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Potts models: Density of states and mass gap from Monte Carlo calculations
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Monte Carlo simulations are performed for first-order phase-transition models. The three-
dimensional three-state Potts model has a weak first-order transition. For this model we calculate
the density of states on L block lattices (L up to size 36) and obtain high-precision estimates for the
leading partition-function zeros. The finite-size-scaling analysis of the first zero exhibits the expect-
ed convergence of the critical exponent v toward 1/D for large L; in particular, we find
v =2.955(26) from our two largest lattices. Analysis of our specific-heat C, data yields
l =0.08031(26) for the latent heat. Along another line of approach, we calculate the mass gap
m =1/g (g is the correlation length) for cylindrical L L, lattices (L up to 24 and L, =256). The
finite size-scaling analysis of these results is also consistent with the convergence of v toward 1/D,
but that the limiting value is 1/D is not yet conclusively established. Some theoretical arguments
favor v~0 in case of a first-order transition in a cylindrical L ' ~ geometry. Therefore, we also
applied our approach to the 2D ten-state Potts model, which is known to have a strong first-order
transition. In this case we find unambiguous evidence in favor of 1/D as the limiting value.

I. INTRODUCTION

The study of the character of a phase transition by
means of numerical simulations has recently received
considerable attention. ' " Particularly cumbersome is
the precise determination of the critical parameters for
models with temperature driven weak first-order phase
transitions, and the distinction from a second-order phase
transition may be hampered by circumstantial numerical
evidence. ' Finite-size efI'ects play an important role and
may lead to inconclusive infinite volume results. An ex-
ample is the critical exponent v resulting from our finite-
size-scaling (FSS) analysis of the mass gap for the three-
dimensional (3D) three-state Potts model and for the 4D
SU(3) pure gauge theory, as we have initially reported in
Refs. 3 and 12. In contrast to these models we obtained
for second-order phase transition models, the 3D Ising
model' and 4D SU(2) pure gauge theory, v estimates
which are self-consistent and in good agreement with ex-
pectations from existing literature. Respectively„ the 3D
Ising and three-state Potts model are conjectured' to be
in the same universality class as the 4D SU(2) and SU(3)
lattice gauge theories. According to the renorma-
lization-group fixed point picture a first-order phase tran-
sition for a L block geometry is characterized by a criti-
cal exponent' v=1/D, where D is the dimension of the
system. Numerical Monte Carlo renormalization stud-
ies' have shown consistency with the expected v=1/D
value. However, for a cylindrical L ' ~ geometry the
situation is less clear. One finds the conjecture v~0 in
the most detailed literature, ' whereas earlier results from
Ref. 18 support the limit value 1/D also in this geometry,
in addition see Ref. 19.

In this paper we closely follow our previous work' to
investigate the L ~~ limit value of v by means of Monte
Carlo (MC) simulations. The 3D three-state Potts model
has a rather weak first-order transition. ' Using histo-

gram techniques ' " we explore the limit value of v on
L block lattices, with L up to 36, and on cylindrical
L L, lattices, with L up to 24 and L, =256. For the
block geometry we find clear evidence for v~1/D and,
in addition, obtain a nonzero latent heat by FSS analysis
of the specific heat. For the cylindrical geometry the re-
sults are also consistent with v~1/D, but the limiting
value itself is not firmly established. In particular the
data would not exclude an overshooting toward zero, the
scenario favored by Ref. 17. To investigate this question
further, we simulated a model with a strong first-order
transition, namely, the 2D ten-state Pot ts model.
The cylindrical geometry is approximated by L XL, lat-
tice;s with L up to 24 and L, up to 500. In this case we
find convincing evidence for v —+1/D, as is already indi-
cated by the analytical results of Blote and Nightingale'
for much smaller sized systems.

The plan of our work is the following. In Sec. II we
calculate the leading Lee-Yang zeros of the partition
function for the 3D three-state Potts model with high
precision. Their FSS analysis leads us to estimates of the
critical coupling P, and the exponent v. Further, we
have calculated the specific heat C, as a function of the
coupling, the critical coupling defined as corresponding
to the maximum of C„and by FSS analysis the latent
heat of the transition. Due to some disagreement with
the analysis of Ref. 7 we feel obliged to comment in an
Appendix on the specific heat C, for the 3D Ising model.

