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The theory of domain growth developed previously to treat a nonconserved-order-parameter
(NCOP) system is extended to treat the conserved-order-parameter (COP) case (spinodal decompo-
sition). The theory here, as for the NCOP case, leads to universal scaling behavior for the order-
parameter structure factor, which depends only on the spatial dimensionality of the system. The
short-distance ordering in the system is found to be identical to that found for the NCOP case indi-
cating that the structure near the interface is independent of the driving dynamics. Porod s law, sig-
nifying sharp interfaces, is of exactly the same form as for the NCOP case. There are significant
differences between the two cases, however. In the COP case the growth mechanism works through
a coupling between the ordering component and a diffusing component. This coupling increases the
growth law, L (t), from the rather slow surface-diffusion form, t', to the classical Lifshitz-Slyzov-
Wagner form, t' . In the NCOP case, the ordering component is strongly decoupled from any fluc-
tuating component. While the structure factors for the two cases are the same for small values of
the scaled lengths (x =R/L «1) they differ significantly over the rest of the range of x. In the
COP case the theoretical expression for the scaled structure factor F(x) agrees well with the best
available simulational results. A striking feature of the theory in the NCOP case was the existence
of a nonlinear eigenvalue problem associated with the determination of the scaling function F(x).
In the COP case one has two such eigenvalues. The additional eigenvalue can be associated with
the coefficient x in the expansion of F(x) in powers of x. The nonzero value of this coefficient
renders invalid the symmetry [1—F(x) ]= —[1 F( —x)] foun—d in the NCOP case.

I. INTRODUCTION

In paper I of this series, ' a theory of domain growth
for systems with a nonconserved scalar order parameter
(NCOP) was presented. This theory is extended here to
the case of a system with a conserved order parameter.
The associated problem is commonly known as spinodal
decomposition. It has long been appreciated that the
conserved-order-parameter (COP) case is more involved
theoretically than the NCOP case, but the precise nature
of the additional complexity of the COP case has been
elusive. Essentially, all first-principles treatments ' of
spinodal decomposition have led to a growth law [dom-
inant scaling length L(t)] with L-t'~, where t is the
time after a quench into an unstable state. However,
theories" ' which assume the existence of sharp inter-
faces (of whatever morphological structure) and the ex-
istence of local equilibrium [referred to here as Lifshitz-
Slyzov-Wagner (LSW) theories] invariably lead to a
growth law of t' . The theory presented here leads
unambiguously to the t' LSW growth law and an un-
derstanding of the elusive nature of this result from a
first-principles point of view.

The theory developed in Refs. 1 and 3 is predicated on
the separation of the order-parameter field g(R, t) into
the sum of an ordering field o (R, t) and a fluctuation field
g(R, t). In the NCOP case, the theory is organized such
that cr and g are completely decoupled after a relatively
short time after a deep temperature quench. If one car-
ries out the analogous decomposition in the COP case, as

shown in Sec. II C, the ordering field o. is decoupled from
the fluctuation field g after a short time, and the only or-
dering mechanism available is surface diffusion which is
well known' to give a t' growth law. Clearly, from the
classic LSW analysis, a faster ordering mechanism for the
longest times in the problem is via bulk diffusion. It is
physically clear that the bulk diffusion process requires a
coupling between the ordering field o.(R, t) and the fluc-
tuation field g(R, t). As shown below, this coupling is via
flow terms in the equations of motion for the cr and g
variables not present in the NCOP case. It will be satis-
fying to find that, in the presence of this coupling, the
fluctuation field g becomes a difFusion field in agreement
with elementary treatments of Ostwald' ripening. Once
the fields are coupled it becomes more physical to refer to
o as the interfacial field and to g as the diffusion field. '

The organizing principle in treating the communication
between the interfacial field cr and the diffusion field g is
that the coupling be chosen to maximize the rate of or-
dering as measured by the growth law L (t) in the system.

The theory developed in I supports the proposition
that the scaling properties of growth kinetics have
universal features. For the general class of field theoreti-
cal models treated in I, the scaling functions obtained de-
pended only on the spatial dimensionality of the system.
The class of models treated in I included purely dissipa-
tive time-dependent Ginzburg-Landau (TDGL) models
with a single nonconserved scalar order parameter. The
driving potential was assumed to be a general symmetric
degenerate double-well potential with two quadratic
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TABLE I. Dimensionality dependent quantities entering the theory. /3z and p are the eigenvalues
associated with the scaling function F(x). Ad is defined by (2.73), Bd by (3.48), Cd by (1.6), and zQ by
(2.70).

—0.077 8
—0.035 6

0.337 596
0.175 171

0.894
0.910

Bd

1.839
3.284

ZQ

1.58
1.55

minima. While results were established in detail for
quenches to zero temperature, it was conjectured ' that
nonzero temperatures would not inAuence the universal
features.

A somewhat surprising result found in I is that the
growth law L (t), when measured in units of the equilibri-
um interfacial width, takes a universal form [see (I.l.51)].
This onclusion is connected to the result that the parame-
ter p =LL approaches a fixed point value p*(d) as L ~~
which depends only on the spatial dimensionality d. It
was, however, also pointed out that p* has another physi-
cal interpretation. For large scaled distances x =R/L,
the order-parameter scaling function F(x) approaches

iiC

zero as e " and p* can be defined as the limit

p = lim
2 lnF(x) .

It seems that this last result is robust. The result

p = lim IL
f —+ oo

(1.2)

seems less compelling. We shall see below in the COP
case how the results (1.1) and (1.2) can become uncou-
pled.

While there are a number of differences between the
NCOP and COP cases, there are also a number of impor-
tant similarities. In both cases one obtains universal scal-
ing functions F(x) which depend only on spatial dimen-
sionality. While the specific forms for F(x) for the
NCOP and COP cases for x &)1 are quite different, for
intermediate distances R ((L, the results are in precise
agreement. In both cases, for g «R «L, where g is the
interfacial width,

where even powers of x do not appear beyond the leading
term: P2„=0for n )0. Explicit expressions for /3z„+,
can be found which are strictly functions of the spatial
dimensionality. In the COP case, things are somewhat
different. Assuming the form (1.5), one can obtain ana-
lytic expressions for /3„as shown in Sec. III C. One again
obtains P, =1, but now /3z is undetermined by the power-
series solution of the fundamental equation governing the
scaling function due to the gradients associated with the
conservation law. Indeed, all higher-order coeKcients
depend on /32 and all even-order coefficients are propor-
tional to /32. /3z is not, however, undetermined. Just as in
the NCOP case, the differential equation and boundary
conditions satisfied by F (x) are over determined and lead
to a nonlinear eigenvalue problem. In the COP case,
however, there are two eigenvalues to be determined.
The first parameter is equivalent to the parameter p
present in the NCOP case. The second eigenvalue can be
related to /3~. This follows since, as will be shown below,
F(x) satisfies a fourth-order differential equation and the
conditions F (0)= 1, F'(0)= —a, F"(0)= —2a/3z,
F"'(0)= —6a)333, and F(x) decay exponentially to zero as
x ~ eo. These conditions uniquely determine p and P2 as
functions of d as given in Table I for d =2 and 3.

