once as it traverses a sample, the multiple-
scattering regime is characterized by a mean free path /

which is much smaller than the size of the system. The
dynamics of the scatterers, along with the properties of
the individual scatterers, determine the temporal auto-
correlations of the scattered light. It is hoped that under-
standing the relation between the observed autocorrela-
tion function of multiply scattered light and the dynamics
of simple systems will allow one to use multiple scattering
to probe the dynamics of more complex systems.

The model which has generally been used to calculate
the autocorrelation function of multiply scattered light
assumes that the transport of light in the system is simply
diffusive, with a diffusion coefficient determined by a
transport mean free path, l*.' ' In order to obtain the
observed intensity autocorrelation function for a suspen-
sion of scatterers, rather unphysical initial conditions for
the diffusion equations have been assumed. In this paper
we show that accurate predictions can be made using
most of the approximations used in the diffusion model,
if, however, one in addition takes into account the
discrete nature of the scatterers by abandoning the con-
tinuum approximation.

For a model of a suspension of spheres, we consider
noninteracting elastic scatterers contained in a cell of
thickness L, upon which coherent light is incident. The
absorption of light by the scatterers is taken to be negligi-
ble, as is the case for experiments with submicrometer
polystyrene spheres. ' A detector is used to find the tem-
poral autocorrelation function of the intensity of the light
backscattered from the cell. If it is assumed that the
mean distance between scatterers is greater than several
wavelengths, the propagation of light in the Inedium can

be approximated by ballistic trajectories between scatter-
er s. Since light may reach the detector by many
different paths, the electric field at the detector is the sum
of the field due to each of these paths. Brownian motion
of the scatterers causes the length of each path to vary
over time. Because the phase of the field which arrives at
the detector due to a particular path depends on the
length of that path, this phase evolves in time, giving rise
to the dominant time dependence of the autocorrelations.

Let us consider a single path a of a photon with wave
vector of magnitude k. This path involves n indepen-
dently diffusing scatterers. Define q as the transfer wave
vector of the jth collision, qj kj kj &

with kj being
the wave vector after the jth collision, 1 j ~ n, ~k, ~

=k.
The probability distribution for the change in the length
of the path during a time t is Gaussian, with mean 0 and
variance

o =Dtk g (q, )
j=l

where D is the diffusion constant for the scatterers. For
paths involving only a few scatterers, this Gaussian form
relies on the approximation that the scatterers execute in-
dependent random walks. For paths involving many
scatterers which undergo more correlated, but isotropic
random motion, the same form will be obtained due to
the sum over many roughly independent terms, as long as
the correlations are of finite range. In this more general
case, the effective D can be time dependent.

From this distribution for the change in path length,
the autocorrelation function for the electric field at the
detector that is due to a single path can be derived.

n

(E (t)E*(0))=exp Dt g (q. ) ~E (0)~ —. (2)
j=l
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y= g (q, )'. (4)

The field autocorrelation functions Eq. (2) for distinct
paths are independent if the paths do not overlap. In the
limit that the probability that two typical paths which ar-
rive at the detector have a scatterer in common is small,
this independence allows the field autocorrelation func-
tion to be squared to give G' '(O, t), the intensity auto-
correlation function measured at the angle 8. A sufhcient
condition for this approximation to hold in a backscatter-
ing experiment is that the width of the incident beam be
much greater than the mean free path of the light in the
cell.

We can also define an angular average Pii(y) as the sum
over all paths with given y, as defined in Eq. (4), and

Gii '(t) as the intensity autocorrelation function calculat-
ed using Pii(y) in place of Ps(y) in Eq. (3), which physi-
cally corresponds to a detector which collects all of the
rejected light. We can similarly define the forward-
scattered autocorrelation function GP '(t)

Note that Eq. (3) is very similar to the expression de-
rived elsewhere, but that the integration variable is not
the length of the path in the cell, as in Ref. 3, but rather
the quantity y. This is because we have not assumed here
that y is directly proportional to the geometric length of
the path, s. The function Ps(y) cannot be obtained as the
solution of the simple diffusion equation in real space, nor
is it simply related to the momentum space kernel. Its re-
lation to a diffusion equation in position and momentum
phase space will be discussed later in this paper for the
case of predominantly forward scattering.