In Sec. III we develop our second approach using the
correlation length. For the 2D ten-state and the 3D
three-state Potts model we estimate /3, and the second
value for v. We also make use of previous analytical re-
sults' for 2D q-state Potts model and we obtain a
scenario where the intensity of the transition plays an im-
portant role. The approach of v~1/D (for L~ oo ) is
found to be more pronounced the stronger the phase
transition is. Section IV gives our outlook and con-
clusions.
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II. MONTE CARLO CALCULATION
OF THE PARTITION FUNCTION

ZOO

We consider the 3D three-state Potts model in the L
block geometry. The Hamiltonian is given by 150

H= ——', g5
(~,j)

(2.1)

where the sum is over the nearest-neighbor spin pairs and
o.

, =0, 1, or 2. The action changes in increments of 1.5,
and for L even,

100

—4. 5L +H ~0 . (2.2) 50

We have used the standard Metropolis algorithms and
report MC calculations for the density of states for lat-
tices of sizes L =10, 12, 14, 18, 22, 24, 30, and 36. A11
the MC runs had a cold start and for thermalization
50000 sweeps were discarded before taking measure-
ments. For L =10, 12, 14 we used 50X10 sweeps and
20X 10 for the other lattices. The production sweeps
were divided into 20 bins and the error analysis was made
applying the jackknife method. For energy and spin ex-
pectation values we have checked that autocorrelation
between subsequent bins vanish within the statistical
noise.

A. Density of states

We have generated configurations K= Io. I via a MC
Markov chain with the Boltzmann weight

p( I I )
PH( i cr )

)—
To obtain the density of states we histogram the generat-
ed configurations with respect to the energy and obtain
the partition function by reweighting. To give an exam-
ple we depict in Fig. 1 the histogram for our largest lat-
tice (L =36). For all lattices our simulations were done
at PMC=0. 36706. This value corresponds to the weight-
ed average of the infinite volume critical temperature
from Refs. 6 and 7. In case of the 3D Ising model we
have further studied a patching procedure' to calculate
the density of states by combining energy histograms
from variant P values. For the leading zero (imaginary
part) and the largest lattice the diiference between results
from three or more patches versus the result from a sin-
gle histogram was about three times the statistical error
bar of the individual results. Statistically, this is just indi-
cative for a systematic error. However, for second-order
phase transitions the calculation of partition-functions

I I I

—0.85 —0.8

zeros is somewhat subtle. Single-energy histograms are
almost normally distributed, but an exact Gaussian distri-
bution does not have any zeros in the complex plane.
The correct zeros rely on deviations from the Gaussian
distribution and a good statistics on the tails of the cen-
tral histogram is important (in MC simulations zeros due
to statistical Ilukes are possible as well). In case of a
double-peak structure this problem does not exist and
one can anticipate that the tails lead only to statistically
negligible corrections. Therefore, we have not carried
out a further patching procedure in the present case. In
the analog case of SU(3) lattice-gauge theory, ' we have
taken histograms at variant P values and can explicitly
verify this stability of the leading partition-function zero
for a first-order transition.

B. Partition-function zeros

Defining

u =exp( ——', p), (2.3)

the partition function becomes a polynomial of degree
3L +1 in u. Its coefficients are determined by our nu-
merically calculated spectral density. Using the
Newton-Raphson method, as described in Ref. 25, we
calculated the six zeros u, (i =1, . . . , 6) closest to the
real axis. The results, in order of increasing imaginary
part, are given in Tables I, II, and III.

FIG. 1. 3D three-state Potts model energy per link histogram
for P=0.36706 and L =36.

TABLE I. First and second partition-function zeros for the 3D three-state Potts model.

10
12
14
18
22
24
30
36

Re(u', )

0.576 265 2(59)
0.576 471 7(49)
0.576 594 0(37)
0.576 678 2(64)
0.576 700 7(60)
0.576 706 1(39)
0.576 693 1(28)
0.576 674 0(34)

Im(u', )

0.006 666 9(48)
0.004 392 7(36)
0.003 064 3(24)
0.001 655 7(32)
0.000 986 0(27)
0.000 782 8(17)
0.000 418 6(14)
0.000 244 23(83)

Re(u', )

0.573 526(17)
0.574 653 2(90)
0.575 335 1(69)
0.576 000 7(60)
0.576 309 5(57)
0.576 403 9(34)
0.576 541 2(25}
0.576 592 0(30)

Im(u", )

0.012 939(12)
0.008 724 7(74)
0.006 231 6(51)
0.003 521 8(59)
0.002 198 0(45)
0.001 784 6(26)
0.001 018 8(14)
0.000 630 8(11)
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TABLE II. Third and fourth partition-function zeros for the 3D three-state Potts model.