The solution of the nonlinear eigenvalue problem not
only gives p and Pz but also the complete scaling function
F(x) shown in Fig. 1 for d =2 and 3. The scaled struc-
ture factor is compared with the best available numerical
simulation results in Fig. 2. The comparison is quite

F(x)=1—tax +
where

0.9

a = i 2/[ir(d —1 ) ] (1.4) 0.7

and Porod's law holds in the same form for both
cases. Thus, the short-distance structure (which is deter-
mined by local equilibrium) is the same in the two cases.
The behavior at very short distances R & g agrees in de-
tail with the results reported in I. These very short-
distance findings, of course, depend on microscopic de-
tails of the potential, lattice type, etc.

One surprising result of the analysis for the COP case
is the breakdown of the so-called "Tomita" sum rule.
In the NCOP case it was found, for small x, that the scal-
ing function can be written in the form

0.5

0.3

O. I

—O. I

IO

F(x)=1—a g P„x",
n=1

(1.5)
FIG. 1. The scaling function F(x) for d =2 and 3.
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e scaling regime (shown in Fi

Porod's law is explicitly confirmed in the form

f (Q) — C Q
(d+ )

where C as aa unction of d is given in Table I and
=ql. .

O. l—

II. FORMAL DEVELOPMENT

A. Definition of problem

-O. I—
L
0

e general system treated
L model in the r

ated here is the conserved
p esence of Gaussian noise. In

terms of a dimensionless length scale the be, e asic equation
ion satisfied by the order-parameter field g(R r ist

0.9

Bg(R, t) g, 5F
B)r 5$(R r)

(R}

where the Gaussian noise satisfies

(2.1)

0.7 (2.2)(g(R, t)i)(R', r') ) = Tf (R)5(R—R')5(r r'—
I

0.5
f'(R) = —Dq' (2.3)

0.5

0.!

where D is a bare diffusion coefficient. In (2.2), T is a di-
mensionless measure of th
h

the final temperature, and in (2.1}
t e drivin effectig tive Hamiltonian is assumed to be f
general form

e o eo te
—0. ( F = Jd R [—,'(V~/) + V(f (2.4)

0 1 2 4 5

l2-

IQ-

FI+. 2. (a( ) Comparison of I' (x) for d =2 with the
results from Ref. 2

wit t e numerical
e . 28 (short-dashed line) and Ref. 29 (lon-

dashed line). The scaled dista
e . ong-

the first zeros
e istances have been chosen such th t

eros for the calculations coincide. (b) C
e usta a

'nci e. omparison of
r = with the numerical results from Ref. 30. The x

axis is chosen as in (a). The theory extends to 1 as x ~0.

&(g)=—,'(1 —g')'+ —g'
6

(2.5)

introduced in I. For A, ==0 this reduces to the standard g
potential. In this a erp per the analysis is restricted to the
case of a critical quench where the potential is s m-
metric. In the next paper in th'in is series, the oA'-critical
quench case will be discussed.

The equation of motion (2.1) must be supplemented by
a set of initial conditions at time t =t =0 ssatisfied by

1' or present purposes G
ia probability distribution gover

secon moment
verning 0 is assumed with

V(P) is assumed to beo be a symmetric degenerate double-
well potential with quadratic minima. A particular reali-

'
n is e potential

($0(R)i}'jo(R')) =e15(R—R') . (2.6)

This model is the samsame as studied in I except the bare ki-~ 0

netic coe%cient I is replaced b thy e operator which
guarantees the conservation of th de or er parameter.

B. The functional-integral formulation
of the problem

0
2 4

0
FIG. 3. Fourier transforms of I' (x) for d =2 and 3

The functional-integral formulation for
defined in the last sec

'
a ion or t e problem

in e ast section follows the discussion in
Mazenko, Valls, and Zannetti (MVZ)'
A has the same form as (I.2.7):

and I. The action
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A
I e 0 i)'jo]= A [0o]+f dl [/(1)2T~(1)y(1)+ty(1)[B(1;q)—5(t, —t, )q,(1)]I, (2.7)

where

B (1;P) =A(1)g(1)+f'{1)V'[g(1)], (2.8)
(2.12}

with the boundary conditions
(2.9)

lim =0 .Qo

Im) dm
(2.13)

A key aspect of this development is that the coordinate m

is a field. The fiuctuation field P(1), in order to decouple
o. and the Auctuating component in the zeroth-order ac-
tion, is written as

P(1)=g(1)—fd26~(12)iB(2), (2.14)

where g(1) is a new independent field, B (1)=B (1;o ),

and Id 1 = J d R, I,+ "dt, . Averages correspond to

performing functional integrations over the fields otto, p,
and P as weighted by the factor e . Normalizations
and regularizations have been chosen such that the
Jacobian associated with the transformation from a func-
tional integral over the noise to one over the field g is
constant. The part of the action governing the initial
values of ltd is given by

At[go]= ,' f d—"R g()(R) .
~r

(2.10)
(2.15)

As discussed in Sec. IIC of I, the first step in the
theory is to enlarge the function space from that spanned
by g(R, t) to a joint space spanned by g(R, t) and a new
scalar field m (R, t) as indicated by (1.2.12). These spaces
are coupled through the translation

5(12)=5(R,—R2)5(t, —t2), and

a'
qo(1)= V(o+Q)

Qp2
(2.16)

g(1)=o [m (1)]+/(1), (2.11)

where o is the ordering or peak variable and P is essen-
tially the fluctuating variable. The peak variable o. is
chosen to satisfy the classical equation for a single inter-
face

The total action can then be written in the form

AT(fr, p, go, m)= Ao(g, p, po, m)+ AI(g, p, go, m), (2.17)

where the zeroth-order action is given by

A (f,P, Q, m)= A [itj ]+A [m]+ f d 1 g(1)2Tf'(1)g(l)

+ f d 1 $(1) iB(1;cr)+f d26F '(12)p(2) —i5(ti —to}$0(1) (2.18)

(2.19)

and the term which can be treated as a perturbation is

At(f, g, go, m) = f d 1 Q(1)i f'(1)Vt(1;cr, P)

rewrite {2.21) as

A(1)C(12)+—,'f'(1)C,O(12)=5(t, —to)C(12), (2.22)

with

VI( 1;cT, P) = V'[cr(1)+P(1)]
—V'[o.(1)]—qo(1)P(1) .

(2.20)

where C2O(12) is a particular component of the matrix
correlation function

(2.23)

The average in (2.16), ( . )o, is assumed to be over
the zeroth-order probability distribution governed by the
action Ao given by (2.18). The action A [m] in (2.18) is

assumed to be quadratic in the field m, so Po[m] is a
Gaussian probability distribution. FoHowing the analysis
in I, the variance

where

gn
cT„(1)= o (1)

am(i)"

and

C ( 12)—:Coo( 12) .

