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A more complete review of the magnetic properties of
oxide pyrochlores can be found in Ref. 5. For a detailed
discussion of magnetic ordering in pyrochlores as pre-
dicted by mean-field theory, see Ref. 6.

In order to understand the nature of the short-range
magnetic ordering and also to obtain a rough idea of the
microscopic interactions present in these systems, we
have performed neutron-diffraction experiments on poly-
crystalline samples of FeF3 and MnzSb207 ~ Magnetic
susceptibility measurements complement the neutron
data and also show evidence for short-range order and
frustration.

II. EXPERIMENTAL DETAILS

The preparation of FeF3 and Mn2Sb207 is described
elsewhere. ' Great care was taken in removing the am-
monia from the FeF3 in order to minimize the incoherent
scattering from hydrogen. Powder neutron-diffraction
data were obtained at the McMaster Nuclear Reactor
with 1.3913-A neutrons. Data sets at 273, 160, 80, 60, 40,
and 20 K were collected for FeF3 and at 9, 11, 13, 15, 20,
26, 35, 70, and 295 K for Mn2Sb207. The detector was a
three-tube position-sensitive detector which has been de-
scribed previously. The sample was held in an alumi-
num can along with helium exchange gas and sealed with
an indium gasket.

The high-temperature magnetic susceptibility data for
Mn2Sb207 were collected on a Princeton Applied
Research (PAR) vibrating sample magnetometer calibrat-
ed with high-purity nickel. All other magnetic suscepti-
bility data were collected on a Quantum Design SQUID
magnetometer using a pressed polycrystalline pellet. The
SQUID was calibrated with high-purity palladium.

III. RESULTS

A. Magnetic susceptibility FeF3

As mentioned above, the high-temperature susceptibili-
ty has been described elsewhere' and will not be discussed
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FIG. 3. Magnetization data for FeF3 showing sample history
dependence. The sample was cooled in fields of 1 T (+) and
0.01 T (o ) starting at 300 K, then measured while warming in
an applied field of 0.01 T. The inset shows the linear behavior
of the magnetization with applied field at T= 5 K.

further here except to say that no Curie-Weiss-law behav-
ior is observed up to 300 K. Below 120 K the high-field
susceptibility (1 T) shows a broad maximum at 85 K (Fig.
2) which is most likely a result of short-range ordering of
the Fe + moments. The minimum at 16 K coincides with
the temperature where long-range order sets in.

Further evidence for strong short-range correlations is
furnished by sample history dependence at lower temper-
atures. To see the history dependence, the sample is
cooled from the starting temperature down to 5 K in a
high field (1 T). The field is then reduced to 0.01 T and
the sample is measured while warming, cooled again, and
remeasured, with the field fixed at 0.01 T. This procedure
ensures that the high-field-cooled (HFC) and low-field-
cooled (LFC) runs are both measured with the same ap-
plied field. Figure 3 shows the results for a starting tem-
perature of 300 K. The history dependence is seen to
persist up to 130 K which is an order of magnitude
higher than 15.5 K where long-range order sets in. Just
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FIG. 2. Low-temperature susceptibility data for FeF3 mea-
sured at an applied field of 1 T on a residual field-cooled sample.
The broad maximum at 85 K is ascribed to the onset of strong
short-range correlations below 120 K.
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FIG. 4. As in Fig. 2 with a starting temperature of 70 K,
which is inside the short-range-order regime.
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below 50 K another sharp feature can be seen in both the
HFC and LFC runs. The inset in Fig. 3 shows the linear
behavior of the magnetization with field at 5 K, indicat-
ing that the relaxation time in the sample is smaller than
the time scale of the experiment. Figure 4 is similar to
Fig. 3, with a starting temperature of 70 K, i.e., here the
sample was cooled in residual field ( =2 mT) to 70 K be-
fore ramping the field up to 1 T. Again, the sharp feature
below 50 K is present, however, the strong maximum at
=30 K in the HFC run has been reduced to a plateau.
This dramatic history dependence of the magnetization is
believed to be due to the onset of strong short-range
correlations below about 130 K and the high degree of
frustration.

