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The Agl thermal transition of the 3 phase (wurtzite structure) to the a phase (body-centered-
cubic structure) occurred at a higher temperature (162 °C) than that previously reported ( ~ 147 °C).
It is believed that this higher temperature is the result of these gelatin-grown -phase microcrystals
being unusually free of included y phase and other crystal defects that would serve as a-phase nu-
cleation sites. Introducing defects into these grains catalyzed this transition at the lower tempera-
ture. Having two distinct phase-transition temperatures explains the memory effect that has been

reported in some Agl microcrystalline samples.

INTRODUCTION

Silver iodide can have three fundamental phases at at-
mospheric pressure: the /3 or hexagonal structure of the
wurtzite type, the ¥ or face-centered cubic structure of
the zinc blend type, and the a or body-centered cubic
structure occurring at high temperature. It is generally
accepted that the 3 phase is the stable phase at all tem-
peratures below 147 °C and the y phase is metastable.

The B and y phases almost always occur as mixtures,
and their ratio is not easily determined.""? X-ray powder
diffraction has been the technique used to analyze micro-
crystalline samples but the predominant reflections of the
v phase overlap with reflections of the 3 phase, requiring
a relative intensity analysis. Even this analysis can be
difficult since relative intensity changes can also be
caused by preferential orientation of the microcrystalline
particles. Sometimes helpful is the unique y-phase
reflection at 1.6236 A (56.695° for Cu K a), but this (400)
reflection has a low relative intensity (I/I,,=0.06),
which limits its usefulness. Also, particular care must be
taken in handling SB-phase samples because moderate
grinding or compression can result in the formation of ¥
phase.>*

Probably because of these difficulties, samples believed
to be pure 8 phase have turned out to be mixtures. For
example, the x-ray diffraction line intensities of pure S
phase reported by the National Bureau of Standards’
were shown by Berry? to be due to a mixture containing
30% y phase. Similarly, an x-ray powder diffraction pat-
tern published for a “pure B-phase” sample® is more con-
sistent with a sample containing ~33% ¥ phase.

Not only do these two phases readily coexist, but even
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a number of polytypes consisting of regular stacking of
the cubic and hexagonal layers have been reported.” '°

It is generally accepted that the 8 phase or mixtures of
(B,7) phases transform to the a phase when heated to
~147°C, and the change is not usually reversible upon
cooling because of a possible change in the B:y ratio.!0~13
A memory effect has been reported for the B:y ratio of
microcrystalline samples heated above the 147 °C transi-
tion temperature and then recooled; the original ratio is
regenerated. This memory effect is irreversibly erased if
the sample is heated above ~170°C.*13

It has been proposed by Burley that this effect is an in-
trinsic property of Agl brought about by preferential oc-
cupation of certain silver ion sites when heated near the
transition t:emperal:ure.13 However, the preferential occu-
pancy of the silver ions within the temperature range of
interest (147 °C to ~170°C) is of questionable importance
since it does not appear to be affecting the ionic conduc-
tivity of the o phase, which is a superionic conductor.
After the abrupt, 4-orders-of-magnetic change in conduc-
tivity at the transition temperature (147°C), only a very
small and relatively constant increase in conductivity
occurs at higher temperatures.!*

This paper describes unusual thermal data obtained
from a B-phase Agl microcrystalline sample that is be-
lieved to be unusually free of crystal defects such as y-
phase inclusion, fractures, and lattice strain.

EXPERIMENT
General

All operations (except x-ray diffraction) were conduct-
ed under red safelights.
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Low gelatin freeze-dried B-phase Agl microcrystals:
B-phase powder

An Agl suspension was prepared by the controlled ad-
dition of AgNO; and Nal solutions to a stirred vessel
containing a bone gelatin solution. The gelatin solution
was maintained at 35°C and pI of 3.0 throughout the
266-min precipitation. !>

The suspension had a very pale yellow color like dairy
cream. The resulting microcrystals were monodisperse
0.26-um truncated hexagonal bipyramids (measured
across the basal plane). X-ray diffraction analysis showed
the microcrystals were pure 3-phase Agl.