(2.24)

(2.25)

Co(12)= (m (1)m (2) )0,

is then determined by the fundamental equation

(B(1)o.(2) )O=5(ti —to)(cT(1)cr(2) ) 0 . (2.21)

After these transformations, the original fundamental
field P(1) is then expressed in terms of the new fields by

g(l)=o(1)—fd2iGF(12)B(2)+g(l) . (2.26)

Using (2.8} with g replaced by cr and (2.12), one can The evaluation of the structure factor
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Cy(12) = ( y(1)q(2) ) (2.27) &2L =g/[1 —C(0, t)], (2.37)

Cg(12) = (B(1)B(2) )o . (2.30)

The motivation for constructing the theory in this
manner is described in some detail in I. At zeroth order
the fundamental equation of motion governing the order-
ing field is (2.22). The fundamental equation of motion
governing the Gaussian fiuctuation field g is given by

f d 1 iG~—'(11)co~(12)= —i2Tf'(1)GF(21)

+5(t, to)C~(—12) . (2.31)

At equal times, t, =t2=t &0 and choosing time units
where 2D = 1, (2.22) and (2.31) reduce to the equations of
motion

C(R, t)=( —V~ )[—'Cqo(R, t)+Vit C(R, t)] (2.32)

and

C~(R, t) =( —Vt, )[qo(t)+ VR ]C~(R, t) —2TV~5(R),0
Bt

(2.33)

where

C(R, O)=c~(R, O) =et5R o

and R=R, —R

(2.34)

C. Direct implementation of the theory

In direct analogy with the development in I, one can
show, for long times [where So(l)= (m (1))))I], that
(2.32) reduces to

C(R, t)= —V'„ tan —C(R, t) +V2~C(R, t)
c}t I 2 2

(2.35)

can be carried out at zeroth order, since the fields m and

g are uncoupled, to obtain

C~(12)= C(12)—i f d2 GF(22)5(t2 —to) C(21)

—i f d 1 G~(li)5(t-, —t, )C(12)

—fd 1 d 2Gi;(11)Gp(22)cs (1 2)+C((12),

(2.28)

where

(2.29)

and

and go is the ordered value of the order parameter and g
the interfacial width defined (I.2.42). If C is assumed to
obey scaling at long times,

C(R, t) =F(R/L),
then (2.35) reduces to

I. 4

L 4
——I V F(I)= — V tan F(x—) +V F(x)X

(2.38)

D. Coupling cr and g through the noise

The first step in understanding how separated inter-
faces can communicate requires addressing the following
formal question: Can part of the noise driving the fluc-
tuating field g be transferred into the equation driving the
ordering field 0? The answer is yes and involves the
simultaneous translation of the fluctuating field

g(1)= f d 1 d2GF(11)II(1 2)g(2)+ u (1), (2.40)

and a change in the defining equation for C from (2.21) to

(B(1)o(2))=5(t, t )C(12)—i fd—l G (21)II(11),

(2.41)

(2.39)

If (2.39) is to lead to a scaling solution with appropriate
long-distance behavior, then go=L (L /L) will be a con-
stant as I.~~. This immediately gives a growth law
I.-t'i'. The associated ordering process is quite slow
and suggests a search for a faster mechanism. As men-
tioned in the Introduction, this search is guided by the
physics of the situation. As the theory now stands, there
is a very weak coupling between the ordering field o. and
the fiuctuating field g. There is, therefore, a Uery weak
coupling between different interfaces. In the case of a
COP, long-time growth is expected to be via bulk
diffusion which couples interfaces. This requires that
small portions of one phase (monomers in the physical
realization' in terms of particles) swim across ordered
regions of the opposite phase. In the development of this
section, no such diffusion exists. If the theory developed
here is to include this diffusion process, then it will be via
the fiuctuation field g. This difFusion must, in turn, be
driven by a coupling between the o and g fields which is
sustained on a long distance and time scale. The ap-
propriate coupling will be discussed below. At the formal
level the origins of the diffusion process appear rather ob-
scure, but in the end a physically appealing picture
emerges.

where

C(R, t) =C(R, t)/fo', (2.36)

where, at this point, the function 11(12) is arbitrary. u(1),
defined by (2.40), replaces g(1) as an independent field.
With these replacements, the total action becomes

gr(y, u, yo, m)= g( )+mgo(go)+ fdld2$(1)[m(12)+II(12)]g(2)

+i f dl q(1)[—iG '(11)u(i)+~(1)& (I;~;P)—5(ti to)fo(I)l (2.42)
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where n(12) =2Tf'( 1 )5(12), o, u, and lij are the indepen-
dent fields, and P is now given by

y(l)= —i fdlG (11) B(1)+fd2iH(12)li(2) +u(1).

(2.43)

now governed by (2.41).
The net result of the transformations (2.40) and (2.41)

becomes more transparent when one looks at the equa-
tions of motion governing C and C„.Equation (2.41) can
be written as

Clearly from the quadratic term in g in (2.42) one sees
that rr(12)+H(12) plays the role of the noise for the
fields P, u, and $0. In particular, at zeroth order where
the Vl term is set to zero in (2.42),

A(1)C(12)+—,'f'(1)C2O(12) = 5(t, —to )C(12)

d2iGF 22 H 12

(2.47)

( u (1)Q(2) )0= GF(12) (2 44) while (2.45) can be rewritten as

and, using the results from Sec. II F in MVZ, one easily
finds that

f d 1 GF (11)C„(12)= —f d2 GF( 22) 2~O(12),

where

(2.48)

C„(12)—:( u (1)u (2) )o

f dl d2GF(11)GF(22)

X [ 2'(1 2)+5(1 2)5(tI —to)et

+H(12)+II(21)] . (2.45)

2vro(12) = 2m(12)+5(t
~

—to )5(12)el +II(12)+II(21) .

(2.49)

The only choices of interest here for H are those which
are local in time and symmetric in R& and R2..

Computing (t/i'(1)g(2)) at zeroth order, one obtains, us-

ing (2.28), (2.40), (2.41), (2.44), and (2.45), that

II(12)=5(t, —t, )II(R, —R„t,) .

Using the result

(2.50)

C~(12)= C(12)—i fdl GF(11)5(t-, to)C(12)— GF(R„R~,t, t, ) = ——5(R„R~) (2.51)

i f d2 G—F(22)5(tz to)C(—21)

—f dl d2G (F11)G~(22)C~(12)+C„(12).

(2.46)

discussed in MVZ, it is easy to show that, at equal times,
(2.47) reduces to

+2f'(R)( —V~ ) C(R, t)+I (R)C~O(R, t)
at

Equation (2.46) is structurally of the same form as (2.28).
The difference is that part of the noise term driving the
fluctuation Geld has been transferred to the ordering field

=5(t —t, )2C(R, t, )
—H(R, t) (2.52)

and (2.48) reduces to

0—+2f'(R)[ —V~+qo(t)] C„(R,t)=2Tf'(R)5(R)+5(t —to)25(R)el+H(R, t) .
at

(2.53)

E. Choice for II

Consider now the appropriate choice for H. From Eqs.
(2.52) and (2.53) one sees that II has the physical interpre-
tation of a source term transferring material between the
interfaces represented by the o variables to the bulk
represented by the u variable. Physically one expects this
source to be operative in the scaling regime and serves to
speed up the ordering.

