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We present a general method for the calculation of correlation functions in the repulsive
one-dimensional Hubbard model at less than half-filling in a magnetic field k. We describe the
dependence of the critical exponents that drive their long-distance asymptotics on the Coulomb

coupling, the density, and h. This dependence can be described in terms of a set of coupled
Bethe-Ansatz integral equations. It simplifies significantly in the strong-coupling limit, where
we give explicit formulas for the dependence of the critical exponents on the magnetic field. In
particular, we find that at small field the functional dependence of the critical exponents on 6
can be algebraic or logarithmic —depending on the operators involved, In addition, we evaluate
the singularities of the Fourier images of the correlation functions. It turns out that switching
on a magnetic field gives rise to singularities in the dynamic field-field correlation functions that
are absent at k=o.

I. INTRODUCTION

Recently, the relevance of correlation eKects in inter-
acting electron systems to high-T, superconductivity has
led to growing interest in the computation of correlation
functions for the one-dimensional Hubbard model
since it combines the essentials of correlated electrons
on one hand with the attractive feature of complete in-
tegrability on the other.

As a number of other systems in one spatial dimen-
sion, the Hubbard model has a critical point at zero tem-
perature. For these models correlation functions decay
as powers of the distance asymptotically. The calcula-
tion of these powers —the critical exponents —is of major
interest. For some of these systems, for example, spin-
less fermions and the spin-z Heisenberg chain, this can
be done within Haldane's Luttinger tiqnid approach, s

based on the fact that these models belong to the same
universality class as the Gaussian model. i2 Due to confor-
mal invariance, the possible universality classes of criti-
cal theories are related to a single dimensionless number:
the central charge c of the underlying Virasoro algebra
(c=l for the Gaussian model). Furthermore, the finite-
size corrections in the spectra of these models are closely
related to the scaling dimensions of the fields present in
the theory, ~ ' which in turn determine the critical ex-
ponents. Common to all of these systems is the property
that they have a single critical degree of freedom only.
As is known from I ieb and Wu's exact solution the
Hubbard model does not belong to this class: in general,
both charge- and spin-density waves are critical. Only

in a sufBciently strong magnetic field —where the spin-
density waves have a gap —or at half-filling —where the
Hubbard model is insulating and the charge excitations
are massive —the remaining critical degree of freedom can
be described within the scheme outlined above.

Based on the Bethe-Ansatz solution the finite-size cor-
rections for the half-filled Hubbard model at zero mag-
netic field have been calculated analytically and the crit-
ical theory has been found to be described by a single Vi-
rasoro algebra with central charge c=1. The Hubbard
model with attractive interaction at arbitrary filling also
has central charge c=l; the critical exponents depend on
the density of electrons. The magnetic field dependence
of the critical behavior in a theory of this type has first
been investigated in the Heisenberg spin chain. The
critical theory still corresponds to c=1. The scaling di-

mensions, however, are found to depend on the magnetic
field.

For systems with more than one critical degree of
freedom —the situation is more complicated: the under-
standing of this class of systems is based on exact finite-
size calculationsao, 2i in models that are soluble by a
hierarchy of Bethe Ansatze (the Hubbard model be-
longs to this class). It has been found that they can be
understood as a direct product of Virasoro algebras each
having central charge c=l. As in the one-component case
this continues to hold in a generic situation, i.e. , with ex-
ternal fields coupled to the critical degrees of freedom.

AVoynarovich has calculated the finite-size corrections
in the spectrum of the Hubbard model at less than half-
filling analytically. His results can be interpreted in the
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framework of conformal quantum field theory following
the lines mentioned above: the critical theory describing
both charge- and spin-density waves is based on a prod-
uct of two Virasoro algebras each having central charge
t";=1. In a previous paper we have used these results to
calculate the critical exponents for the Hubbard model.
There we have shown that while the central charges are
universal the critical exponents depend on all the system
parameters, i.e. , density (or, alternatively, the chemical
potential), coupling constant, , and the magnetic field. In
the present paper we concentrate on the magnetic field
dependence. It is found to be logarithmic in the generic
case—very similar to the situation in the spin-& Heisen-
berg model. In fact, this similarity has been exploited
before to show that the small field magnetic suscepti-
bility y exhibits logarithmic singularities as h ~ 0 and
as a further consequence the specific heat coefFicient is
singular. 24 Since the critical exponents are closely related
to thermodynamic quantities such as y it is not surprising
that they show the same singular field dependence. 5 For
the full Hubbard model (that is, including charge degrees
of freedom) we find an additional linear field dependence
in the corresponding contributions to the critical expo-
nents. This is much weaker than the logarithmic one and
shows up in certain correlators only.