10
12
14
18
22
24
30
36

Re(u', )

0.571 30{10)
0.567 59(20)
0.574 286(48)
0.575 381(31)
0.575 941(11)
0.576 127 4(91)
0.576 382 7(35)
0.576 502 1(30)

Im(u 3 }

0.017 81(14)
0.011 95(16)
0.008 882(44)
0.005 128{39)
0.003 204(16)
0.002 629 8(82)
0.001 535 6(25)
0.000 968 9(23)

Re(u4)

0.562 46(48)
0.573 240(67)
0.570 26(15)
0.573 30(19)
0.574 454(58)
0.574 912(42)
0.575 606(22}
0.576 406 8(75)

Im(u 4 )

0.018 35(37)
0.012 191(65)
0.008 94{17)
0.005 69(14)
0.003 494(70)
0.002 837(32)
0.001 912(33)
0.001 273 3(72)

Let us define u, = u (P, ) and carry out the FSS analysis
for the first zero. It is well known that for sufficiently
large I.

to the infinite volume is v =2.955(26) obtained by
matching our largest lattices (L =30 and 36).

u —u =zI.
1 c (2.4)

C. Specific heat

where z is a complex constant in general. As for the 3D
Ising mode1' we could rely on the relation

Let us define the energy per link, its second moment,
and the specific heat:

2

—lnlu, (L)—u, l
=const+ —ln(L )

1
(2.5) &E) = &H), &E')—:

DL

yz-=v(L, L') '=ln Imu, (L')
ln

Imu, (L )
(2.6)

Table IV shows the results obtained. For increasing
min(L', L ) the tendency yT~D is obvious, although the
needed systems are amazingly large. Our estimate closest

to extract v, using a MC estimate for the critical value P, .
However, for the present case it is more eff'ective to use
only the imaginary parts of the roots. The reason is not
so much that the exact P, is unknown, but that the L
dependence of the real part is rather weak and conse-
quently has a worse signal-to-noise ratio than the imagi-
nary part. This makes Eq. (2.5) less favorable than the
corresponding one with u, (L ) replaced by Imu i (L ).
However this two-parameter fit does not give acceptable
values for the goodness of fit Q, when extended over a
range of three or more lattices. As discussed in Ref. 13
this indicates that our statistical noise is smaller than the
finite-size corrections. Unfortunately, the four-parameter
fit, successful for the 3D Ising model, ' fails due to
insufficiently accurate data in the present case. There-
fore, the most pragmatic way to proceed is to rely on esti-
mates from pairs of lattices,

(2.8)

(P, )'D(&+ —& )'
A3=D and 3 2 4

(2.10)

Here + and —refer to the high- and low-temperature
phases, respectively. E+ and E are peaks in the energy
density corresponding to the maximum of the specific

C
heat for p=p, ' [i.e., p, '(L) is defined by Eq. (2.9)j. In-
troducing the latent heat l =E+ —E, we have

l= A2

P, D

1/2

(2.1 1)

Let us also define p "' from Eq. (2.3),

In a suKciently small neighborhood of pMc=0. 36706
the P dependence can be obtained by reweighting. Figure
2 shows C, (p) for lattice sizes L = 14, 18, 22, 24, 30, and
36. For a first-order phase transition one has

(2.9)

with

TABLE III. Fifth and sixth partition-function zeros for the 3D three-state Potts model.

10
12
14
18
22
24
30
36

Re(u', )

0.570 77(40)
0.572 40(23)
0.573 36(23)
0.574 73(22)
0.575 726(37)
0.575 978(23)
0.576 270(14)
0.575 912{25)

Im(u 5)

0.022 06(37)
0.014 99(33)
0.010 83(19)
0.006 15(20)
0.004 025(39)
0.003 403(32)
0.001 998(12)
0.001 359(22)

Re(u6)

0.566 8(21)
0.572 73(42)
0.573 82(31)
0.575 13(20)
0.575 753(65)
0.575 787(87)
0.576 223(28)
0.576 353(21)

Im(u )

0.027 2(20)
0.017 56(39)
0.012 66(29)
0.007 33(17)
0.004 915(57)
0.004 141(83)
0.002 468(32)
0.001 535(16)
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' for the 3D three-state Potts model, obl obtained by Eq. (2.6).TABLE IV. Table of v(L, L') for t e

L'

10
12
14
18
22
24
30

L =14

2.3103(32)
2.3362(74)

L =18

2.3698(35)
2.4064(52)
2.4495(83)

L =22

2.4240(36)
2.4649(47)
2.5088(63)
2.583(17)

L =24

2.4467(26)
2.4884(34)
2.5319(43)
2.604(10)
2.652(40)

L =30

2.5195(31)
2.5655(38)
2.6119(45)
2.6919(76)
2.762(14)
2.805(18)

