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Renormalization-group theory of the incommensurate pinning transition and threshold dynamics
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We introduce a renormalization-group approach to incommensurate systems. The transforma-
tion can treat both static and dynamic properties. A symmetric fixed point of this transformation is
found and is seen to determine the critical properties of the depinning transition. The universality
class of this transition is found to include higher harmonics of the pinning potential, both those that
preserve the inversion symmetry and those that break it. The theory is shown to yield converging
estimates of the correlation-length exponent. The results for the dynamics show that systems near
the threshold flow toward a strong-pinning threshold fixed point on the boundary of the physical

Hamiltonian space.

INTRODUCTION

While experimental results have provided a major
motivation for the theoretical study of charge-density-
wave (CDW) conductors,! it has long been recognized?
that the dynamic threshold of these nonlinear conductors
constitutes an important theoretical challenge in its own
right. Classical models of CDW conductors have three
attributes that make their solution an interesting prob-
lem. First, they have no unit cell, so that there are an
infinite number of inequivalent degrees of freedom that
can affect the bulk properties. Second, they are dynami-
cal systems far from equilibrium, and third, the dynamics
is nonlinear.

Progress has been made in understanding these systems
when the nonlinearity is weak, for example, when the
CDW is in a dc field much larger than threshold. The
random pinning potential of the Fukuyama-Lee-Rice
(FLR) model® can then be treated within perturbation
theory* and qualitative insight, for example concerning
the role of dissipative screening currents, can be ob-
tained. When the nonlinearity is stronger, further pro-
gress has been made with models in which the pinning
potential is periodic, but incommensurate with the
CDW.%>7 For these incommensurate or Freukel-
Kontorova (FK) models,® it is possible to transform the
steady-state dc dynamics to a static system.’ Truncating
this static problem in Fourier space then showed that the
dynamic properties of the incommensurate models de-
scribe a variety of experimentally observed properties of
CDW conductors.*>’ Some information was also ob-
tained about the threshold region; the closer one is to it,
the slower is the convergence of successive truncations.
This is the expected behavior for a critical point:! an
infinite number of degrees of freedom are contributing
significantly to the macroscopic properties.

It is then natural, given the success of the ideas of Fish-
er, Kadanoff, and Wilson® in understanding equilibrium
critical phenomena, to attempt to apply the concepts of
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the renormalization-group (RG) theory here. There has
been a conjecture’ as to what the RG flows for a CDW
system might be like, but so far there has been no success
in constructing a working RG transformation in this
many-body dynamical system.

To describe the deterministic dynamics, we cannot
make use of partition function, but the basic RG con-
cepts of the successive removal of degrees of freedom,
and the resulting flow of the system in some parameter
space, may still be useful. Which degrees of freedom
should be removed and how; and what is the correct pa-
rameter space?

These questions apply equally to random and incom-
mensurate pinning. Solutions of incommensurate sys-
tems give a good account of a wide range of CDW experi-
ments.*>7 There is, thus, a variety of these experiments
for which the precise form of the pinning potential is not
crucial. This paper shows how the concepts of the RG
can be applied to the pinning transition and dynamic
threshold in incommensurate systems. The goals include
an understanding of the critical properties, for example, a
way to determine critical exponents without explicit nu-
merical simulation of the critical quantities, and a deter-
mination of both the extent and the origin of the univer-
sality. It is hoped that, in addition to its intrinsic in-
terest, the solution of this problem will also teach us how
to think about the dynamic threshold in randomly pinned
systems.