At this point we would like to emphasize the dif-
ference between our approach and that of several
other authors: 7 the exact solution of the model and,
in particular, the spectrum of low-lying excitations
show that the contributions of charge- and spin-density
waves cannot be described by two independent efFective
Hamiltonians —charge- and spin-density waves do inter-
act. This means that the spectrum of conformal operator
dimensions in this model is determined by a 2 x 2 matrix
(the so-called dressed charge matrix, see below) rather
than two scalar coupling constants. At zero magnetic
field this fact is obscured to some extent since the dressed
charge matrix is found to be triangular and the nonzero
ofF-diagonal element is just one-half of one of the diagonal
ones. Due to this fact, the critical exponents obtained
when starting from two independent critical theories ' '

coincide with the ones found on the basis of the exact
finite-size corrections.

In the presence of a magnetic field, however, this sit-
uation changes: no simple relation between different el-
ements of the dressed charge matrix holds and, as we
show in this paper, the functional dependence of the var-
ious matrix elements on the Geld is significantly difFerent.
An important consequence of this is the appearance of
an additional singularity of the electronic field correla-
tion function in momentum space if the magnetic field
is switched on. We do not think that this effect can be
obtained within an approach that starts from separate
effective theories for charge- and spin-density waves, re-
spectively.

The Hubbard model describes spin-& electrons on the
lattice. The electrons are described by canonical Fermi
fields @,@t and the Hamiltonian is given by the follow-

ing expression:

lV

—) .).(WJ+i, wj, + sl, 0z+i, )j=l
N N

+4u ) ni T nil + & ) (ni T + ni l )
j=1 j=1
N-- ) .(na —n~t)

j=l

Here n& ——g g&. ~ is the number of spin cr electrons at
site j, 4u ) 0 is the on-site Coulomb repulsion, p is the
chemical potential, and h is an external magnetic field.

Our paper is organized as follows: In the following
section we shall review the Bethe-Ansatz solution of the
model (1.1) in the aspects relevant to the present work.
In Sec. III we consider the strong-coupling limit, u ~ oo.
In this limit the dependence of the critical exponents on
the magnetic field h simplifies essentially. In particular,
we investigate this dependence for small fields and close
to the critical Geld h, where all the spins are aligned and
the model becomes ferromagnetic. In Sec. IV we apply
these results to compute the critical exponents for a few
interesting correlation functions. In the final section we
calculate the singularities in the Fourier images of these
correlation functions.

II. THE BETHE-ANSATZ SOLUTION
FOR THE HUBBARD MODEL

Iieb and Wu have constructed a complete set of
eigenfunctions of the Hubbard Hamiltonian (1.1). In the
thermodynamic limit the zero-temperature ground state
of the model consists of two Fermi seas, characterized
by distribution functions p, (k) of charges with "holon"
momentum k and p, (A) of down spins with spin-wave
("spinon") rapidity A. Lieb and Wu have written down
integral equations describing this configuration:

p, (k) = dAI&(sin k —A; u)p, (A),

(2.1)

p. (A) =
ko

dkI~ (A —sin k; u) p, (k)

Ao

dpI&(A —p; 2u)p, (p) .
2x

The kernels of these equations are given by

20,'
I~(z;n) =

+ Z
(2.2)