If the continuum approximation is made that y ~ s and
that paths are given by continuous Brownian motion,
rather than discrete random walks, then one obtains that
P&(y) is independent of 0 and is given by the solution to a
simple diffusion equation. Specifically, given some initial
distribution of light intensity at time t=O, P(y) is given
by the Aux of light at the boundary of the cell at time
t =yl*/2ck, since (y) =2k for a path of length the
transport mean free path l*. For forward scattering in a
cell with thickness L ))l*, the assumption that y ~s is a
very good approximation for typical paths since they will
involve many scatterings. The resulting predictions of
Gz '(t) from the diffusion approximation are thus fairly
insensitive to the initial distribution chosen for the in-
cident light. By contrast, the choice of the initial distri-

The form of this expression reAects the Gaussian distri-
bution of the change in the length of the path. If one as-
sumes that the fields due to different paths add in-
coherently, ' so that interference among different paths
gives no significant time dependence, then the autocorre-
lation function of the total scattered electric field seen by
the detector at an angle 0 from the incident direction is
simply given by

(E&(t)E&(0))= f dy P&(y)exp( Dty—), (3)

where Pz(y) is the probability of a path a leaving the slab
at an angle 0 from the incident direction and

Ps(y) -(1/n')" (y'Idk-')'" ",
with dimensionless constants b and d. This probability is
extremely small for y ((k . For large t, the autocorrela-
tion function can be obtained from the Laplace transform
of Pii(y) by steepest descents yielding

G~~ '(t) —exp[ 4+6 (r lt, )ln(r—/r, )] (6)

for large t. This is to be compared with the diffusion
model results already stated, which decay less rapidly
with time. The short paths which are responsible for the
diffusion model's prediction of a power-law decay of the
backscattering autocor relation function for some ap-
parently reasonable choices of boundary conditions are
cutoff in the discrete model, leading to a different func-
tional dependence.

Both the short-time behavior of the backscattering
correlations and the forward scattering in a thick slab are
determined by the large-y behavior. For y ))k, paths
involve many scatterers and the q are not necessarily
small, so the constraint that g.q equal the total momen-

bution of the incoming light in the diffusion approxima-
tion is very important for the backscattering problem and
the best choice is not a priori evident. For initial condi-
tions of the form exp( —z/l*), corresponding roughly to
an initial light intensity after first scattering that de-
creases with the distance z into the cell, Gs' '(t) is found to
behave as t ' for large t, while an initial condition of
the form 6(z —yl ), representing all of the initial light in-
tensity concentrated a distance yl* into the cell, gives

Gs '(t)-exp[ —y(6tlto)' ]. ' Here we have introduced
the characteristic time to=(k D) ' of the autocorrela-
tion function which is the time for the scatterer to diffuse
one wavelength of the light.

From Eq. (3), it is evident that the long-time behavior
of Gs' '(t) is determined by the paths with small y. Most
backscattering paths have a length s on the order of l
For such short paths, however, y and s are not in general
proportional. In particular, y will not be small for very
short paths, which involve only a few scatterers. A path
that changes direction in a small number of scatterings
must have large momentum transfers q, so that y is
large. The value of y for backscattered paths will thus be
very small only for long paths in which the wave vector
changes direction slowly; there are relatively few such
paths. As an example of this, we estimate the number of
backscattered paths with a particular value of y «k for
the case of isotropic scattering. Since such a backscatter-
ing path must have gq ) 2k, the q. will typically have
magnitude at least —k/n, where n is the number of
scatterers in the path. In order to have gq (y, n must
thus be at least k /y. The probability of an n-step path
satisfying these constraints on the magnitude of the q is
—(1/n )". We must also require that the n-step path not
leave the system until the last step. This probability,
though, is no smaller than e ' and is thus subdominant
for small y. We then have
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turn transfer k„—ko( —k) is unimportant and y will be
proportional to s with high probability. The form of the
asymptotic behavior of Ps(y) for large y can therefore be
found using the continuum approximation, if the initial
condition for the density of the diffusing light is taken to
fall off su%ciently rapidly with with increasing z. In this
case, Ps(y) =ay, with a dependent on the boundary
conditions used in the continuum approximation. Given
this form for Ps(y) for large y and imposing a cutoff for
small y, one finds