Looking at the equation of motion for C(R, t) given by
(2.39), it is apparent that all of the terms except the time
derivative are of O(1. ) for large t and it is the time
derivative term which is of undetermined order. In the
scaling regime, where (2.38) holds, one has

H(R, t)=z(t)R V+C(R, t), (2.55)

where z(t) is a time-dependent factor to be determined.
If one assumes, for large L, that

ZQz(t)=
L3 (2.56)

and looks for a scaling solution for (2.52), one easily finds
that the growth law is given by

L
L

ZQ
(2.57)

with this term and speed up the ordering, then one has
the simple choice

LC(R, t)= ——R V~C(R, t),
Bt ' L

(2.54)

and if the flow into the bulk represented by H is to match L =(yzot)'~~+ (2.58)
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—qoV~C„= R VRC(R, t) .
L3

(2.59)

If y =4, one has the previous result obtained without
coupling the ordering and fluctuating fields. For y =3
one obtains the LSW result and for y =2 the NCOP re-
sult. One must be aware, however, that the choice of y
has strong effects on the long-time and distance behavior
for C„. In the scaling regime where, from (2.16),

qo( Oo ) =qo )0, (2.53), using (2.55) and (2.56), reduces to

From (2.61), as will be shown in detail below, one sees
that

ZpF„(0)=-
qp

(2.66)

where Ad depends only on the spatial dimensionality of
the system. Using (2.58) with y =3 to express L in terms
of zo and t, one can rewrite (2.63), using (2.64) —(2.66), in
the form

Inserting the scaling form (2.38) for C(R, t) into (2.59)
and assuming

ST(t) =go 1—
2(3z, t)'i'

Adzp

2(3 t)1/3
(2.67)

C„(R,t) = F„(R/L)4o
1

(2.60) If, in direct analogy with (2.37), one defines the overall
growth length

leads to the result —[I—ST (t) /fo j
2

(2.68)

V F„(x)=— L ' x V„F(x).
qp

(2 61) then

LT=(3zot)'i (I+zo/z, ) (2.69)
One obtains a coupling which survives on the longest-
distance scales only if y, =y —2. If y =2, y, =O, and,
from (2.60), there is no separation between the ordering
and fluctuating components to the structure factor. For
this case the system does not properly order to ( P ) ~go
since C„(0,~ ) =F„(0)is not zero. For y =3, y i

= 1 and
C„(-L ') does not contribute to the asymptotic scaling
function. However, it is significant, as discussed below,
that C„does-contribute to the leading term giving the ap-
proach of the local order parameter (g (R, t)) to its
asymptotic value. Thus, both C„(0)and [I—C(0)] go as

L ' for large L. Ify =4 then y, =2 and there is a strong
separation between the ordering and fluctuating com-
ponents and one returns essentially to the uncoupled situ-
ation described by (2.35). Clearly the choice y =3 leads
to the most rapid growth for the system where it properly
orders.

Given that y =3, the parameter zp can also be chosen
using the criterion that the system order as rapidly as is
compatible with the constraints on the system. Let us as-
sume that the local order parameter

where z, =qog/&2 Ad. The condition for the most rapid
growth is that zo~ (1+zo/z, )

' be a maximum. This
maximum for LT is easily found to correspond to zp
given by

zi qo

2 2V2Ad
(2.70)

The net ordering length is related to the length L associ-
ated only with the interfacial component by

LT ——', L . (2.71)

Note also, as a consequence of (2.60) and (2.64), the value
at the origin of I'„is given by

F„(0)=—
2 2

(2.72)

ST(t) = ( p'(R, t) ) (2.62)

serves as a good measure of the degree of order in the sys-
tem. Then, at zeroth order for long times, the leading
contributions to ST are the first and last terms on the
right-hand side of (2.46). As discussed below, the other
terms decay to zero faster than L ' as L —+~. There-
fore,

ST(t) =C(O, t)+C„(O,t) (2.63)

and, in the long-time limit using (2.37),

For the g potential, /=2 and F„(0)= —1/&2.
The key result of this section, which will be crucial in

the development below, is that different interfaces can
communicate via the terms proportional to II on the
right-hand sides of (2.52) and (2.53). Such terms speed up
the growth law from t' to t' if H is chosen to be of
the form (2.55) with z(t) given by (2.56) with y =3. The
Auctuation field u corresponds to a diffusion field which

couples to the interfacial field at long times and short dis-

tances only for y =3. The amplitude of the coupling zp

can be chosen to give the most rapid net growth. The
chosen value for zo is given by (2.70) where g is defined by

(I.2.42) and qo by (2.16). The parameter Ad, determined

using (2.67), is defined by

C(0, t)=go 1 — — +
&2L (t)

(2.64)
Ad= lim C„(R=O,t)q

L~ oo Zp
(2.73)

while, withy =3 andy& =1,
and depends only on the dimensionality of the system.

The asymptotic results of the theory developed here do
not depend on the time dependence of z (t) as long as

C„(O,t)= F„(0).4o
L t

(2.65) z(t) zp



5754 GENE F. MAZENKO 43

faster than L '. A simple choice which vanishes as t —+0
and goes exponentially to z0 as t ~ ~ is

z (t) =za I 1 —exp[ ( t—/r) )], (2.74)

where various choices of the parameter ~ will be dis-
cussed in Sec. V.

F. Basic theory

C~(12)=C (12)+C„(12) (2.75)

Once the intermediate-time behavior of z (t) is
specified, then the zeroth-order approximation is com-
pletely determined. As discussed in detail in MVZ and I,
one does not expect the higher-order terms in perturba-
tion theory to contribute to the asymptotic scaling behav-
ior other than to generate nonzero-temperature correc-
tions to & g & and to the other static equilibrium proper-
ties (such as the correlation length g). For the rest of this
paper the analysis is restricted to the zeroth-order ap-
proximation given by (2.46).

The quantity C~(12) appearing in (2.46) and defined by
(2.30) is rather complicated. The term in (2.46) propor-
tional to C~ vanishes as t as t ~0. One can also use ar-
guments similar to those used below Eq. (I.4.9) in I, to
show that C~(12) does not contribute to the long-distance
scaling behavior (C~-L ). It seems reasonable there-
fore to drop this term and it will not be discussed further
here.