The values of ~~ and ko are related to the number of
electrons per lattice site n, = N, /N and the magnetiza-
tion M = (NT —Nl)/2N (N is the number of spin-cr
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electrons) by the following equations:

kp

dkp, (k) = '—:n, ,
kp

Ao

(„(k)= 1+
2x

ko

dA(„(A) Ii (A —sin k; u),

Ao

Ap

dAp, (A) = ' —= n, ——M .
N, 1

(2.3) („(A) = dk cos k(„(k)I~ (sin k —A; u)
27K k

Ap

dp(„(p,)I~ (p —A; 2u),

s, (k) = s& ~(k) + 2x
dAI~ (sin k —A; u)s, (A),

Another way to describe the system is in terms of integral
equations for excitation energies:

Ao
1

27t

Ap

dA(„(A)I~ (A —sin k; u),

(2.10)

(2 4) („(A) = ly 1 kp

dk cos k(„(k)Ii (sin k —A; u)

s, (A) = sl &(A) +
271

kp

dk cos kIi. (A —sin k; u)s, (k)

1

27'

Ap

dye„(p)Ii (p —A; 2u) .

Ap

dye (A —p; 2u)s, (p) .

Other quantities of relevance are the Fermi velocities v,
and v, of charge- and spin-density waves:

Here s, (k) is the energy of a charge-density excitation
with momentum k, s, (A) that of a spin-density wave with

rapidity A. The bare energies z, , are

1
v, = s', (kp) & 0,

2xp, kp

v, =, , s', (Ap) & 0 .
27t ps (~p)

(2.11)

s& l(k) = p ———2cos k,
h

(2.5) and the Fermi momenta 'P~
1 and 'P~t for electrons with

spin up and down, respectively, i.e. ,

s, (kp) = 0, s, (Ap) = 0

provide another way to define the values of kp and Ap for
the ground state for given magnetic field h and chemical
potential p. At zero field h = 0 one finds Ap

——oo, the
critical field h = h, where all the spins are pointing up,
corresponds to Ap ——0. From (2.6) it is found to be

The solutions of Eqs. (2.4) define the energy bands. The
ground-state configuration corresponds to the filling of
all states with s, (k) & 0 and s, (A) & 0. Consequently,
the conditions

'Py y(t) = ~2(mn, + 2m~) . (2.12)

We already mentioned in the Introduction that the
critical behavior of the repulsive Hubbard model at less
than filling (n, & 1) is described by the direct product of
two Virasoro algebras, each having central charge c=l.
The corresponding conformal dimensions of the primary
fields are given in terms of the elements of (2.9) ass

cos k —cos xn,
dk cos k

~2 + sin

At large coupling u the value of h, scales like 1/u:

(2.7)

Z„&I~I, —Z„Zm, 'l '
2det Z

(2.13)

2 t 1 (' 1
h, —

~
n, — sin27rn, +0

~

—~, for u&& 1.
u ( 2x gus)

The quantity that determines the critical exponents is
the dressed charge matrix:

Z„z„) („(kp) („(Ap) i
Z„Z„) (,.(kp) („(Ap) )

Here the matrix (;& is defined as the solution of the fol-

lowing integral equations:

2A,+(h.N, D) = Z„D, + Z„D,

z,.aiv, —z„ax,~
'

2det Z )

Here LN, and AN, are integers which describe the quan-
tum numbers of the operators involved in the correlation
functions considered, i.e. , the change in the number of
charges and down spins with respect to the ground state.
D, and D, are integer or half integer depending on the
parities of AN, and LN, :
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LN, +AN,
C

2
mod 1 0, = ' mod 1.

2

(2.14)

p, (k) = +

Knowing the conformal dimensions (2.13) the long-
distance asymptotics of zero-temperature correlation
functions is then given as a sum of terms

exp( —2&D, 'P~yz) exp[—2i(D, + D, )'PF l z]

(z —iv, 7.) ~ (z y xv, r) . (z —iv, ~)' ~ (z + iv, 7-)'

(2.15)

(we use Euclidean time 7) As . discussed above,
and AN, . are fixed by the correlator one considers while
summation has to be performed with respect to D, and
D, . The leading term in the asymptotics is given by the
term in this sum which minimizes 4+.