L =36

2.5816(27)
2.6302(32)
2.6782(37)
2.7611(56)
2.8337(89)
2.873(10)
2.955(26)

""'(L)= ——' ln I [Reu, ( I ) ] + [ mu,Imu (L)] [ . (2.12)C 3

o corn are both effective critical p's.It is interesting to compare o
This is done in Table V where also

C ~,„data from Refs. [6 andiven. Table VI gives P, '» m» a
f. 23 the infinite volume critica7]. Following Re .

calculated from

C, —D=T +AL or P, '(L)=P, +BL (2.13)

I9 =0.367015 4+0.0000064
C

(2.14)

estimate fromma be consiaere asa d s the most convincingm y
in the latent heat fits.this table and is used in

Table VIII shows results obtained for &, 7 3,
of E . (2.9) using our data. Figure 3and l from the fits of Eq. . u

shows the behavior of C, ~
L for

Q =0.59 and gives

A =3.661(64) and A& =0.000651 6(421

T, (

least-s uare s olea - fit f our data combined- q
with Ref. 7 data are given in Table
volume critical P,

L
C, ~,„=A,+A2L +A4exp (2.16)

f Table VIII we found this fit unsnstable (us-For the cases of Ta e
f 25). Including nowMR MIN from Re . . n

=10 12 d14 i ld t blalso the smaller lattices L =10, 12, an yr

with Q==0.02 the goodness of fit is barely accep a
anymore.

III. CORRELATION LENGTH CALCULATION

, and the la-Table IX shows the pahe arameters A„2, A3,
T ble X combinessin data from Ref. 7. a eg

is satisfactory agreement.7. Overall there is sa
'

ific heat data see theanalysis o t ef h 3D Ising model speci c ea

rections to the scaling law (2 9) were
d o hR f . 21 and 27. This lea s oanalyzed in Re s.

parameter fit:

1.e. ) (2.15)

l =0.08031(26) .

rted in Ref. 6 is l =0.080(4).The latent heat result reported in e .

! I I I I | I ~l I i f I

l

I I I

us a roach, ' we have used theFollowing our previous approac, w
MC transfer ma

eriodic boundary con-'L (D =2, 3) geometry with perrodic o
ten-state Potts model our lattice size

L goes up to w't 24 with L =256 for L, or

30
V

20

0.0010

0.0009

'vlmax L = Al L A2

A, = 3.66 & (64)
A = o.oo 065 ].6(4z)

0.0008

10
0.0007

asyrnp to tie value: 0.0006516(42)

0
0.365 0.368 0.369 10000

0.0006
20000 30000 50000

el s ecific heat for L =14,FIG.. 2. 3D three-state Potts mode spe
18, 22, 24, 30 and 36.

odel volume dependence ofFIG. 3. 3D three-state Potts mode v

the specific heat.
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C
TABLE V. Comparison for effective critical p's: p ""and p, ', also the maximum of the specific heat.

10
12
14
18
22
24
30
36

zeros
C

0.367 413 6(68)
0.367 200 0(57)
0.367 068 5(43)
0.366 977 8(74)
0.366 953 6(69)
0.366 947 7(45)
0.366 963 2(32)
0,366 985 4(39)

C
C

0.367 9109(64)
0.367 486 2(52)
0.367 245 5(39)
0.367 053 1(71)
0.366 989 1(66)
0.366 972 7(43)
0.366 972 6(31)
0.366 989 3(39)

2.9605(25)
3.8165(39)
4.7886(46)
7.263(19)

10.615(39)
12.659(38)
21.19(10)
34.18(18)

have increased L, to 500 and the same for all L at
p=1.42606, which is close to the known critical cou-
pling

C(z)=(S,S, )—
Ao

P = ln( 1+v'q ) = l.426 062 4. . . . (3.1)

(for z~ Oc ), (3.2)

where A,o is the largest and A,
&

the next-largest eigenvalue
of the transfer matrix, allows numerical calculation of the
correlation length

For the 3D three-state Potts model we have also used
L up to 24 with fixed L, =256 for L ( 16. But for L =24
we had to decrease L, to 222 to avoid technical problems
with our vector length. The long direction L, was main-
tained as long as possible to approximate ~ for achieving
accurate and reliable correlation length estimates.

The zero-momentum correlation function, '

(3.3)
~0

g=m '=ln

by means of calculating effective masses m (z ) at distance
z in the long direction. The MC estimator CMc(z) for
C(z) is obtained measuring 5, 5, at distance d(z, ,z2)=z

1 2

and our effective masses are defined by the fit

CMc(z) exp[ —m(z)z]+exp[ —m(z)(L, —z)]
CMc(z —1) exp[ —m(z)(z —1)]+exp[—m(z)(L, —z+1)]

(3.4)

p(p)-(p —p, ) (3.5)

We elect our eA'ective mass m (z„), chosen at an appropri-
ate distance zo, as corresponding to the asymptotic value
m =m(~). This issue was considered in detail in Ref.
13. Our Potts model results are given in Tables XI and
XII.