For very short times, the overlap terms in (2.46), like

i f d2—G~(22)5(t~ ta)C(12), —

are important. It is just these terms which guarantee that
C& satisfy the appropriate initial condition (2.6). This
term just cancels an equivalent contribution from C to
avoid the problem of double counting. Since
C (R, —R2, t, t~) remains of 0 (Et ) for all times, and
Gp(R p R 2 t2 ta ) decays exponentially to zero for large
t2, one can drop these overlap terms with the understand-
ing that there wi.11 be double counting for

III. LONG-TIME SOLUTION
FOR THE ORDERING CONTRIBUTION

A. Near4Ield results (R (&L)

Consider first the near field R &&L. For R =0, as
shown in I, any even function of the peak variable
g(o (m) ) can be written as

g(cr(x) ) =g(cr( ~ ) )+&g (x)

and the long-time average is given by

&g(cr}&=g(o( ))+ f dx bg(x)+O
v'2 + 1

L

(3.1)

(3.2)

This result is independent of the driving kinetics. There-
fore, one still has

S(1)=& '&,=P,' 1 — — +
v 2L(t)

(3.3}

as assumed in (2.64) where g is defined by (I.2.42).
For fields separated by distances R ((L, it was shown

in I that, to O(1/L),

and

C (R, t) =QD[1 —8'(b) /L]

62 c}WC»(R t) =

(3.4)

(3.5)

In this section the long-time solution L ))g for the or-
dering contribution to the structure factor governed by
(2.76) is analyzed in detail. As discussed in detail in I,
(2.76) is complete only after expressing C»(R, t) as a
function of C(R, t) or, equivalently, expressing C and C2~
in terms of the intermediary

C,(R, t)=&m(R, t)m(O, t) &

and solving the associated equation for Cc(R, t).

for very short times where C& is O(et). It will be as-
sumed for the rest of the paper that C& is given by (2.75)
where C satisfies

—C (R, t) = —V'[ —
—,
' C»(R, t)+ V'C(R, t) ]

8

where

X

W(b) = f — J(bx) lg(),
277

J(r)= f dy[Pci cr(y)cr(y +r)], —
(3.6)

(3.7)

and C„,satisfies

R.V~ C(R, t)
L

(2 76) and

C0
b =2 1+ (Sc—C()),

0
(3.8)

—C„(R,t) = —V'[ —q,'(t)+ V']C„(R,t)

+
3

R.V~C(R, t) .
L

(2.77)

We assume here that the quench is to T =0 and these
equations are supplemented with the initial conditions

8'= — 1+ + .K)b

2 .
(3.9)

where ~, is a constant that depends on the local structure.
For large b,

where S~(t) =CD(R=O, t). For small b it was shown in I
that

C(R, O)=C„(R,O)=@15' () . (2.78) (3.10)
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V — V—W(b) =0 .
b Bb

(3.11)

Inserting (3.4) and (3.5) into (2.76) and keeping terms of
O(L '), one obtains

where x=R/L(t). This term must cancel the leading
term of [O(L )] on the right-hand side of (3.15) which
is proportional to zQ. The terms contributing to the scal-
ing equation enter at O(L ). If one defines a parameter
@by

The dependence of W on b is given by (3.6) and (3.7).
Equation (3.11) has the partial solution

4 L zQp= lim L
L

(3.18)

D (R ) =— V—W(b) =D, +D2Sd(R ), (3.12) (3.15) reduces, in this case, to the scaling equation

where D, and D2 are constants and the Sd(R) are the
singular solutions in d dimensions for the isotropic form
of Laplace's equation as R —+0. One easily finds that
S2(R)=lnR and Sd(R)=R ' ' for d )2. From (3.9)
it is clear that D (R) is regular as R ~0 and one must
choose D2=0. Similarly, from (3.10) one finds for large
b -R, D(R)-R ' and one must choose D, =0. Togeth-
er these results show that 8' satisfies exactly the same
equation found in the NCOP case [see (I.5.2)]:

1 BW(b) V2W(b)
a~

(3.13)

B. The scaling regime (R » g)

Thus, the short-distance behavior is identical to that
for the NCOP case and is described in detail in Sec.
III C 3 of I. In particular, one regains Porod's law given
by (1.3) and (1.4) or (1.6).

One therefore obtains the important result that the in-
terfacial structure is unaffected by the nature of the dy-
namics leading to the final equilibrium state. Instead it
depends on establishing local equilibrium and then the
solution of the associated static problem given by (3.13).
This static problem does depend on the details of the po-
tential except in the limit of large R where one regains
Porod's law.

—px-V F = —V„ tan —F +V F (3.19)

This is the same scaling equation found for the COP case
in Ref. 3. The form of the scaling law in the COP case
differs from the NCOP case only by the Laplacian opera-
tor acting on the right-hand side of (3.19). It also differs
in that the definition of p differs qualitatively from the
NCOP case where p=limL LL.

C. Small-x solution

F=l —a QPx",
n =1

(3.20)

where things are normalized such that p, = l. Then, to
first order in x,

F =1—ax, (3.21)

tan —F= 1
(3.22)

2 (m/2)ax

and (3.19) has the leading contributions of O(x ) as
x ~0 which must cancel and

One can learn quite a bit about the scaling function
F(x) by looking at the solution of (3.19) in the small- and
large-x limits. Consider first the small-x expansion of the
form

It was shown in I that, in the scaling regime (R )&g,
L ))1), C20(R, t) can be expressed in terms of C(R, t) in
the form

1—V +V ( —ax) =0
(vr/2)ax

(3.23)

2

C„(R,t) = —2, tan C(R,t)/$0—
L (t)

gives the small result, as in the NCOP case
(3.14)

and the equation satisfied by C given (2.76) can be written
as

,I,2 zBC V2 wQ 77 C +VPC Q

(jt L2 2 L 3

a =&2/[r~(d —1)],
since V x =(d —1)/x. The next order contributions are
of the form —V (constant) and give the result that /32 is
undetermined. This result wi11 be important in the subse-
quent development. It is a matter of brute force to deter-
mine the higher-order coefficients in (3.20). One finds

If one now looks for a scaling solution of the form

C(R, t) =1(2+[R /L (t)],

(3.15)

(3.16)

2(2d +1) 6

(2d +1)(5d +7) 2

(3.25)

BC(R t) ~2 L
( )QL x (3.17)

one finds a situation somewhat different than in the
NCOP case. Using (3.16), the time derivative in (3.15)
can be expressed as

(3.26)

1 + (d —1)(C0+ C2P2+ C4P~)
2 3d+7

(3.27)
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where

m2
Cp= (d —4d —1),

80(d —1) (2d + 1)
(3.28)

( —3d +8d+7),
4(2d+1) (Sd+7)

C4= 3
(3d +37d +73d+31) . (3.30)

4(5d +7)(2d + 1)

K. Fourier transform

One can also make some analytical statements con-
cerning the Fourier transform of the structure factor
defined as usual by

C(q, t)= f d Re+""C(R,t) . (3.41)

Changing to scaling variables x=R/L and Q =qL and
introducing (3.16) into (3.41), one obtains

D. Large-x regime

In the large-x regime one can assume that F is small
and replace (3.19) by the linearized equation

C(q, t) =L'(t)g j'(Q),
where

f (Q)= f d x e '~ "F(x) .