for (t /to ) (& 1, with 3 =4&~a. This agrees with the
form given by the diffusion approximation with the 6-
function initial condition for the density of diffusing light
with the choice (2&6)y= A. In general, the form of the
short-time autocorrelations is correctly given by the
diffusion approximation, but the coeKcient of the &t de-
pends on the details of the initial scatterings.

In order to calculate the full intensity autocorrelation
function, the path weight function Pg(y) must be found.
In the diffusion model, the distribution of path lengths is
found simply by solving a one-dimensional diffusion
equation with given boundary conditions and the angular
dependence is trivial. Unfortunately, with discrete
scatterers one cannot find a simple solution for the distri-
bution of paths with a given y and L9 analytically. There-
fore we have used a Monte Carlo calculation to estimate
Po(y). We analyze paths in a three-dimensional system
consisting of a slab of thickness L with infinite extent in
the other two dimensions. Paths starting at the edge of
the slab and initially perpendicular to the slab were sam-
pled by discrete random walks. Sizes of the path steps
were chosen from a Poisson distribution with mean free
path l. The probability to scatter an angle + at the end of
a path step, 5 (4'), was chosen to approximate the intensi-
ty of light as given by Mie theory for the scattering of un-
polarized light. A probability distribution which fit well
to the theoretical intensity and that could be quickly
computed was used:

turn transfers near the beginning and end of the path
make only a small contribution to y in this limit. The
shape of the autocorrelation function G' '(O, t) is there-
fore found to be relatively independent of exit angle 0 for
t /to & 1. The angular integrated autocorrelation function
Gz '(t) calculated from P~(y) is shown in Fig. 1(b). For a
semi-infinite slab (L = ac ), Pz (y) is found to vary as
ay for large y, as expected, with a=1.14. Note that
a is the normalization of the large-y behavior of P (y). Al-
though the large-y behavior of Pz(y) determines the
short-time behavior of Gz '( t), the coeKcient is deter-
mined by how many "long" paths there are compared
with the number of "short" paths and so depends on the
behavior of P (y) for small and intermediate values
(y (60).

We have also analyzed the transmitted intensity. For
20 (I./l & 75, the average transmitted intensity can be fit
to the form x/(L/I +g), which is the scaling form ex-
pected from the diffusion approximation, ' with x deter-
mined by these numerical calculations to be 1.60 +0.02
and g =0.8+0.2. In the diffusion approximation, the 6-
function initial condition discussed earlier gives x =y

16

S(%)=(l—i)% exp( —4 /2w )/w +isin(%),

with the coefficient i giving the probability of s-wave
scattering and w giving the width of the forward-
scattering peak. The anisotropic part of this distribution
is singular at 4=~, but this contribution is very small for
the values of w which are appropriate for the experi-
ment. ' Propagation and scattering for each path were re-
peated until the path exited the cell. Since the position
parallel to the face of the slab is ignored, this calculation
gives Ps(y) for plane waves incident on the cell. From
this approximation to Pe(y), the autocorrelation function
was found using Eq. (3).