Dimensionless equations of motion for a generalized
FK model can be written:

duj/dz=P(Tj+uj+a)+2772DPuj_P+E R (1)
p

where u; is the displacement of the jth particle in the
chain; j=1,2,...,N; =M /N; M and N have no com-
mon factor and approach infinity so that 7 approaches a
fixed irrational number; the D, are the elastic coefficients;
E is a uniform electric field; P(x) is a periodic pinning
force with period 1; and « is an adjustable phase.
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Unlike ferromagnetic critical behavior, CDW dynam-
ics has an important underlying geometry: The critical
nature of the threshold arises from the mismatch between
the spatial structures of the pinning potential and the
periodic CDW. While decimation and site-cell transfor-
mations have been useful for ferromagnets, it would seem
wise here to choose a basis for the internal degrees of
freedom which respects the underlying geometry. For in-
commensurate systems with P(x +1)=P(x), a natural
choice is

W= |1/N3 e 2™ u;—(u))| . )
J

In addition these are the variables which, by proper
choice of their phase, map the dc dynamics to a static
problem.7 To see this, note that a dc solution to Eq. (1) is
given by

u;=(u)+g(rj+<u)), (3)

where g(x)=g(x +1) is a periodic time-independent
function satisfying
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v dx

=P[x t+g(x)+a]

+27 3y D,g(x —1p)+E, (4)
P

where v = (duj /dt ). We can then write

gx)=3 W,e?m= (5)

and the W,, are also constant in time.

This transformation of the dc dynamics to a static
problem is clearly of use in a RG theory where we seek a
renormalized Hamiltonian with no explicit time depen-
dence.

The use of the Fourier basis W,, is also suggested by
the work of Shenker and Kadanoff (SK).!° A theory of
FK systems should include the special case of E=0.
Here, there is a critical pinning transition which has been
carefully studied.!' Shenker and Kadanoff calculated the
numerical values of the Fourier components and found
that these variables revealed structure at all scales at the
pinning transition: Within a power-law envelope, there is
an asymptotic self-similarity in successive logarithmic in-
tervals of the harmonic number, m.

This in turn means an asymptotic scale invariance in
real space. The mth component of the chain’s distortion
has the form, for particle j, of e™2™, The inverse wave-
length of this distortion is thus the smallest absolute resi-
due, R,,, between m7 and an integer. Now the integers
(and, hence, the components W, ) can be divided into se-
quences such that R,, decreases, by a factor which ap-
proaches 7, from one member of a sequence to the next. 1
That is, the wavelength of each component is asymptoti-
cally a factor of 7 greater than that of the preceding
member of the sequence. These sequences are precisely
those which show up in SK’s results. Each successive ele-
ment of a sequence is in the next logarithmic “period” of
SK’s self-similarity. This means that, as the length scale
is increased by a factor of 7, the amplitude of the distor-
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tion diminishes by the same factor resulting in an asymp-
totic scale invariance in real space.

These observations then suggest the basis for a renor-
malization transformation which removes the shortest-
length scales from the problem. The distortions with the
shortest wavelengths are just those components which
are the first members of all the sequences. Consider then
a bare or starting incommensurate system. Determine
the Fourier components of the distortions and arrange
them into these special sequences. Discard the first
member of each sequence. Relabel the modes so that the
second member of each sequence becomes the first, the
third becomes the second, etc. Rescale each component
by a factor m /m’, where m was its original harmonic
number and m’ is its new harmonic number. Now regard
the new sets of modes as the distortions of a renormalized
system, which must be determined.

We have examined several implementations of these
ideas to check that there is nothing artifactual in the re-
sults. Here, we outline one of these implementations.

Fourier transforming Eq. (2) we obtain the time-
independent equations of state for the W,,,:

277[ > 2D,[1—cos(2mmp)]+imv| W, =F, (W,),

p>0
(6)

where v =E +Fy(W,,) and
7,,,(W,,,):f_”22dx e ™ p(x +g(x)+a). (7

The starting system is defined by specifying the pinning
force P(x), the elastic constants D,, and the electric field
E. The transformation can then be executed as follows: '3

(1) Truncate and solve: Retain m,, complex com-
ponents W, , and find them by solving the first m of
Eq.(6): m=1,2,...,m_,,.

(2) Discard all modes W,, for which m is the first
member of a sequence.

(3) Relabel the remaining modes m with the mode
number m’ which preceded m in its sequence. Each se-
quence now starts with its first member again.

