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General solution of the Landau-Lifshitz-Gilbert equations linearized around a Bloch wall
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The Landau-Lifshitz-Gilbert equations are linearized around a Bloch wall. A general planar
solution of these equations is found. Using this, the time evolution of small planar deviations of ar-

bitrary shape can be evaluated. The example of a wall moving in a magnetic field which is suddenly

turned off' is developed in some detail. The results are compared with existing computer experi-
ments. The effects of a space- and time-dependent magnetic field and of anisotropy changes are also

considered.

INTRODUCTION

The motion of Bloch walls is phenomenologically de-
scribed by the nonlinear Landau-Lifshitz-Gilbert (LLG)
equations. ' For a 180 wall with uniaxial anisotropy in
a static external field H the exact solution is known.
Here we have linearized the LLG equations around the
static solution (H =0), and these equations have been
solved exactly for any initial planar deformation of the
wall. This describes the time evolution of small planar
deviations of arbitrary shape, with and without damping.
Of course, only in a few cases can prescribed deforma-
tions be realized in practice. A wall moving in a magnet-
ic field which is suddenly turned off'is treated as an exam-
ple.

LLG EQUATIONS

The LLG equations can be written in the form

= —y(M X H, s.)+ M X
0

BM
Qy

M, +2~M —HM,
2MO

(2)

with

68
H, ft(x, t)=-

5M(x, t)

Here 8 is the energy of the magnetic system expressed as
a functional of the magnetization M(x, t), its gradients,
and the external magnetic field H; a is a dimensionless
phenomenological damping coeKcient, y ( )0) is the
gyromagnetic factor, and Mo is the saturation magnetiza-
tion. 6/6M denotes functional derivation.

For a ferromagnet with uniaxial anisotropy along the z
direction and planar magnetization depending on y, 8'is

2

stant, and H the external field taken along the z direction.
In the following we shall use dimensionless units defined
by

b, =(A/K)'i =1 (static wall width, length),

Mo = 1 (magnetization),

yMo/(I+a )=1 (frequency) .

In the new units Eqs. (1) reduce to

M= —(1+a )M XH,fr+a(M XM),

with

(4)

H,~„=KM",

H, ~ =KM" —4aM,

H,~, =KM,"+KM, +H .

Here M' means derivative with respect to y and M
denotes time derivative.

For completeness, we state here the following equation
for the energy change which follows from (4) and (2):

w =K(M'.M)'+H, s..M,
where w is the integrand of (2). Also from Eq. (4) it fol-
lows that H, tt M=aM /(1+a ).

The unit vector M can be described by two variables.
The parametrization

M, =cos(rp)sech(u),

M =sin(p)sech(u),

M, = —tanh(u ),
is convenient since the static Bloch wall corresponds to
@=0and u =y. The LLG equations (4) read

j=—F+eG,
~ =G+aI',

where ~ is the exchange constant, K the anisotropy con- where
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F =Ku "+IK [(y') —(u') ]+K
+4~ sin (g) Itanh(u) H—,

G =Kg" 2K—y'u'tanh(u) —4m sin(y)cos(y) .
(9)

SPECTRUM OF g)

The general solution (16) is useful if yo and rlo can be
developed in eigenstates of 2). Hence we look for solu-
tions of

LINEA RIXATIQN
+2tanh(y) =Eg .

dy
(19)

Without damping (a=0), the eigenstates of the linear-
ized equations were obtained by Thiele, even for the case
of a moving wall. The LLG equations with damping
will now be linearized around the static wall to first order
in the azimuthal angle y(y, t) and g(y, t) defined by

Substituting

1( =0(y)cosh(y), (20)

Eq. (19) looks like a Schrodinger equation with a poten-
tial —2 sech (y),

0 =y +Sf (10) —0"—2sech (y)0=(E —1)0 . (21)

The linearized version of (9) is

F = K2)ri —H, —

G = K2)y —4rry, —

where 2) stands for the linear differential operator

d d+2 tanh(y)
dy

(12)

a.(4vr+K2—)) K2)
—(4'+ KX) )

—aK2) (14)

A formal solution can be obtained by casting the linear-
ized equations with their initial conditions in the form of
integral equations and perceiving that they involve only
convolutions and consequently are solvable by Laplace
transforms. The solution is