B. Magnetic susceptibility Mn2Sb207

Figure 5 shows a Curie-Weiss-law plot of the suscepti-
bility data (corrected for diamagnetism) at an applied
field of 1 T for Mn2Sb207, in the temperature range
50—300 K. The least-squares fit yielded an effective mo-
ment @=5.92(1)pz as expected for S=—,', and
8= —48.9(6) K, indicating predominantly antiferromag-
netic interactions. Below 50 K the data show deviations
from Curie-Weis behavior indicating the onset of short-
range order.

Figure 6 shows the sample history dependence for
Mn2Sb207 magnetization data, obtained by employing
the same procedure as above with a starting temperature
of 70 K. Again the history dependence persists up to 55
K far above the long-range-ordering temperature of 13
K. Thus, we have evidence for the onset of short-range
correlations below about 55 K. More detailed informa-
tion on these correlations can be obtained from the
neutron-diffraction experiments.
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paramagnetic scattering. The results are shown in Fig. 7.
In order to account for small changes in cell constants,
the high-temperature data set was renormalized in q
space in such a way that the strongest nuclear Bragg
rejections would superimpose. The roughening in the
data at about 13 in 20 is due to the presence of a very
strong nuclear [111]Bragg reflection. At 20 K one can
see that a small amount of Bragg scattering (approxi-
mately 5% of the original peak) is left over after the sub-
traction which can be attributed to changes in the nu-
clear Debye-Wailer factor.

The dominant feature in these data sets is the broad
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FIG. 6. Magnetization for Mn2Sb207, following the pro-
cedure employed for FeF3, showing sample history dependence
below about 55 K.
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FIG. 5. Curie-Weiss law fit to the inverse susceptibility data
for Mn2Sb207 giving p =5.92(1)p& and 0= —48.9(6) K.

C. Neutron diffraction FeF3

In order to isolate the correlated magnetic scattering in
low-temperature data sets, the high-temperature (273 K)
data set was subtracted thus removing nuclear and
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FIG. 7. Neutron-scattering data for FeF3 showing diffuse
scattering due to short-range correlations of Fe'+ moments.
Nuclear and paramagnetic scattering has been removed by sub-
tracting the high-temperature data set (273 K).
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FIG. 8. Real-space radial correlation functions for FeF3 (In

arbitrary units) obtained by Fourier transforming the low-
temperature I erence ad'ff d ta sets. Arrows indicate the four
nearest-neighbor bond distances for the Fe + sublattice.
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FIG. 9. Neutron-scattering data for Mn2Sb207 showing
diffuse scattering due to short-range correlations oof Mn + mo-
ments. Nuclear and paramagnetic scattering has been remove
by subtracting the high-temperature data set 295 K).

resolution-limited magnetic Bragg peaks begin to devel-
o . Again, the Fourier ana1ysis (Fig. 10) indicates strongop. gain, e ou
antiferromagnetic first-neighbor, an ferroma neticg
second- and third-neighbor, spin-spin correlations. Here
the coordination shells are defined within a range of bond
distances calculated from Scott's refinement of the crystal

3structure in the space group P3,21.

y & s, .s,, &s(lrl —Ir I ),S(S+1)

feature at =15' in 20 and depletion of scattering near 10'
20, resulting from short-range ordering o e e +f the Fe + mo-
ments. Significant short-range ordering sets in only
below 160 K, which is consistent with susceptibility data.

Better insight into the short-range correlations can be
obtained by Fourier transforming the data, which gives
the radial correlation function

g(r)= f Id ff(Q)f (Q) Q sin(Qr)dQ,
Q,

"'
where Q =4m. sin(8)/A, is the scattering vector, Id ffQ is'
the magnetic scattering intensity at Q with the paramag-
netic scattering subtracted, and ~ &~~&~&&~~& is the magnetic
form factor. In the limit of isotropic interactions

which is a sum o
~ $ ~ of spin-spin correlations at distance r.

Figure 8 shows the Fourier transforms of the five low-
temperature data sets. The arrows indicate the first-to
fourth-neighbor Fe—Fe bond distances. The main con-
tribution to the error in this sort of analysis is most li e y
from the limited Q range of the data. Other sources o
error such as data noise and anisotropy are less
significant.