(4) Rescale each remaining mode by multiplying by
m/m’. Thus

Wi, =(m/m"W,, . (8)

max

(5) To determine the renormalized system, we note that
splitting the equations of state into real and imaginary
parts gives a set of linear, homogeneous real equations for
the parameters which define the system. That is, the in-
verted equations have the form:'*

> A,,,pSA;ZO 9)
p

where S’ is a vector containing the parameters which
define the renormalized system and A4 is a real rectangu-
lar matrix, with n =1,2, .. .,(2m_,,). We can then keep
enough components in the truncation so that there are
more equations than system parameters, and determine
the latter by minimizing the sum of the squares of the
residues to Eqgs. (9). The renormalized system is then
given by the eigenvector with the smallest eigenvalue of
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the real, symmetric, positive-definite matrix B,
B, ;=3 .1,n24n1,p Ana,q- A measure of the uniqueness of
this choice is given by the ratio of the two smallest eigen-
values.

(6) The adjustable phase a can be chosen, ' for exam-
ple, to minimize the smallest eigenvalue of the matrix B.
For the case of a bare system with left-right symmetry,
a=0 and the transformation preserves the symmetry. '°

MacKay!!' has developed a renormalization group to
extract the critical exponents at the pinning transition. It
is very similar to the one used by Kadanoff and his col-
leagues!”!® in their calculation of the critical behavior of
a Kudanoff-Arnold-Moser KAM surface and the quasi-
periodicity in a dissipative system. However, it is very
difficult to extend MacKay’s method to include the
threshold transition as well. !°

RESULTS

The following results were obtained for the case of
purely nearest-neighbor elastic forces (D, =0, p > 1).

The pinning transition

If we consider first a left-right-symmetric pinning po-
tential, the pinning force P(x) is then antisymmetric and
can be expanded in a sine series: P(x)=3, P,,sin(27px).
The W,, and the &,, are then imaginary, and v=0, so
that Eq. (6) becomes real.

(a) Figure 1 shows the RG flows which were obtained
in the P, —P,, subspace. We see that there is a fixed-
point pinning force P*(x). At a fixed point one expects
total scale invariance. Indeed we find that, as we ap-
proach the fixed point, the scale invariance that Shenker
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TABLE I. RG estimates of the critical value of P,,.

A harm 1 2 3
M max
8 —1.502 —0.975 —0.972
13 —1.480 —0.973 —0.971

and Kadanoff found asymptotically at the pinning transi-
tion extends here to all Fourier components. That is at
the fixed-point scale invariance occurs at all length scales,
and not just asymptotically at large length scales.

(b) Next we see that the fixed point has a stable mani-
fold or critical curve, and that the pinning transition lies
on this critical curve. The intersection of this manifold
with the P, line converges to the known critical value.
This fixed point thus determines the critical properties of
the pinning transition.

Including the higher harmonic P ; then showed that
the fixed point was also stable to this harmonic so that
the critical curve shown in Fig. 1 is the intersection with
the P, — P, plane of a critical surface in the space of pin-
ning forces P(x). This in turn indicates that the univer-
sality class of this transition includes pinning potentials
with all symmetric harmonic components. Table I shows
the critical value of P, as a function of the number of
harmonic components in the pinning force. The rows of
the table correspond to the number of degrees of free-
dom, W,,, used in the calculation, and the columns corre-
spond to the number of sine components, ny,.,, used to
parametrize the pinning force P(x). It could be seen that
one harmonic component would give a very poor approx-
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FIG. 1. Renormalization-group flows in the symmetric subspace. P, and P;, are, respectively, the fundamental and first harmonic
of the pinning force P(x). (D, the nearest-neighbor spring constant, is normalized to 2.) The heavy line is the critical curve. The
arrows show the direction of the RG flows. The point P.(FK) is the Frenkel-Kontorova pinning transition (see Ref. 11), and P* is

the fixed point which determines its critical properties.
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imation. While the result for those for ny,., =2 have no
substantial change as ny,,, increases.

The critical surface divides the space of pinning forces
into two parts. Those points on the weak-pinning side
flow to zero pinning so that their long-range properties
are those of a free harmonic chain. Those points on the
other side flow to very strong pinning, so that their long-
range behavior is of a system that is not free to slide but
consists, asymptotically, of single particles pinned in the
potential wells.