In this section the external field H will be considered to
be zero. From (7), (10), and (11) the linear equations read

(13)

where

It has one localized state

ED=0, 00(y) =2 ' sech(y),

and running states

E~ =1+k

01, (y)=r —i k+ta nh(y)Ie'"~/(1+0 )'r

(22)

(23)

dy 0~ y 0~. y =2~6 k —k'
(24)

J dy 01, (y)00(y) =0;
k = oo + dk0„*(y)0„(y')=J 0$(y)0&(y')+00(y)00(y')

=&(y —y') . (25)

where k is a real number. Equations (23) are the classical
spin waves on a Bloch wall and (22) is the zero-energy
Goldstone mode and therefore represents a translation of
the wall.

The functions described in (22) and (23) form an or-
thogonal and complete set, since they are eigenfunctions
of a self-adjoint operator:

where

(15) To simplify the notation in the following, we use the in-
dex n to denote the running states and the localized one
as well.

0

e
—a(,2'+ KA) t

90

C —2ncrS SK2)
—S (4vr+K2)) C+2~aS

(16)

EIGENSTATES OF V

We look for solutions of

(26)

sinh( A't ) (17)

Here go=a(y, O) and go=a(y, O) are the initial devia-
tions, and

Trying the ansatz

0„
cosh(y),p„O,

where p„is a number, consistency requires

(27)

with

A' = K2)(4rr+K2))+(2—~a) (18)
y „—= a.(27r+KE„)+A'„,—

p„—= (2na+JV„)/(KE„),
(28)

It is easy to check that A, = YAL, AL =e—', and
det(JR)=e ' ". The normal modes of the wall
are given by the eigenstates of T.

where

A'„=(2+a ) —(4~+KE„)KE„. (29)
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Note that the y„—&0 always holds. This shows the stabil-
ity of the static Bloch wall in the presence of damping
with respect to one dimensional deformations.

For the localized state Eo=0, To=2m.o. Then the
solution (28) with the plus sign

go+ =0, po+ = ~, cpo=0, go=const (30)

represents a translation of the wall by the amount —go.
The other solution (28) with the minus sign

yo 4~+ p o 1/a, Po const, qo go/a

contains a rotation and a translation. If the change of
wall thickness with velocity is neglected, this mode by it-
self describes the relaxation of a wall when the field is
suddenly turned off'.

For the running states, a purely damped solution exists

Here C„and S, represent the eigenvalues of the respec-
tive operators (17) in the state n.

From (7) and (38), the time-dependent part of the mag-
netization is

5m (y, t)= —tanh(y) g e
n =O, k

X [(C„+2rraS„)b„
—S„(4~+KE„)a„]8„(y),

a(2tt+K—E„)t (39)
5m yt= e

n =O, k

X [(C„—2iraS„)a„+S„KE„b„]0„(y),
5m, (y, t)=csch(y)5m (y, t) .

(2ir/K)[(1+a )' —1])1+k
Otherwise yk is complex

Reyk = a[2ir+K(—1+k )],
Imyk =+f(k),

(32)

(33)

EXAMPLE: RELAXATION OF THE MOVING WALL
WHEN THK EXTERNAL FIELD
IS SUDDENLY TURNED OFF

Let us consider a wall moving in a static external field
H in the positive z direction. The stationary Walker
solution (see Ref. 6) to order (p is

where

f (k) =
I [4m+K (k + 1)]K(k + 1)—(2ira ) I

' (34)

P„(t)=P„e"

satisfies (13).

(35)

is the spin-wave dispersion in the presence of anisotropy
and demagnetization energy and damping. These eigen-
states of Y can be used to construct special solutions of
the equations of motion since

g=yo=H/(4~a), u =(y —vt)(1+go), (40)

where go=2iryo/K and v =(1+a )M/a. If at t =0 the
magnetic field is suddenly turned oA; the wall is left out
of equilibrium with initial conditions

(41)

Then, using (36), taking into account that sech(y) is an
eigenfunction of Eq. (21), and that the functions 9„(y),
given by Eqs. (22) and (27), form an orthonormal set, we
obtain

GENERAL SOLUTION OF THE HOMOGENEOUS
LINEAR EQUATIONS

Now the initial deviations (t(t(y, 0) and il(y, O) are
developed in eigenfunctions of I)

a =21/2~ g

~XO
bk=,r2 sech(~k/2) .(1+k')'"

(42)

(43)

t((t(y, O) = g (2„8„(y)cosh(y),
n =O, k

rI(y, O) = g b„O„(y)c osh(y),
n =O, k

where

a„=f ™
6)„*(y)y(y,O)sech(y)dy,

b„=f 6)„*(y)il(y,O)sech(y)dy .