(3.42)

(3.43)

px =V —F+V FBF
Bx 2

(3.31) One can then analyze f (Q) in the small- and large-Q lim-
its. In the small-Q limit one immediately has that

The four linearly independent solutions of (3.31) are of
the form

f(Q)= f d x F(x) Q'—fddxx'F(x)+0(Q~) .1

2d

F =Fox 'exp[ —(I x r+r, x ) j . (3.32) (3.44)

One solution is the trivial constant solution y2 =y =v=0.
The other three solutions require

(3.33)

Using the basic differential equation (3.19), one easily ob-
tains, for @&0,that

f d x F(x)=0 . (3.45)

2d /3

p

(3.34)

(3.35)

This is a very nice result because it means that the area
under the scaling function is zero and therefore, in the
scaling regime, using (3.15), (3.41), and (3.45), one estab-
lishes the conservation law

2
3 (3.36) lim —C(q, t) =0 .

~ a
q-0 Bt

Taking the second moment of (3.19), one finds

(3.46)

r, = (r) )'.
6pv

(3.37)
(3.47)f d xx F(x)=- 2d d 7T

p(2+d) 2fd'x tan F—
The cubic equation for I, (3.35), has one unstable solu-
tion (ReI & 0),

1/3/

and two stable solutions

I = —'p' ( I+&3i) .
8

(3.38)

(3.39)

Since F is real, one is left with the nontrivial asymptotic
solution

Bd=fd xtan F— (3.48)

then"

In practice, the integral on the right-hand side of (3.47) is
much easier to determine numerically than the second
moment of F since tan[(m /2)F], falls off much faster with
x than x F(x). If one defines

F F —2d/3
pX (2+d) (3.49)

7T

2/3

Xcos V3 —',p' x + x ~ +p2/3

(3.40)

where Fo and P are constants which cannot be deter-
mined by the linear analysis. Thus, the nontrivial solu-
tion for p) 0 decays to zero exponentially as x ~~. f3(Q) =4mfdx x. F(x) .

0 q
(3.51)

p(d) and Bd will be determined numerically later in this
section.

In the large-Q limit it is necessary to first carry out the
angular integrations in the Fourier integral (3.43). For
d =2 one finds

f2(Q)=2vr f dx xJO(Qx)F(x), (3.50)

where Jp is the standard Bessel function while, for d =3,
one obtains
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In the large-Q limit for d =2 one can extract the leading
behavior in (3.50) by (i) changing variables to y =Qx, (ii)
using the identity

4v'7ra
3

(3.52}

where the integral over J, (y) is standard. In three di-
mensions the large-Q behavior is extracted using the stan-
dard integrations by the parts procedure to obtain

(3.53)

Clearly one has the Fourier representation of Porod's law
with

Cza
2+1 (3.54)

for large Q where the C& are listed in Table I for d =2
and 3.

F. Numerical determination of I' (,x)

Since it is not obvious that one can solve (3.19) analyti-
cally, it is sensible to construct a numerical solution.
Since it is clear that, in the scaling regime, I' is isotropic,
one can rewrite (3.19) as

BF 8 (d —1)
px — + a

Bx

8 (d —1) dFX tan —F +
2 Bx x Bx (3.55)

The method for the solution for this fourth-order
differential equation is worth a bit of discussion. If one
starts at x =0, one can integrate this equation forward in
x using, for example, the second-order Runga-Kutta
method with a very small b,x ( =0.00001 in these calcu-
lations). Of course, this requires specifying F(0), F'(0),
F"(0), and F"'(0). These are known from the small-x ex-
pansion (3.20) up to the undetermined parameter P2.
Thus, at this point, Pz and p are undetermined. In close
analogy to the NCOP case where the parameter p had to
be chosen so that one obtains the proper large-x solution,
here one also has a nonlinear eigenvalue problem. The
difference is that, in the present case, there are two eigen-
values (p and P2} which must be fixed to eliminate the
constant F( ~ )%0 and the exponentially growing solu-
tions.

The numerical method used to determine p*(d) and
/3z(d) was converging, but rather time consuming. A
description of the procedure may be useful for developing
a faster algorithm. The first step is to choose values for

(iii) integrating by parts with respect to y, and (iv) replac-
ing (d/dy)F(y/Q) by —a/Q for large Q. Then,

f~(Q)=, I, 4'y~i(y)

Pz"' (a bit of trial and error shows that the appropriate
range for /3z" is small and negative) and p"') 0. As soon
as one tries to forward step (3.55) for small x, one finds
singular pieces for small x which must cancel. One can
avoid this numerical problem by matching the known
power-series expansion for F (x) for small x to the numer-
ical solution starting at some x =x0, where F (xo~,
F'(xo), F"'(xo) are known. This procedure is stable and
rather insensitive to the choices of /32"' and p"'. As one
forward steps the differential equation in x, there will be a
rather definite range of x ( ) 1) where F(x) will become
unstable and rapidly cross over to an exponentially unsta-
ble solution of positive or negative sign. Assume for sim-
plicity that F(x) is exponentially increasing, then one
should, keeping /3z" fixed, increase p to p' '. By taking
p' ' large enough, one finds that the instability will be-
come exponentially large and negative. Thus, for this
value of P2(=P~z") the values p"' and p' ' bracket the
value p(/3~2") for which F(x) converges to a constant
F[os,p(pz"] as x~~. By choosing p' ' such that
p'"&p' '&p' ', one can extend the convergent solution
for F(x) to larger values of x. Clearly one can continue
this sequence by observing whether, for p' ', the solution
is eventually unstable positively or negatively. Carrying
out this sequence, one converges to a definite value
p(pz") with a specific form for F(x,p~2"). For this choice
of /3~2", F(x, /3'z") will not, in general, go to zero for large
x. One must repeat the procedure for another choice /3~2

'

and obtain p(p~2 ') and F (x, /3'z '). Fortunately, given
F( ~,/3z") and F( ~, /3z '), one can make an estimate of
what /3~2

' is necessary to obtain F ( ~, /3~2 I) =0. Using this
value of pz, one can again obtain p(/3z ') and F(x, /3z ')
and, as was found in the calculations here, a F( oo, /3~2 ')
which is very near zero.

Convergent results out to x =20 which give
~F( ~ )~ (10 have been obtained for d =2 and 3. The
values for /32 (d) and p*(d) are given in Table I. The cor-
responding plots for F(x) are shown for d =2 and 3 in
Fig. 1. The specific special values corresponding zeros,
maxima, and minima are given in Table II.