The critical exponent v is obtained using FSS in a
neighborhood of the critical point. ' '' ' ' Let P(P) be a
physical observable with the critical behavior

where p is the critical exponent of P. Using FSS one ob-
tains

(3.6)

For our study we need the special cases

m(P„L ) =—+0C 1

L L2

TABLE VI. Critical couplings and maximum of the specific heat. For the definition of P,"' see Eq. (2.10) of Ref. 6, first paper.

22
24
26
30
36
42
48

Reference 6
fit

0.366 70(1)

0.366 91(1)
0.366 99(1)

0.367 025 (25)
0.367 08(2)

C
C

0.367 025(28)
0.366 990 0(81)
0.366 985(23)
0.366965 7(94)
0.366 991 3(81)
0.366 992 7(81)
0.367 011 5(81)
0.367 026(27)

Reference 7

Cu I max

10.98(17)
12.856(69)
15.22(26)
20.98(22)
34.29(33)
52.45(67)
78.4( 1.0)
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TABLE VII. L =22, 24, 30, 36 correspond to our data.
L =22, 24, 26, 30, 36,42, 48 to data from Ref. 7.

150

1.25 —L=6

L= 12 L= 16
L=B I L=24

2D Pot. t.s

22-48
2A

26-48
30-48
36-48

0.366 987 5(35)
0.366 992 9(39)
0.367 013 2(62)
0.367 015 4(64)
0.367 019(12)

2.1E-5
6.5E-4
0.51
0.74
0.52

L=4
1.00

0.75

=0.67

=0.22

and

0.50

025
1.41 1.42

Q =0.67

1.43 1.44

m(/3, L )
d I —1 —1/v

FIG. 4. 2D ten-state Potts model mass gap data.

to estimate the infinite volume critical coupling /3, and
the critical exponent v. The subsequent two sections ana-
lyze our numerical m(/3, L ) results. For the presentation
we deviate from the chronological order of our investiga-
tion and begin with the 2D model.

A. 20 ten-state Potts model

The 2D ten-state (q =10) Potts model is defined by the
Hamiltonian

H= —g 5, o;=1,2, . . . , 10 . (3.8)

The q-spin states on each lattice site can be represented
by a set of q unit vectors pointing in q symmetric direc-
tions in a (q —1)-dimensional space, which is the ap-
propriate formalism to calculate zero-momentum correla-
tion functions.

Our results were obtained with 2' sweeps and mea-
surements, with an additional of 16000 sweeps for reach-
ing thermalization at the beginning of each (/3, L ) data
point. We have used 2 bins to estimate error bars in our
Table XI. In Fig. 4 we plot Lm (/3, L ) versus /3. For finite
L we define crossover points /3O(L, L') of two lattices
L,L', with L )L', as finite-volume estimates of /3, . The
infinite volume critical point /3, is obtained as

1s

/3, -/3O(24, 16)= 1.4256+0.0001 . (3.1 1)

We determine the critical exponent v by using Eq.
(3.7). The derivatives around the fixed points are prompt-
ly obtained from the straight lines in Fig. 4, and Table XI
contains our estimates for (d jd/3)Lm (/3, L ) ~& & . In Fig.

C

5 we plot the L dependence of these derivatives in a log-
log scale. The linear regression according to Eq. (3.7)
gives us an estimate for the critical exponent v. Two
linear fits, from L;„=4 to L „=24 and from L;„=6
to L „=24, are depicted in this figure. The first least-
square fit gives us an unacceptable Q value ( —10 )

while the second one, with Q=0. 32, means we have a
confident fit to extract the v value

v=0.493+0.008 . (3.12)

I I 4 I

i

I I I

L=24

Now we explore the v dependence of L using this two
point fit approach and relying on the exact results for
(d /d/3)Lm (/3, L ) from the transfer matrix method. 's Re-
sults for 2D q-state Potts model with q =8 and q =64 are

lim /30(L, L')=/3, .
J'~oo

(3.9)
5 — [~

The straight lines in Fig. 4 are least-square fits to our
Lm(/3, L) data. To optimize the accuracy of the fitted
lines we use /3 values as far apart from one another as
possible, while keeping the goodness of fit Q at acceptable
values. This, on the other hand, determines an admiss-
able range of /3 points for each L. Table XI contains our
complete data set. In Fig. 4 we have restricted our
straight lines to the actually used points.