(36)

(37)

Let us consider first 6m, . We now assume a sufficiently
small a, i.e., 2vra&i K(4rr+K). Then using (39), (22),
and (23) we obtain

—a(2 r+K)tt

h( k )
sin[f (k)t]

f k)

X [k sin(ky)+tanh(y)cos(ky)]

Hence the solution (15) reads +t(voe 'sech(y) . (44)

&p(y, t)= g e " [(C„—2iraS„)a„
n =O, k

+S„KE„b„]1tt„(y),
rl(y t) = g e " [(C+2m Sa)b„

n =O, k

(38)

The integral can be evaluated in various limiting cases.
Owing to the factor sech(nk/2) the integrand in (44)
only contributes appreciably for k up to k, = 1.

For small t, f (k()t «1, and a «1, Eq. (44) becomes

5m~(y, t) =t(()osech(y)(1 4mat)—
—S„(4m+KE„)a„]g„(y). +2Ktyosech(y)tanh(y) . (45)
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I, = dk sin k t cos ky (46)

becomes

I, = (vr/[2tf "(ko )])' sin[F(ko )+~/4],

The first and second terms represent the damping and the
forward movement, respectively.

For large t, f (k) )t ))1. For this asymptotic limit we
use the method of steepest descent. The integral

with F(k)=f (k)t —ky and where ko is the root of
f'(k) —y/t =0. Here, the prime means derivative with
respect to k. Analogously,

I2= dk sin k t sin ky

=(rr/[2tf"(ko)])'~ cos[F(ko)+sr/4] . (48)

Since the remaining factors of Eq. (44) are slowly varying
functions of k, the result is

1/2

In the case y/t « 1, one obtains
1/2

e
—o;I271.+K j1+y /(C 1') jIt25m (y, t)=Kyo

2tC2coo

Kv a(2'+�—K)t ~ otk

2tf-(k,

Xsech(mko/2)[kocas[F(ko)+sr/4]+tanh(y)sin[F(ko)+w/4]]+goe 'sech(y) .

X cos coot — +—+tanh(y)sin coot — +—y y
C2t 2C2t 4 2C2t 4

+yoe 'sech(y), (50)

|)m (y, t)=K yo

where coo=f (0) and C2 =2K (2m+K)/coo. The last term is the attenuated initial deformation. The first term describes
a shift along y which oscillates in time. For large t, the time dependence is dominated by the lowest frequency mo. Note
that the attenuation of the shift tends to be weaker than that of the initial deformation.

In the case y /t )) 1 one obtains
1/2

4~Kt j2 +K+~2/(e
y

X sech
4Kt

7T'

2Kt 4Kt 4
cos ———tanh(y)sin

4Kt 4
+yoe 'sech(y) . (51)

For a given time t, 5m (y, t) oscillates as function of y.
The rather complicated behavior is due to the fact that
the steepest-descent method selects a k vector which de-
pends on y and t.

The calculation of 6m is analogous. We only mention
the interesting point that for a&0 the limit of 5m for
t ~ ~ is finite. From (39), (42), and (43) we obtain

g(y, t) =—0'o 4

+0 77

2 Kt2

1/4

e 'cos(coot +sr/4)sinh(y) .

(54)

lim 6m
t —+ oo

0'0
tanh(y)sech(y) . (52)

In the region where these expressions are meaningful
(y + 1 ), sinh(y) -=y and g describes a relative width
change

The wa11 comes to rest after a distance

H
4~ex

(53)

6A &0

Kt'

1/4

e 'cos(coot+~/4) . (55)

in the direction of motion.
It is also interesting to obtain an approximate expres-

sion for q(y, t) in the limit of large t, which is related to
an effective wall width, and can be compared with results
from computer experiments. Starting from Eq. (37) with
the initial conditions (41) and with the fallowing approxi-
mations: K «4~, coot ))1,and 2~a. &&coo, one obtains

COMPARISON WITH COMPUTER EXPERIMENTS

Schryer and Walker studied with computer simulation
the transients of Bloch walls when the external field is ei-
ther suddenly switched on or off. They modeled various
substances using the following constants: yttrium iron
garnet (YICs): K =0.59, 4~M0=1700 Oe, +=0.001 to
0.03; orthoferrite (material "0"): K = 1.6 X 10~,
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U =4~cgoe 4 (56)

while the second term in (54) alters the width of the wall.
The relaxation (55) is consistent with the curve shown in
Fig. 10 of Ref. 6. for material O.