From Fig. 8 we can see that there are strong antiferro-
magnetic correlations between first ne'gi hbors at all tem-
peratures. e owB 1 80 K ferromagnetic correlations be-
tween second and third neighbors develop. Also, the 20-
K data set shows qualitative differences from all the ot er
data sets. The resolution provided by this analysis is not
good enough to separate the contributions from t e
second- and third-neighbor correlations.
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D. Neutron di8'raction Mn2Sb207

The 300-K difference data for MnzsbzO~ (Fig. 9) is very
simi ar to a o1 t th t of FeF for the higher temperatures, again
having the broad feature near 20=15'. Below

FIG. 10. Real-space radial correlation functions for
M Sb 0 (in arbitrary units) obtained by Fourier transformingn2 2 7 111

the low-tempera ure i et d fference data sets. Arrows indicate upp
and lower imits on e1 th four nearest-neighbor coordination
shells in the Mn'+ sublattice.
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TABLE I. Observed and calculated magnetic peak positions for Mn2Sb207, based on Scott's hexago-
nal cell.

Pos. (20)

11.44(2)

15.13(2)

17.73(1)

19.49(4)

22. 10(6)

23.76(4)

28.82(7)

30.13(6)

d (A)

6.98(1)

5.28(1)

4.514(5)

4.11(1)

3.63(2)

3.37(1)

2.80(1)

2.68(1)

Rel. int.

17(1)

58(2)

100(2)

17(1)

16(2)

21(1)

10(1)

11(1)

(hkl)

( —', 0,2)

( —', 0, 3)

( —', 0,4)

(-,', 1,3)

( —,0, 3)

(2, 1,5)

(-,', 2, 1)

( —', 0, 5)

Calc. pos. (20)

11.20

15.21

17.73

19.51

21.94

23.70

23.78

28.79

30.03

30.24

The Bragg peak intensities and positions are listed in
Table I. All rejections could be indexed on a unit cell
(2a, 2a, c) or equivalently with a ( —,', —,', 0) propagation vec-

tor, as related to Scott's hexagonal unit cell. The calcu-
lated peak positions within this indexing scheme are also
listed in Table I. The lack of detailed crystallographic in-
formation on this compound makes the solution of the
magnetic structure rather difficult, thus no attempts have
been made.

IV. CONCLUSIONS

The neutron-diffraction data show directly that both
compounds have nearest-neighbor antiferromagnetic in-
teractions. In the absence of further-neighbor interac-
tions, the pyrochlore system is not expected to order at
any temperature '' on the basis of qualitative arguments.
Villain calls these systems "cooperative paramagnets". '

As a result of this, pyrochlore can be expected to develop
strong nearest-neighbor antiferromagnetic correlations at
temperatures below ~J, ~, the nearest-neighbor interac-
tion, without long-range order. In some cases further-
neighbor interactions will stabilize long-range order at
temperatures much lower than

~ J, ~. This is clearly the
situation in FeF3 and Mn2Sbz07.

The strong dependence of the susceptibility data on
sample cooling history is more reminiscent of spin-glass
behavior than that of chemically ordered magnetic sys-
tems. However, a number of pyrochlore compounds
have recently been shown to exhibit spin-glass-like behav-
ior in the absence of chemical disorder. Y2Mn~07 (Ref.
l l) shows diffuse neutron scattering over a wide tempera-

ture range as well as sample history dependence in the
susceptibility. Heat-capacity data show no anomalies as-
sociated with a phase transition, and the entropy removal
is almost 100% down to 2 K. ' The related compound
Y2Mo207 shows spin-glass-like behavior' in the form of
a cusp and sample history dependence in the magnetic
susceptibility, even though the compound is chemically
ordered. ' The high degree of frustration on the Mn +

and Mo + sublattices is believed to be responsible for the
unusual effects observed in these compounds. Similar be-
havior has also been observed in susceptibility data for
Tb2Mo207. ' ' Here spin-glass-like behavior is also evi-
dent in neutron-diffraction data where strong diffuse
magnetic scattering develops below the apparent freezing
temperature of 25 K.

Detailed crystallographic work on MnzSb207 and
high-resolution neutron-diffraction data will be required
in order solve the low-temperature magnetic structure.
The other spin-glass-like systems (Y2Mo207, Y2Mnz07,
and Tb2Mo207) mentioned above are expected to order at
low enough temperatures. Neutron experiments on these
compounds below 1 K are also of great interest. Low-
temperature observations on field-cooled samples of all
the pyrochlores mentioned should also be investigated
with neutron diffraction.
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