In Fig. 2 the numerically determined F(x) is plotted
versus the best available direct numerical simulations for
this problem. In Fig. 2(a) the results for two dimensions
are plotted versus the results of Rogers et al. and
Gawlinski et al. The x scale has been adjusted such
that the first zero comes at the same value of x in the
theory and simulations. The small-x agreement is excel-
lent as well as the position of the first maximum and
second minimum. The overall amplitudes of the theory
are less than those in the simulations, but the results in

Ref. 29 are at considerably longer times than in Ref. 28
so the simulations do seem to be approaching the theory.
In Fig. 2(b) the theoretical results for three dimensions
are plotted versus the results of Chakrabarti et al.
These numerical results are for an earlier relative time
when compared to two dimensions. The theory does cap-
ture the qualitative feature that the amplitude of F(x) is
smaller in three than two dimensions. In summary, the
overall agreement between theory and numerical experi-
ment is good.
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TABLE II. Features associated with the scaling function F(x) for d =2 and 3.

d=3

First zero
First minimum
Second zero
Second maximum
Third zero
Second minimum

1.68
2.60
4.13
4.98
6.37
7.17

0
—0.134 6

0
0.033 9
0

—0.008 9

2.47
3.41
5.04
5.97
7.45
8.34

0
—0.073 22

0
0.018 6
0

—0.005 19

One can fit the large-x behavior of the numerically
determined F(x) to the asymptotic form (3.40). For both
d =2 and 3, the fit is excellent in the range 10~ x + 20
and the fitted values for I and I

&
lead to values of p, via

(3.35) and (3.37), in good agreement with the selected
values of p*(d) given in Table I. Given the numerically
determined F(x) one can then evaluate the integrals Bz
given by (3.48). The values for the Bz from the numerical
integration are listed in Table I. The coefficient of Q in
the Fourier transform is given then by Bz/pz(2+9).

Finally, one can compute the Fourier transform f (Q)
using (3.50) and (3.51). The results for d =2 and 3 are
shown in Fig. 3. The small- and large-Q behaviors are, as
expected, in agreement with the analytic treatments.

IV. DIFFUSIVE FIEI.D

/OF„(R/L)
C„(R,t) = (4.1)

In this section C„(R,t), the diffusion contribution to
the structure factor governed by (2.77), is evaluated.
Since the short-time and short-distance behavior of C„is
rather nonuniversal, the discussion here will focus on the
long-time and long-distance scaling regime. The ap-
proach to this regime will be discussed as part of the nu-
merica1 analysis in the next section.

In the long-time limit one can replace qo(t) with qo )0
and z(t) with zo in (2.77). qo, defined by (2.16), depends
on the form of the potential. For the g potential, qo =2.
The parameter z0, discussed in Sec. II E, can be explicitly
determined once the parameter A&, defined by (2.73), is
determined. As discussed in Sec. II, in the scaling regime
C„(R,t) has a solution of the form

origin. The case of d =2 is slightly different than for
d )2. For d =2 one easily finds the solution

z0F„(0)= f F(y)(21ny+1) .
q 0 27T

(4.6)

Since the volume integral over F(y) is zero, (4.6) reduces
to

z0F„(0)= f F(y)21ny .
q0 27K

Using (4.6), one can rewrite (4.5) in the form

(4.7)

F„(x)=F„(0)+ f ydy F(y)[2 ln(x /y) —1]
q0 0

which is convenient for explicit computation.
For d )2, one has the solution to (4.2) given by

(4.8)

F (x)=
2 f dyy' "y F(y)

F„(x)= — f [ 6(x —y)lnx y V F(y)
zo 6

q 2'
+6(y —x)lny y V F(y)] . (4.4)

Integrating in (4.4) by parts, one obtains

F„(x)= f F(y)[2lnx6(x —y)
z0

q0 2&

+(2 lny + 1)6(y —x ) ] . (4.5)

Setting x =0 in (4.5) gives

and, inserting (4.1) into (2.77) and neglecting higher-order
terms in powers of L ', one obtains

6(x —y) 6(y —x)
X d —2 d —2

3'
(4.9)

qo V,F„(x)= zox V„F(x), — (4.2) Doing an integration by parts, this can be put into the
form

which is equivalent to (2.61) with 2+yi —y =0. Thus,
F„(x) satisfies Poisson's equation and the term
(zo/4m)x VF(x) serv. es .as the charge density for the sys-
tem. It is at this stage that one can appreciate the impor-
tance of the result (3.45) which guarantees over all charge
neutrality since

f d "x x VF(x)=d f d.~x F(x)=0. (4.3)

Equation (4.2) can be solved as usual by constructing
the appropriate Green's function which is regular at the

F„(x)=— J dyy" 'F(y)
(d —2)qo x"

+2f dy yF(y)

The value of F„(x)at the origin is given by

ZO +~F„(0)=—, f dyyF(y)
qo(d —2)

(4.10)

(4.1 1)
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and one can rewrite F„(x)in the convenient form

zo x d —1

F„(x)=F„(0)— J dy F(y) —2y
q (d —2) Xd 2

(4.12)

Q4—

Q.I5

(4.13)

At this stage one can explicitly determine the parame-
ter Ad defined by (2.73) and, in turn, zo given by (2.70)
and C„(0)given by (4.1), (4.6), and (4.11). First, using
(2.73), (4.1), and (4.7) for d =2, one finds that

A z
= —f dy 2y lny F(y),

while from (2.73), (4.1), and (4.11) for d )2,

-QI

-0.55

-0.6

-0.85

Ad= f dyyF(y) . (4.14)

Clearly Ad depends only on the dimensionality of the sys-
tem. One finds numerically the values of Ad listed in
Table I, along with the selected values of
zo =gq, i/2~2 Ad for the P potential.

Using (4.8) and (4.12), one can rather easily determine
F„(x)numerically given the solution for F(x) determined
in the last section. The results for d =2 and 3 are shown
in Fig. 4.

V. NUMERICAL ANALYSIS
OF ZEROTH-ORDER THEORY

( —Vit )[——,'C2o(R)+VLCC(R)] (5.1a)

while, for R %0,

ac, (R) as, c (R)
at at C„(R)

(
—V )[-'C (R)—V C(R)]

(R) it T 2o

C„(R)L, (r)
(5.lb)

where C, C», and Czo are given in terms of Cc(R, t) and
So(t) by (I.4.14)—(I.4.16), respectively. C„satisfies (2.77)

The numerical solution of the complete zeroth-order
theory for the P potential is given in this section. In the
complete theory one expresses C and C20 in terms of the
intermediate function C~ and then integrates this equa-
tion for Co forward in time. In close analogy with Eqs.
(I.4.11) and (I.4.12), one has, in this case, for R =0, that
Cc(R=O, t) =S&&(t) satisfies

dSc(t)
[Cii(0)+C20(0)]

dt

FIG. 4. The scaling function g„(x)=q02F„(x)/zofor d =2
and 3.

with, for the g potential (2.5) with A, =O, qc =2.
The set of equations (5.1) was studied in detail in the

isotropic limit where

d (d —1) d (5.2)
dg2 g

and the magnitude of R was discretized in the form
R =h (n +1) with n an integer ranging from 0 to N. No-
tice that a short-distance cutoff of size h has been intro-
duced. For the present calculations, a lattice spacing
h = 1.73 was chosen since it leads to smooth early growth
in the problem. Periodic boundary conditions were used
C(R +N) =C(R ) and N was taken to be 200 for the cal-
culations presented here. The role of finite-size effects
will be discussed below. Equation (5.1) is then integrated
forward in time with a time step At =0.01 assuming an
initial condition el =0.01.