For purely isotropic scattering with 1=l*(i=1) and
L = 10, the distribution shown in Fig. 1(a) was derived for
backscattered light. The details of Pe(y) at small y de-
pend somewhat on the angle 0 at which the backscatter-
ing is observed, though the form of the large-y behavior is
found to be independent of 0, as would be expected for
paths which contain many scatterings, since the momen-
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FIG. 1. (a) Distribution of backscattered paths P&(y) for a
suspension of independent particles that scatter isotropically,
where y is the sum of the squares of the momentum transfers
along the path. Sharp features are due to the discrete nature of
the scattering. 10 paths were sampled numerically to compute
this curve. (b) Logarithmic plot of G~ '(t), the autocorrelation
function of backscattered light, vs Qt/to for diffusing isotropic
scatterers in a slab of thickness L/i=10. The curve has been
scaled by the square of the incident intensity, so the intercept is
not 1 at t=0, but rather the square of the reflection coefficient.



43 DISCRETE SCATTERERS AND AUTOCORRELATIONS OF. . . 5937

and g=0.
For the experiments which have been performed, '

scattering is very anisotropic, and the results of the calcu-
lation of Ps(y) for actual parameters are rather different
from those in the isotropic case. For uncharged spheri-
cal polystyrene scatterers of 0.5 pm radius and 0.37 pm
incident light, Mie theory calculations give w=0. 3 rad,
i =0.06, and l*/l =7.04. The calculation of G' '(H, t) is
relatively insensitive to the exact value of these parame-
ters as long as L and l* reAect the experimental values.
The distribution Ptt(y) calculated with these parameters
for L/l'=10 is shown in Fig. 2(a); Ptt(y) is much
smoother for small y than for the isotropic case, since
many more scatterings occur in a typical path.

The results of the calculation of the autocorrelation
function Gt't '(t) in the anisotropic case are displayed for
various LI/* in Fig. 2(b). Each curve has been multi-
plied by the square of the total rejected intensity for
clearer comparison with each other and with experimen-
tal data, which are normalized to the incident intensity.
Since for intermediate values of y the distribution P (y) is
roughly independent of L, for L ) I*, Gz '(t) should be
similar at intermediate times (t/to —1) for different L, ex-
cept for the normalization due to the rejected intensity.
The dotted lines in Fig. 2(b) show the continuum
diffusion approximation prediction given 5-function
boundary conditions, the mean free path l' calculated
from single scatterer properties, and a y of 1.68; this
value for y giving the least-squares fit to the curve as
drawn for L /l *= 10, over the range of time Qt Ito & O. S.
Note, though, that the numerical data can be fit quite
well if l* is instead allowed to deviate from its calculated
value, as was done in the experimental fits. ' Figure 2(c)
shows the experimental results from Ref. 1 for similar pa-
rameters.

In the limit in which the spheres scatter strongly in the
forward direction and L ))l*, there is no dependence on
the length scales, so that the autocorrelation function is a
function only of t/to and is independent of L, 1*, tu, and
i. Taking this limit numerically gives the universal
dependence shown as the top line in Fig. 2(b). For small
t, Gt't '(t)=1 —A+tlto, with 3 =(1.16)4&~. This is
close to the value found for isotropic scattering.

In this strongly forward-scattering limit, a two-
dimensional diffusion equation can be used which re-
places the one-dimensional diffusion approximation. We
concentrate on an infinite slab, L = ~. For an incident
plane wave, the components of position parallel to the
surface of the slab are unimportant. Let z be the distance
of the path from the surface of the slab and v be the
cosine of the angle that the path direction makes with z,
i.e., the normalized z component of the velocity. Since it
takes many scatterings for a path to change direction by
a small angle in this limit, y will typically be proportional
to s: the sum gq will have variance gq /n for n