(c) Next we studied the effect of breaking the symmetry
of the pinning potential. That is we broke the antisym-
metry of the pinning force, introducing cosine com-
ponents of P(x). We found that these cosine components
decayed under iteration of the transformation. The
fixed-point pinning force P*(x) thus is stable with respect
to asymmetric perturbations. Equivalently, when the
transformation is linearized about the fixed point in the
space of smooth pinning potentials, it is found to have
only one relevant eigenoperator.'* Thus, the universality
class of the pinning transition includes both symmetric
and asymmetric pinning potentials.

(d) Consider a displacement-displacement correlation
function:

CH=3 (uy4;—udNu,—<u)) .
p

Since, for E=0, the fixed point has only one relevant ei-
genvalue, following the RG analysis of Wilson, Fisher,
and Kadanoff, we find that the length scale, £, which
characterizes the long-ranged correlations diverges ac-
cording to a power law &~ |P —P.| ", where the critical
exponent v is related to the relevant eigenvalue A in the
usual way:

_Int

_Int 10
V=1 (10)

Some estimates of this exponent are given in the Table II.
These estimates are consistent with convergence to the
known!! value of 0.987. It is interesting that the RG
transformation provides estimates of the critical ex-
ponent accurate to within 2% when the number of de-
grees of freedom used, m ,,,, is still rather small.

Crossover exponent

The variables W,, are time independent even when the
system is sliding, so that this transformation can also be
applied to the dc dynamics.

An electric field E breaks the left-right symmetry so
that both real and imaginary parts of the components
W, are generally nonzero, as is the adjustable phase a.

TABLE II. RG estimates of the correlation-length critical
exponent.

Mharm 2 3
M max
8 1.02 1.02
13 1.01 0.99
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TABLE III. RG estimates of the crossover exponent.

nharm 2 3
mmax
8 3.04 3.34
13 3.02 3.16

Because the symmetry is broken, we also now include a
cosine component to the pinning force P(x) for every
sine component retained. The system is thus now flowing
in a Hamiltonian space of twice the dimensionality neces-
sary to study the pinning transition. The RG transfor-
mation could be linearized about the pinning-transition
fixed point in the asymmetric subspace of parameters. It
is found that there is one relevant eigenoperator which
will move system toward the strong-pinning threshold
fixed point. Table III gives some estimates of the cross-
over exponent.

Threshold transition

With a nonzero electric field E, we find that flows ex-
hibit a well-defined flow pattern in the space of parame-
ters. In Fig. 2 we show flows, projected onto the E, D,
plane. The topologies of flows for number of harmonic
components of two and of three are almost the same.
However, they are different from the flows with only one
harmonic component. As shown in Fig. 2(a), there is no
flow boundary which would separate the sliding phase
from the pinned phase for one-harmonic-component pin-
ning force. A system will eventually flow to the weak-
pinned fixed point under iteration of the RC transforma-
tion. It appeared to be a poor approximation as well as
pinning transition for ny,.,, =1. So we report the results
for two harmonic components of the pinning force.

A RG flow for FLR model has been conjectured.
Threshold systems were conjectured to flow to a finite
fixed point on the threshold curve, i.e., one with a finite
pinning strength. Thresholds at strong pinning would
then have their pinning strength diminished under itera-
tion as they flowed to this finite fixed point. It is clear
that the flow topologies of conjecture and the present re-
sults are different. In particular, the present results show
that the threshold dynamic critical behavior is deter-
mined by a strong-pinning-threshold fixed point at the
edge of the physical parameter space.

Figure 3 shows the pinning forces at the threshold
fixed point. The amplitude of the second harmonic com-
ponent, P,, of pinning force and the phase difference be-
tween the fundamental and the second harmonic, a,,
have the values which minimizes the maximum pinning
force.