A portion of the suspension (1 mol) was centrifuged
free of bulk gelatin, then resuspended in distilled water (1
L). A solution containing 50 mg of active proteolytic en-
zyme!® was added and the mixture was stirred for 30 min
at 40°C. It was then centrifuged (sufficiently to settle the
microcrystals but still leave them resuspendable without
scraping or grinding the sludge) and resuspended in dis-
tilled water twice, and finally freeze-dried to yield a free-
flowing powder. Combustion analysis of this powder
showed that only a small amount of gelatin remained
(0.7% C, <0.3% N, and H). X-ray powder diffraction
pattern showed this material to still be pure 3-phase Agl.

Differential scanning calorimetry

The DSC data were obtained using a Du Pont 910
DSC. For coolant control a Du Pont LNCA-II was used.
The calorimeter was calibrated using 99.999 99% indium
metal for temperature and energy calibration. The sam-
ples were placed, without compression, into aluminum
pans that were then hermetically sealed. Both heating
and cooling curves were run at 5 °C/min under a nitrogen

purge.
RESULTS AND DISCUSSION

An x-ray diffraction powder pattern of an almost com-
pletely randomly oriented sample of the B-phase powder
was obtained using the Rigaku 6-6 diffractometer and Cu
K radiation. The powder was loaded into the horizon-
tal sample holder without compression. The pattern
(26=15-55°) had a nearly perfect match, both in peak
position and intensity, for that calculated for SB-phase
Agl. The integrated diffraction intensities for the (1010),
(0002), and (1011) reflections were 1.65:1.12:1, which is
in excellent agreement with Despotovic and Popovic cal-
culated ratios of 1.72:1.13:1."7 No contamination by the
cubic y phase was detected (estimated purity > 98%).

DSC measurements on the [B-phase powder showed
that the transition of 3 to a phase occurred at a higher
temperature (162.4°C onset, 163.9°C peak, AH=1.29
kcal/mol) than has previously been reported for this tran-
sition (~147°C).'® Upon cooling, a large thermal hys-
teresis of ~72°C was observed (AH =1.27 kcal/mol).
Heating this same sample a second and third time result-
ed in a shifted and broadened endothermic peak that was
now consistent with the usually cited lower phase-
transition temperature (second heating: 147.7°C onset,
152.7°C peak, AH =1.29 kcal/mol). For all three cool-
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FIG. 1. Differential scanning calorimetry curves showing the
three heating (to 200°C) and cooling curves for the B-phase
powder. Note the change in the a-phase transition temperature
due to crystal defects formed during the first cooling. (For clar-
ity, the curves have been displaced along the vertical axis.)
These data were obtained at a heating/cooling rate of 5°C/min.
The onset and peak temperatures for the first heating were 162.4
and 163.9°C. Using 1°C/min, they were 161.5 and 162.2°C and
using 10°C/min, they were 162.7 and 165.3°C. This good con-
sistency indicates a relatively small thermal lag at 5°C/min.

ings, the exotherm peaks obtained upon cooling were
essentially the same (~92 °C onset) (Fig. 1).

Since Agl undergoes an abrupt ~ 6% lattice expansion
when transitioning to the lower temperature phases,'®2°
numerous crystal defects could form. Crystal defects,
which in the context of this study include cubic stacking
faults (i.e., ¥ phase), were found in thermally cycled f-
phase powder. A sample of the fB-phase powder was
heated to 190°C, then allowed to air cool rapidly ( <2
min). X-ray diffraction analysis showed that the ratios of
peak intensities had dramatically changed and there were
boroad new peaks at 3.62, ~2.184, ~2.054, and ~1.582
A. This sample did not contain a-phase Agl since this
phase is reported to have its main peaks at 3.58, 2.53, and
2.066 A (Ref. 21) and the sample lacked the long-
wavelength absorption characteristic of a phase. The
diffractometer tracing of this sample (Fig. 2) was nearly
identical with that published by Davis and Johnson for a
sample containing approximately equal amounts of f3-
phase and 7H polytype Agl.” The broadness of the peaks
in 7H polytype-containing samples may indicate an ad-
mixture with other polytypes, or a high degree of
structural disorder in the 7H polytype. [A sample cooled
much more slowly in a vacuum oven (~8 h) contained
mostly y phase with ~10% 7H polytype material
present.]