scatterings. This will occur in path length s =nl up to
terms of order 1/&n, and thus with high probability
y =s/2l*. The path direction will diffuse over the sur-
face of the unit sphere with diffusion constant c /I*. This
means that a path can be represented as diffusion in the
two dimensional space [0, ~ ]X [ —1,1] with coordinates
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FIG. 2. (a) Distribution of paths P~ (y) for anisotropic
scattering with L/i*=10, m=0. 3 and i=0.07, as defined in Eq.
(8), corresponding roughly to the experimental parameters of
Ref. 1; 10 paths were computed. (b) Logarithmic plot of Gz '(t)
vs Qt /to for anisotropic scattering with the same parameters
and L/1*=2.5, 5, 10, ~ from bottom to top. The dotted lines
show fits to the diffusion approximation using the mean free
path l computed from the scattering properties of individual
particles and a y of 1.68, which is the best fit for L/i*=10, as
discussed in the text. The fit for L /l* = ~ is indistinguishable
from the solid line on this scale, but the fits for the two smaller
slabs deviate considerably. (c) Solid lines show the experimental
results for Gs(t) vs Qt jto from Ref. 1 for ratios of cell size to
mean free path (computed from the single-scattering regime
measurements and calculations) of 2.5, 6, and 10. Also shown as
the dotted line is the prediction of the diA'usion approximation
for an exponentially decaying initial distribution of light intensi-
ty in the cell, which is a much worse approximation at long
times.
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Z =z/l* and v. The light intensity p(T, Z, v) at scaled
time T=ct/l*, scaled position Z, and direction v obeys
the diffusivelike equation

P =(1—u') P —2v P —u P,
Bv

where the first two terms on the right-hand side originate
from the Laplacian on the unit sphere and the third term
is a convective term representing the propagation in Z.
For perpendicularly incident light, initial conditions will
be p(O, Z, u)=6(Z)5(u —1) and the boundary conditions
are p(T, O, u)=0 for T) 0, v )0, and c)p/c)v=O for
v =+1. Given the solution to Eq. (7) with these bound-
ary conditions, the distribution P (y) can be found from
the fIux through the line segment Z=O, U (0:

P(y)= —f p(2y, O, u)u du . (10)

We have not solved Eq. (9) analytically; numerical solu-
tions based upon finite difference methods would be an al-
ternative to the Monte Carlo approach used here for the
strongly anisotropic m —+0 limit, although the form of the
boundary conditions may present difficulties. We em-
phasize that Eq. (9) provides an equivalent approach to
multiple scattering in the strongly anisotropic limit; our
Monte Carlo results and asymptotic analysis yield the be-

havior of the probability P(y) that could, alternatively,
have been obtained from this two-dimensional diffusion
equation.

In conclusion, the multiple scattering of light from a
system of independently diffusing scatterers has been in-
vestigated by removing one of the approximations used to
derive the diffusion model. A Monte Carlo estimate of
the number of paths as a function of the sum of the
squared momentum transfer y, which acts as an effective
path length, was computed and various limits found
analytically. The prediction of the backscattered auto-
correlation function Gz' l(t) as given by this simple model
is found to agree well with experiment, and unlike the
diffusion model in its simplest form, requires no undeter-
mined parameters. This model could readily be extended
to include more complicated effects, such as polarization
of the scattered light. Future work on the effects of
correlations among the scatterers should be interesting as
the experiments progress.

We would like to thank Fred MacKintosh, Paul Chai-
kin, and Sajeev John for useful discussions. This work
was supported in part by the National Science Founda-
tion under Grant No. DMR 87-19523. D.S.F. also
thanks the A.P. Sloan Foundation for support.

'D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer,
Phys. Rev. Lett. 60, 1134 (1988).

~A. Ishimaru, 8'ave Propagation and Scattering in Random
Media (Academic, New York, 1978).

3G. Maret and P. E. Wolf, Z. Phys. B 65, 409 (1987).
4M. J. Stephen, Phys. Rev. B 37, 1 (1988).
5For discussion of the regime where this approximation does

not hold, see P. A. Mello, E. Akkerrucs, and B. Shapiro,

Phys. Rev. Lett. 61, 459 (1988); M. P. van Albada, J. F. de
Boer, and A. Lagendijk, ibid. 64, 2787 (1990).

6M. Born, E. Wolf, Principies of Optics (Pergamon, New York,
1970).

7P. W. Anderson, Philos. Mag. B 52, 505 (1985).
8For an analysis of diffusion in the anisotropic case, also see F.

C. MacKintosh and S. John, Phys. Rev. B 40, 2383 (1989).