Figure 9 of Ref. 6 shows a damped oscillation of the
wall width for YIG with a=0. 1. An approximate period
can be defined as the time between two maxima, which is
KTsw =0.0158. This, according to Eq. (55), is to be com-
pared with 2w(1+a )/(Moroo)=0. 017. In the same Fig.
9, the decay of y shows an oscillatory variation which has
approximately the same period as the wall width. This
period also appears in Eq. (50) in the range of small y.
The most serious discrepancy is that the experimental
time decay of the width 6A in Fig. 9 is closer to 4~a rath-
er than to 2~a.' as the linear theory predicts.

EXCITATION BY A TIME- AND SPACE-DEPENDENT
MAGNETIC FIELD ALONG THE ANISOTROP Y AXIS

4~Mo =110 Oe, +=0.01; and iron: K =0.29,
4wMo=2. 15X10 Oe, o. =0.8. Here K is given in our
units. The time tsar used in Ref. 4 is given in units of
y 'X(1 Oe) ' (=5 68X10 s sec); thus
t =Motsw /(1+a ) where Mo is given in Oe.

Since Schryer and Walker noted that y depended only
weakly on y, they presented their time-dependent results
using a mean value for cp. We shall therefore compare
this time dependence with that of the space-independent
part of our results.

First we compare relaxation times. The time depen-
dence of y corresponding to YIG with &x=0.01 reported
in their Fig. 4 corresponds to an attenuation time
Tz =0.059 in their units. This, according to Eq. (49), is
to be identified with (1+a )/(4rrMoa) =0.0588. Analo-
gously, for material 0 with o; =0.01 reported in Fig. 11 of
Ref. 6, Tz =0.914 while we obtain 0.909.

According to (10) and (40), the wall velocity is minus
the time derivative of the space-independent first term of
Eq. (55),

The solutions are

i r—oH„(to)
a„(co)=

(to+i y „)(to+iy„)
(a +1)(4~+KE„)+iaido

b„(to)= H„(to) .
(to+i) „)(to+iy„)

Here y„—is given by (28).

(60)

(61)

iHO(ro—)
ao(co) =

(co 4nia—)
(62)

4~(a +1)+iaido
(co i e)(to—4' a —) (63)

Here e—+0; causality requires a„(co)and b„(co)to be ana-
lytic in the lower half plane of co.

A homogeneous field is turned on at t =0 with charac-
teristic time A,

H(t) =H(1 —e '), (64)

Ho(to) =&2H

Complex integration of (58) yields

y(t) =H 1

4~+

—47' at —kt
(1

—4~a~)+ e

4mo. —k
(66)

EXAMPLES

Homogeneous field: H„(co)=Ho( ot)5„0. According to
(30) and (31), yo =0, yo = —4', and Eqs. (60) and (61)
reduce to

Equations (8) with the linearized functions (11) read

a(4vr+ K2) )y—+K2)ri+ H,
~'y = (4rr+K2) )y aK—2)ri aH . — —(S7)

(58)

H(y, t) is supposed to be small enough so that the linear
approximation is justified.

The quantities a„(co),b„( ), taond H„( )a&ore defined by

H(y, t) = J g H„(co)g„(y)e'"',
277 „=O,k

+1 1 +1(t) =H — t + (1— ' ')+
4~+

I4~a(a +1)—Aa ]e ' —Ae+
aA, (A, —4vra)

In the short-time limit

@(t)= —,'AHt', ri= ,'kaHt', ——

while for long times the Walker solution

II . 1+o.y(~)=, U = —g= H
4mo.'' o.