The fixed points /30(L, L ') are given in the upper trian-
gle of Table XIII. The values in this table show a conver-
gence toward the theoretical value

2 2.5 3 3.5

/3, =1.426062, . . . . (3.10)

Neglecting finite-size systematic errors our best estimate FIG. 5. 2D ten-state Potts model v fits.
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TABLE VIII. Dilferent fits for Eq. (2.9), with its respective latent heat using our data. [For P, we use P, =0.3670154(64) ob-
tained in Table VII.]

18-36
18-36
22-36
22-36
24-36
24-36
30-36

3.101(99)
3.420(29)
4.00(34)
3.661(64)
4.12(57)
3.626(87)
3.35(34)

0.000 98(11)
0.000 664 5(29)
0.000 49(14)
0.000 651 6(42)
0.000 45(20)
0.000 653 0(48)
0.000 661(11)

2.890(32)
3
3.080(80)
3

3.10(12)
3
3

0.033
2.8E-4
0.80
0.59

0.40

0.080 31(26)

0.080 40(30)
0.080 89(67)

TABLE IX. Data from Ref. 7. To be compared with Table VIII.

30—48
30-48

3.7(1.8)
2.61(40)

0.000 45(30)
0.000 679 4(94)

3.11(17)
3

0.44
0.61 0.082 01(57)

TABLE X. L =30,36 of our data combined with L =30,36,42, 48 data from Ref. 7. This table should be compared with Tables
VIII and IX.

A2

30-48
30—48
36-48

4.4( 1.0)
3.03(24)
2.28(69)

0.000 37(16)
0.000 670 4(68)
0.000 684(14)

3.15(11)
3

3

0.75
0.56
0.64

0.081 46(41)
0.082 28(84)

TABLE XI. Mass gap estimates: Lm (P,L ) is given for 2D Potts model. By [z] we denote the distance at which the effective mass
is taken to be asymptotic. Data marked by an asterisk are not used for the straight-line fits, because they lead to unacceptable g's.
The estimated derivatives as obtained from Fig. 4 are shown for all L's.

1.41000
1.412 00
1.414 00
1.416 00
1.418 00
1.419 00
1.420 00
1.421 00
1.423 00
1.424 00
1.424 50
1.426 06
1.426 50
1.426 60
1.427 00
1.428 00
1.429 00
1.430 00
1.432 00
1.434 00
1.436 00
1.438 00

1.1368(28)[4]
1.1223(25)[4]
1.1065(24)[4]

L=6
1.1846(50)*[4]
1.1415(39)[4]
1.1005(43)[4]

0.9398(25)[4]
0.9268(27) [4]
0.9070(24) [4]

0.8287(49) [5]
0.7913(46)[5]
0.7646(48) [5]
0.7324(48) *[5 ]
0.7155(41)*[5]

1.0039(16)[4] 0.8900(33)[4]

L=8

1.2032(75)"[5 ]
1.1323(79)[5]
1.0668(64) [5]

0.8 174(48)[5]

0.7120(57)[5]
0.6682(73)*[5]

0.5936(73)*[5]

L =12

1.342(14)*[5 ]
1.270(16)*[5]
1.151(15)[5]
1.104(12)[5]

0.7288(86) [5]

0.618(13)[5]
0.575(13)*[5 ]
0.540(13)* [5 ]

L =16

1.043 (27) [6]
0.899(24)[6]

0.654(15)[6]

0.556(20) [6]
0.501(19)*[6]

L =24

1.343(49)*[6]
1.069(36)[6]
0.557(20) [6]
0.454(29) [6]
0.456(19)*[6 ]

d
Lm (P,L ) l g= p

—8.237(86)
dO

—17.25(20) —30.13(56) —69.7( 1.9) —120.8(7.2) —314(23)
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shown in Fig. 6. The L behavior for v [defined as
v=v(L;„,L,„),where L;„and L,„are as before the
limits for our linear regression and L „ is always the
largest available lattice size] is given for q=8, 64. The
convergence toward 1/D is quickly achieved for q =64.
For q =8 ( a weaker phase transition than q =64) no con-
clusive infinite volume limit is obtained from these small
lattice sizes (L,„=8 ). For q = 10 (an only slightly
stronger phase transition than q=8) our MC transfer
matrix method allows larger lattices and then conver-
gence toward 1/D becomes rather convincing from
L;„+6 on. In conclusion, it seems that for temperature
driven first-order phase transitions some theoretical work
remains to be done on the interesting subject of geometry
dependent FSS theory. '