The flow boundary is at a slightly different place on the
threshold curve, which separates the pinned static system
from the unpinned dynamic system. It is found that as
the number of modes m,, increases. the flow boundary
approaches the threshold curve from the pinned side of
the curve. As shown in Fig. 2(b), flows move away from
the strong-pinning threshold fixed point along the E axis
with an infinite pinning strength. It is also found that the
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FIG. 2. Renormalization-group flows near the dynamic threshold, projected onto the E-D, plane. In this figure the flows each
start with a pure sine-wave pinning force, but flow in a Hamiltonian space with sine and cosine components for P(x). The normaliza-
tion is max[ —P(x)]=1, so that as D, vanishes, the threshold field approaches 1.

points on the hypersurface of flow boundary in parameter
space, in spite of distances between them, would flow into
a limited vicinity of the threshold fixed point after itera-
tions of the RG transformation. This critical surface
divides the space of parameters into two parts as well as
it did in E=0 subspace. Those points on the strong-
pinning side flow to the fixed point with very strong pin-
ning and a zero electric field. Those points on the other
side flow to zero pinning.

The long-range properties of points on the critical sur-
face should be determined by the properties of the
strong-pinning threshold fixed point. At the fixed point,
the incommensurate chain becomes a bunch of indepen-
dent particles. Most of them are located near bottoms of
the pinning force. If one could use the results of a single
particle to describe the threshold dynamics of the chain
at this fixed point, then the averaged velocity would be
given by v "'~ fdx /[E +P*(x)] when the driving elec-
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FIG. 2. (Continued).

tric field E is greater than the threshold field E, for a sin-
gle particle in a periodic potential which is equal to the
maximum pinning force. If E is very close to E,, then the
averaged velocity could be written as v ~(E —E, )%, The
exponent § is determined by the shape of the pinning
force P*(x) at the fixed point, especially the shape of
bottom of the pinning force. For example, if
P(x)=sin(27x +a), for ny,., =1, the exponent is equal
to 1. For a square wavelike pinning force, the exponent
is equal to 1. These two numbers provide us the up-limit

26

and the low-limit for the value of the exponent £. Cop-
persmith and Fisher>?® calculated the exponent ¢ by
direct simulation. They found ¢ should be equal to 0.68.
We could estimate the value of § from the pinning force
at the fixed point. As the system flowed to the strong
threshold fixed point along the trajectory on the critical
surface, we found that the renormalized pinning force
had a flatter bottom than the bare pinning force with
which we started the iteration. Furthermore, this tenden-
cy increases as one increases the number of harmonic

PINNING FORCE P(z)

FIG. 3. Pinning forces at the threshold fixed point. The solid line is the curve of the pinning force for the system with ny,,, =3

T

000 025 050
r

’

while the dashed line is the curve for the system with ny,,.,, =2. The curve of the pinning force for Nyarm = 1 18 a pure sine curve and

not shown here.
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TABLE IV. RG estimates of the relevant eigenvalue A, at the
threshold fixed point.

Pinned side

M parm Unpinned side
2 1.20 2.56
3 1.26 2.64

components in pinning force. The exponent § extracted
from the pinning force P*(x) (see Fig. 3) is about 0.73 for
Rparm =2, and 0.66 for ny,, =3. The numerical uncer-
tainty is about 0.04. These results are consistent with the
value given by Coppersmith and Fisher.

The transformation could be linearized at the fixed
point, relevant eigenoperators are found on both sides of
critical surface. Table IV gives some estimates of the ei-
genvalues of the relevant eigenoperators. The eigenvalue
on the weak-pinning scale is twice as large as the one on
the other side. This suggests that scaling functions may
be different above and below the threshold.

CONCLUSION AND DISCUSSION

The new RG theory of the incommensurate chain can
treat both static and dynamic properties. The depinning
transition and the strong-pinning threshold fixed points
have been found. The universality class of the depinning
transition is found to include higher harmonics of the
pinning potential.

The universality class associated with the introduction
of other short-range elastic forces is an interesting one.
Our results show that the universality class of the depin-
ning transition does not include systems with more elastic
forces other than the nearest-neighbor interactions. This
suggests that changing the short-range interaction be-
tween particles will change the long-range critical behav-
iors.

With more CPU power, one could systematically study
the effects of increasing the wavelength and complexity
of pinning force. One may be able to approach the
random-pinning threshold as the limit of incommensu-
rate systems.
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