(67)

(68)

(69)

ri(y, t)= f g b„(to)g„(y)e''.
2& =O, k

is recovered.
Space-dependent cases can be treated similarly. For in-

stance, if H(y) =He' from (S8) it is
In Fourier space equations (57) read

i tea„= a(4~+ KE„)a„—+KE„b„+H„,
i cob„=—(4~+KE„)a„aKE„b„aH„. — —(59)

H„=Hf dy 0„*(y)e'~~sech(y)

which can be exactly integrated, yielding

(70)
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Ho =H —cschv'2 2

i np vr(p —k)
sech

(1+k )'

(71)

Now, Ho =0 and

Ht, = —5K f dy
ik +tanh(y)
(1+k')'" e '"~tanh(y )sech(y )

(73)

can be exactly integrated by parts, yielding

ANISOTROPY CHANGE Hk = ——5K(1+k )'~ sech(hark/2) .
2

(74)

H'= —5K tanh(y) . (72)
I

Consider a small change K~K+6K in the anisotropy
(which may result from a temperature change). This
modifies K in Eq. (2); we use the unchanged K for the
definition of units, so that the right-hand side of Eq. (9)
contains an additional term 5K tanh(y), which acts like
an effective magnetic field

We consider explicitly the case of a sudden change 8(t) in
the anisotropy, then

Hk(co) = 5K(1+k )' sech(7rk/2)
2 CO

(75)

Using (60), (61), and (75) in (58), and performing complex
integrations in co, we get

and

dk a(2~+KF—z )i sin (k)r
cp(y, t) = —(~/2)5K f e sech(mk /2) [ ik +—tanh(y) ]e ' ~cosh(y)

277 f (k)
(76)

5K ~ dk a(2~+KE„)i— sin[ f (k)t]
27TCX +cos k t —1

K — 27r f (k)

Ek
(7")

X e'"~cosh(y) =y /~, (78)

dk
I2 = f sech(~k/2)[ i k+t anh(—y)]e'"~c osh(y)

2 7T

=(2/vr)tanh(y) .

For coot (( 1 we get, using (79),

cp(y, t) = —5K t tanh(y)

and

g(y, t) =a 5K t tanh(y),

(80)

(81)

which could have been derived directly from (57) with H'
instead of H. For coot ))1, y(y, r) tends to zero while, ac-
cording to (78):

g(y, ~ ) =(6K /K)(y/2), (82)

which gives the first-order correction to the wall width
due to the new anisotropy K +6K:

y +ri=y (1+5K/2K) =y /6,
which agrees with the exact result up to order 6K/K:

a = [ A /(K+5K) ]'"
=( A /K)' ——'( A /K)' (5K/K)+

(83)

(84)

To consider the limiting cases, the following exact in-
tegrals are useful

dk —ik +tanh(y)I, = ™
sech hark/2

1+k

(in our units A/K =1). Asymptotic values of &p and q
can be obtained by the method of steepest descent.
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APPENDIX

Since the magnetization is of constant length it is
determined by two parameters. In the parametrization
we followed Walker in directing the z axis along the
external magnetic field. This parametrization, however,
is singular when the magnetization points along the z
direction in the sense that cp is not defined, a small devia-
tion from the z direction is described by a finite
0(y(2~. The orientation along the z direction is real-
ized far from the Bloch wall. The fact that the linearized
equations correctly describe the spin-wave excitations
may be fortuitous. In order to overcome this difficulty a
coordinate system for which the singularity points into a
different direction may be used.

Let us choose the z direction perpendicular to the
plane of the Bloch wall, and the x axis along the easy
direction of magnetization, so that the old system (x,y, z)
goes into the new system (y, z, x). Then the new parame-
trization is
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M,' = —sin8 tanh(u ),
My' =sin8 sech(u),

M,'=cos6I .

Linearizing around the static wall 0= sr/2, u =z:
7T0=—+6 u =z+q (A2)

where P = t) sech(z) and

d + 1 —2 sech (z) .
dz2

(A4)

the linearized equations turn out to be

g =(K%+4m. )t'I aKA P—aH sec—h(z),

K%g—a(KA—+4m. )t'I Hsech—(z ),
(A3)

On the other hand, from identifying the linearized ver-
sions of (Al) and (7), we see that t) = —y sech(z). Hence
(A3) becomes equivalent to (13). This proves that (13)
[and (57) respectively] correctly describe the spin-wave
spectrum far from the Bloch wall.
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