At this stage the only undetermined parameter in the
theory is the time ~ which characterizes the buildup of
the parameter z(t) given by (2.74). It was found that, for
small values of r ( (300), the set of equations (5.1) does
not equilibrate. In particular, this set of equations with
z0=0 does not equilibrate. This is strictly a function of
the way in which the isotropic limit is introduced. If one
solves (5.1) on a two-dimensional square lattice, one finds
that the equations properly equilibrate. Thus, the equa-
tions (5.1), at short times, are sensitive to how one treats
the spatial gradients in the problem. For ~) 300 one
finds that the zo term stabilizes the growth and one can
investigate the approach to the asymptotic limit.

A detailed discussion of the nature of the short- and
intermediate-time behavior will not be attempted here.

TABLE III. Numerical values for the fits of the curves for L and L0 shown in Fig. 6 to the form
(5.3).

L(&/3)

1.62

L (0)

4.43

J ( —1/3)

—55.0

L ( I /3)
0

3.38

L (0)
0

17.2
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FIG. 8. The ordering component of the structure factor
C(R, t) vs n =R/h for various times after the quench. As the
curves move out from near R =0 as a function of time, one has
t = 100, 500, 1000, 1500, 2000, 2500, 3000, and 3500.
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FIG. 10. Same as Fig. 8 except the position of the depth of
the first minima is accentuated. The times here run out to
t =3900 in steps of 100.

rm F„(x,Oo ) shown in Fig. 4. The curves are qualitative-
ly the same but the height of the first maximum is slowly
decreasing as a function of time.

It is found here, as in I, that the theoretical amplitude
in the growth law is larger than that found in simula-
tions. In I this was reAected in the parameter p=LL,
which was theoretically predicted to have a value of
1.104, but in the simulations described in I, went to an
apparent long-time limit of -0.6 (see Fig. 9 in I). It was
suggested in I that this is a finite-size e6'ect which
influences the nature of the eigenvalue problem which
determines p. In the present case, the coeScient of t'
for the first zero is given theoretically by

L 11/3) —L (1/3)r —(3 11/3
ZO I r

where r =Lo/L =1.68 as given in Table II for the posi-

tion of the first zero in the scaling function for d =2.
One has then, using z0=1.58, that Lo '=2. 82. This
amplitude is determined by Rogers et al. and they find
I.o =0.84+0.02 (see their Table II). There are several( &/3)—

points to be made.
(i) Rogers et al. point out that this coefficient is rather

sensitive to the choice of the lattice spacing h. As shown
in their Fig. 9, the amplitude of Lo varies rapidly as a
function of h in the region of h for which L" ' was0
determined (h =1.7). Smaller values of h give larger
values of Lo . The authors believe, however, that( &/3)

Lo will saturate at some final value for h ~ 1.( &/3)

(ii) zo was chosen to give maximum growth and it
indeed bounds the simulational result from above. Possi-
bly some other choice for zo is physically relevant.

(iii) Again the finite-size question and the role of

0.9 04—

0.7
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0.3

-0.2

-0.4

O. I

-O. I—

IO IO

X

FIG. 9. Same as Fig. 8 except C(R, t)=F(R/L, t) is plotted
vsx =R/L.

FIC'r. 11. Same as Fig. 8 except g„(R/L, t) =q LC„O(R,t)/z 0

is plotted vs x =R/L.
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periodic boundary conditions in determining the asymp-
totic F(x) must be analyzed in more detail since the
choice of zo is related to the solution for F„(x)in terms
of F(x) T.he physics selecting zo is operative only in the
regime where F„(x)is determined by the diffusion equa-
tion (4.2). It is not clear how one approaches this regime
for systems on a small lattice. For systems on a lattice, it
is not required that F( ~ ) =0 since there is a natural
cutoff for x =X/L. Eventually the growth will be
influence by the presence of the periodic boundary condi-
tions at x =N/L and the system may not reach the
asymptotic fixed point discussed in Sec. III. The question
is how large X has to be in order to approach the asymp-
totic fixed-point solution.

VI. CONCLUSIONS

The theory developed in Refs. 1 and 3 has been extend-
ed to the case of a conserved order parameter. A key for-
mal and physical component of this extension is the in-
clusion of a nontrivial coupling between the ordering
component and the Auctuating component of the order-
parameter field. In MVZ the case was made for separat-
ing the order-parameter field into these distinct com-
ponents. In Refs. 1 and 3 it was shown how the theory
could be constructed so that these fields became decou-
pled in the shortest amount of time. In the NCOP con-
text this seems to be the most natural way to organize the
theory. In that case the growth is controlled by the local
curvature and one expects the development in I to be
correct. In the COP case the role of bulk difFusion is
missing in this description and one is led to the t'
growth law and growth via surface diffusion only. The
development in this paper shows how bulk diffusion can
be incorporated into the theory via some simple function-
al transformations. The final form of the theory then
leads trivially to the LSW t' growth law and ordering
via bulk diffusion.

Even though the coupling of the ordering field to the
Auctuating field leads to a qualitative change in the
growth law, it does not lead to a substantial change in the
scaling properties of the system. The double eigenvalue
problem solved here for the scaling function F(x) is the
same problem proposed in Ref. 3 (although it was not ap-
preciated that this led to an eigenvalue problem there).
The coupling of the ordering and fluctuating fields has led

basically to the reinterpretation of the parameter p enter-
ing the scaling equation. In the uncoupled theory
p=LL, while in the coupled theory p has a more compli-
cated form given by (3.18). Given the good agreement
with the simulation results shown in Fig. 2, one believes
that the theory is in good shape.

Where are there loose ends in this development? One
assumption which should be scrutinized is the assump-
tion that zo be chosen such that the growth rate be max-
imized. Other choices are possible. Clearly the approach
of the theory to the long-time scaling limit given in the
last section is strongly dependent on a number of assump-
tions and nonuniversal ingredients. Clearly the choice
for z(t) given by (2.70) and (2.74), including the choice
for ~, is relatively arbitrary. Detailed calculations for
short times and short distances will depend strongly on
the choice for the realization of the gradients in the equa-
tions of motion. They also require including the other
terms contributing to the zeroth-order approximation
(2.28). It is important to remember, however, that all of
the long-time scaling results should be independent of all
of these ingredients.

The analysis in this paper has been limited to the case
of critical quenches. Thus, it has been assumed that
(g) =0 for all finite times. Off-critical quenches also
lead to long-time scaling behavior in the case of a COP
with the added feature of compact morphologies for
minorities phases. The original LSW theory was
developed for the case of a system quenched to near the
coexistence curve where there is a small relative concen-
tration fraction of the minority phase. It will be shown in
the next paper in this series that this case can be treated
within the context of the theory developed here with only
the modest additional complication of treating the case
where there is no up-down symmetry associated with the
fields P, m, and o.. In this case it will be found that the
scaling function F(x) does depend on the degree of bro-
ken symmetry I= ( P ) .
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