T

L=12 L=16

2.0 j:
L=8

niL

1.0

0.5

0.0

0.3625 0.365

Q =0. 12

~J
0.3675

3D P at. ts

Q =0.23

Q=0.93

=0. 16

Q=0. 52

0.37 0.3725

B. 3D three-state Potts model FIG. 7. 3D three-state Potts model mass gap data.

For the 3D three-state Potts model our statistics per
data point (P,L ) relies on 320000 MC sweeps, with mea-
surements every 10 sweeps. An additional 8000 sweeps
were always discarded for thermalization. We have used
20 bins to estimate error bars. Our Lm(P, L) estimates
are given in Table XII. Following our previous pro-
cedure results for Lm (P, L ) are presented in Fig. 7, where
some points are not included because of their unaccept-
able Q values. Table XIII also contains our fixed points
for the 3D three-state Potts model. Our best estimate is

p, —/30(24, 16)=0.366 91+0.00002 . (3.13)

Of course, its accuracy cannot compete with Eq. (2.14),
but clearly both sets of results are consistent.

The v estimates for this model are shown in Fig. 8.
The linear regression for v still has unacceptable Q
values. However, the large L behavior for v defined as
v=v(L;„,L,„) shows a clear trend toward I /D. Bear-
ing in mind the results of the previous section, the rather
weak first-order transition is conjectured to be responsi-
ble for the slow convergence. Within its statistical errors

the estimate from L;„=16,L „=24 is just 1/D, but
with the presented trend from other lattices one does not
feel confident to exclude accidental agreement. The rela-
tive error of this estimate is about 5%, whereas it is less
than 1% for the final estimate from the partition-function
zeros.

IV. SUMMARY AND CONCLUSIONS

We studied models with a first-order phase transition
and difterent methods were used to extract the critical ex-
ponent v. In the cylindrical geometry rapid convergence
toward the infinite volume limit is found in two rather ex-
treme cases, namely, for the 3D Ising model' and its
second-order transition and, as presented here, for the
strong first-order transition of the 2D ten-state Potts
model, even more pronounced for the 2D 64-state Potts
model. ' In contrast the convergence is found to be mod-
est for the 3D three-state Potts model and its weak first-
order transition.

Altogether, if one is mainly interested in critical ex-

4 ZD Pot, ts q=64

q=8

[0.6023]

8)

8—

.332(17),—]

[o.
0), ~o ']

L1—

0.5 1 1.5 2 2.5 4 L=

1.5 2 2.5 3 3.5

FIG. 6. 2D q-state Potts model (q=8, 64) v fits from exact
results (Ref. 18). FIG. 8. 3D three-state Potts model v fits.
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TABLE XII. Mass gap estimates: Lm(11,L) is given for 3D Potts model, otherwise as Table XI. The estimated derivatives as ob-

tained from Fig. 7 are shown for all L's.

0.362 20
0.362 60
0.363 00
0.363 40
0.363 80
0.364 20
0.364 60
0.365 00
0.365 40
0.365 50
0.365 60
0.365 80
0.366 00
0.366 20

0.366 60
0.366 68
0.366 70
0.367 00
0.367 02
0.367 10
0.367 40
0.367 60
0.367 80
0.368 00
0.368 20
0.368 60
0.369 00
0.369 40
0.369 80
0.370 20
0.370 60
0.371 00
0.371 40

1.3445(68) [4]
1.3177(51)[4]
1.3035(64)[4]
1.2944(59) [4]
1.2788(80)[4]

1.0460(67) [4]
1.0319(44)[4]
1.0126(62)[4]
0.9999(45)[4]
0.9970(34)[4]

1.4146(80)[4]
1.3 859(78)[4]
1.3517(71)[4]
1.3136(65)[4]

0.8074(69)[4]
0.7709(63)[4]
0.7471(61)[4]
O.7062(53}[4]

1.600(10)*[5]
1.538(12)*[5]
1.4693(96)[5]
1.4022(95) [5]
1.3315(60)[5]

0.6653(57)[5]
0.6029(78)[5]
0.5649(94)[5]
0.512(10)"[5]
0.4819(96)*[5 ]

L =12

1.971(20)*[7]
l.823(22) *[7]

1.647(20)*[7]
1.478(23) [7]

1.408{22}[7]
1.322(14)[7]

0.560(16)[7]
0.498(14)[7]
0.443(11)[7]
0.335(16)*[7]
0.297(17)*[7]
0.216(15)*[7]

L =16

1.999(54)*[8]

1.708(45}[8]
1.580(44) [8]
1.417(58)[8]

0.468(28) [8]
0.365(25)[8]
0.272(26) [8]
0.235(26)*[8]