Alternatively crystal defects were introduced into a
sample of the B-phase powder by grinding briefly in a
mortar and pestle.>* This sample had only the usually
cited lower phase-transition temperature on the first heat-
ing (149 °C onset, 154 °C peak). A mixture of ground and
nonground samples resulted in both DSC peaks.

Some differently precipitated samples of Agl micro-
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FIG. 2. Powder diffraction patterns using CuK a radiation (a)
of the B-phase powder (having some preferential orientation)
and (b) of the B-phase powder that had been heated to 190°C
and rapidly air cooled (~30 s). The pattern of the heat-treated
sample is nearly identical to that prepared by Davis and
Johnson, which contains approximately equal amounts of 7H
polytype and B-phase Agl (Ref. 9).

crystals that were found to contain mixed phases were
also examined by DSC. They had a low phase-transition
temperature upon the first heating (1471 °C).

An observed increase in the phase transition tempera-
ture of very small Agl particles in pores (~0.02 um) has
been attributed to the effect of surface tension on homo-
geneous nucleation.’? This effect should be relatively
insignificant for these larger microcrystals and also could
not explain the differences in the phase transition temper-
atures observed for similarly sized particles reported
above. It appears that the higher than expected phase-
transition temperature of the 3-phase powder is due to its
lack of crystal defects. The formation of crystal defects
during the first cooling results in a lower phase-transition
temperature for the second and third heatings that is near
the value which is widely cited. The lack of two distinct
endo- thermic peaks for previously heated samples shows
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that every microcrystal now contains crystal defects (in-
cluding mixed phases). If this higher phase-transition
temperature results from superheating, as suspected, then
each microcrystal would need only a single nucleation
site to lower its transition temperature.

Based on these results, the reported memory effect can
be explained. Samples which show this effect must con-
sist of a mixture of defect-free S-phase Agl microcrystals
and other microcrystals containing mixed S and ¥
phases. Upon heating between 147-162°C, only the
mixed phase microcrystals would undergo the transition
to a phase while the rest would remain /3 phase. Upon
cooling, these a-phase microcrystals would change back
to mixed phase microcrystals. The abundance of these
microcrystals and the difference in their compositional
change caused by the heat/cool cycle would determine
the extent that the sample’s overall composition changes.

CONCLUSIONS

Relatively pure f3-phase Agl microcrystals were found
to have a higher a-phase transition temperature (162 °C)
than previously reported for Agl. Upon cooling, the
phase transition was not reversible. A rapidly cooled
( <2 min) sample of Agl contained a mixture of about
equal amounts of the 2H (B phase) and 7H polytypes.
Samples which contain some y phase or 7H polytype
have a lower phase-transition temperature (~ 147°C).
The general lack of two DSC peaks suggests that mixed
Agl phases usually occur within the same microcrystals.

The ~ 147 °C phase transition temperature reported in
the literature for B-phase Agl may indicate the presence
of crystal defects such as the inclusion of y-phase Agl.
The extent of defects needed to produce a lowering in the
phase-transition temperature was not determined but if
this higher phase-transition temperature is a result of su-
perheating, then a small amount in each crystal would be
sufficient. The reported memory effect is readily ex-
plained by assuming that the samples which show this
effect consist of a mixture of pure 3-phase microcrystals
and mixed phase microcrystals.
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