1.676(123)[9]
1.467(63) [9]
1.428(77) [9]
0.547(59)[91
0.588(43)[9]
0.469(48) [9]

L {Pni, L }~p p
—37.70(44)

dg
' =c —84.49(65) —151.9( 1.2) —372.5( 5.4) —739(19) —2507(141)

ponents and latent heat for (possibly weak) first-order
transitions, the L block geometry seems to be more suit-
able for a MC investigation than the L '~ cylindrical
geometry. For SU(3) gauge theory as well as for all
Potts model cases (results for the 2D ten-state Potts mod-
el are reported elsewhere ') the FSS analysis of the
partition-function zeros yields the exponent v in a rather
e%cient way. Naturally, for simulations large L values
are important and easier reached in the block than in the

cylindrical geometry. In principle this advantage may be
offset by an expected faster convergence in the cylindrical
case, but in practice this does not really seem to happen
for the first-order transitions. In addition, the FSS
analysis of the specific heat from L lattices gives a self-
consistent (means acceptable Q ) determination of a
nonzero latent heat for each of the first-order models.
This seems to be the most direct and convincing way to
establish that a transition is of first order.

TABLE XIII. MC estimates of P, (L,L'). From up to down, the first "triangle" corresponds to 2D ten-states Potts model data set

and the second one to 30 Potts model.

L'

6

12
16
24

0.364 64(8)
0.365 40(4)
0.366 17(3)
0.366 52(3)
0.366 80(2)

1.4138(4)

0.365 92(7)
0.366 42(3)
0.366 65(3)
0.366 84(2)

1.4178(3)
1.4206(3)

0.366 57(4)
0.366 73(3)
0.366 86(2)

L =12

1.4217(2)
1.4231(2)
1.4239(2)

0.366 84(5)
0.366 90(2)

1.4230(2)
1.4238(2)
1.4242(2)
1.4245(3)

0.366 91(2)

1.4246(2)
1.4250(1)
1.4252(1)
1.4254(1)
1.4256(1)
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3D Ising

15

10

0 I

0.22

I I

I

I I I I I I

0.2225 0.225

I I I I I I I I

0.2275 0.23

I I I I I

I

0.2325

30

20

10
QD three-state Potts

0
I

0.367 0.36V4

L 60
I I I I I I I

40

20
20 ten —state Potts

I

1.39
I I I

1.4
I I I

1.41
I I I

1.42 1.4
zeros

C

FIG. 9. /3;""(L ) for 3D Ising, 3D three-state Potts, and 2D ten-state (Ref. 31) Potts models.

Finally, an observation, graphically presented in Fig. 9,
may be worthwhile to notice. For the 3D Ising model
(second-order phase transition) the effective critical /3

approach p, ( ~ ) from above, [/3 "')p, (ae )]. For the
2D ten-state Potts model (strong first-order phase transi-
tion) the approach to p, ( ~ ) is from below
[/3 ""(L) (p, ( ~ )]. Curiously, for the 3D three-state
Potts model we have a second-order-like behavior for
L ~22 and a first order as for L «24. The model does
not seem to "choose" its order until L =24.

One may use o. /v as a measure for the strength of a
second-order transition. In this sense the 3D Ising model
a/v-0. 11 (see the Appendix) has a weak second-order
transition. First-order transitions have a/v=D and the
latent heat provides a measure for their strength. It may
be interesting to find and to investigate a model with a
strong second-order phase transition, i.e., with o. /v only
slightly smaller than D. Similar to first-order transitions,
we would expect the block geometry to be more ap-
propriate for such a study. On the other hand, for a
weak second-order transition [at least we have some evi-
dence in case of 4D SU(2) lattice gauge theory] it may
well be possible that the MC transfer matrix approach on
cylindrical lattices yields a more eKcient determination
of v than the FSS analysis of zeros. Presently, the issue is
not yet completely clarified, some work is in prepara-
tion.
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APPENDIX

We would like to comment on the results
a/v=0. 30(3) for the 3D Ising model claimed in Ref. 7
from the fit

(A 1)

as their data was not precise enough to get the subleading
term. We carried out FSS fits of the form

C, (/3, =0.221650)=A, L i +33 . (A2)

Using our L =14 lattice' and combining it with data
given in Ref. 34, we obtain

n/v=0. 127+0.020, (A3)

with a goodness of fit g =0.93. In contrast to
a /v =0. 30( 3 ) this result is now consistent with the
hyperscaling relation D v =2 —a, the analytical esti-
mates a=0. 110(5), v=0. 630(2), and a recent numeri-
cal FSS analysis (along different lines as presented here).
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