Conformal quantum field theory also describes the cor-
relation functions at small nonzero temperatures. Their
exponential decay is given by the same dimensions (2.13)
(see Ref. 5).

for k(ko,

(3.2)

1
s, (k) = 2(cos ko —cos k) + 0

Q

Zcc Z„= 0,

(3 3)
Ap

Zsc 2' dA(„(A)I~(A; 1) .

For the calculation of the elements of the dressed
charge matrix (2.9) we shall neglect the corrections in
1//u. These contributions can, however, be obtained from
(3.1) and similar expressions for the other elements. (For
h=0 they have been written down in Ref. 5.) In this ap-
proximation they are given by

III. THE STRONG-COUPLINC LIMIT

To illustrate the dependence of the critical exponents
on the magnetic field let us consider now the limit u ~
oo. This simplifies the integral equations (2.1), (2.4),
and (2.10) significantly. After proper rescaling they can
b e re writ ten in the following way:

For vanishing magnetic field Ao
—oo and Eqs. (3.1) can

be solved by Fourier transformation. This case has been
discussed in great detail in our previous paper. ~ The
dressed charge matrix has been found to be

(3 4)

C

p, (A) = —'
sr 1+ A~ 2x

(1)
+0/ —,/,

Ap

dpK(A —p; 2}p,(p}

s. (Ao) = 0

to find the field dependence of Ao.

(3.5)

For small magnetic field (and Ao large but finite) one
can use the Wiener-Hopf (WH) method as outlined in
the Appendix together with the condition

h, 1
s, (A) = h — ' — dpI~ (A —p; 2)s, (p)+ Vl

2 h() )Ao= —ln —~, ho= —hc.
vr h ) ' 2e (3.6)

(
sin ko 2Z4g

]+$2

(3 1) (A similar dependence has been found for the isotropic
spin-& Heisenberg magnetic chain. ) For the magnetiza-
tion M we obtain in an analogous calculation

(3 7)

1 )
dpI~(A —p; 2)$„(p)+ 0

(Ao diA'ers from its value used in the previous section
by a factor of u. ) At u = oo the value of the critical
field h, (2.8) vanishes —an infinitesimal magnetic field is
sufficient to magnetize the system completely. From (3.1)
we see, however, that at first order in 1//u we already
obtain nontrivial behavior.

The density and energy of the charge-density waves are
given by the following expressions:

Ao

Zsc
&c

dAp, (A) = i—
+C

(3.9)

and for the elements of the dressed charge matrix in a
small magnetic field:

/2 4(n(hD/h) (ln(hD/h)]2)

(3 8)

To calculate the leading correction to Z„ for finite Ao
we make use of the fact that Eq. (3.3) can be written
alternatively as
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[this is possible, since the kernel of the integral equations
(3.1) is symmetric]. Hence, we obtain with (3.7)

1.0—

/'

h, h, ln(ho/th)
(3.10)

1

v2

Note the different functional dependence on h of Z„and
Z„near h=0. This has an interesting consequence on
the conformal dimensions (2.13) entering the expressions
for the correlation functions:

2A,+(AN, D) = (D, + 2D, + ~2AN, )

(D, + ,'D, +——,'AN, )D, ,
C

(3.11)

0.5—

0.0
0.0

I

0.5

&o =
h,

(3.12)

2A,+(AN, D) = 2[D, + (b.N, —~EN, )]

41n ho h

The magnetic field dependence of the critical dimensions
for the charge excitations is much weaker than that of the
spin excitations. This is not surprising since the magnetic
field couples directly to the spin degree of freedom. In
general, the exponents of equal time correlators (where
only the sum of 4, and 6, enters) will be dominated by
the latter; in time-dependent quantities, however, this
effect should become observable.

As h approaches the critical field (2.8) from below, i.e.,

near the ferromagnetic state, Ao vanishes like

The dressed charge matrix in this regime is given by

t'1 O 1 fh, —h'~'/'
O (3.13)

(this agrees with the limiting case h = h, considered in
Ref. 5). The field dependence of the conforrnal dimen-
sions to leading order is given by

FIG. 1. Magnetic field dependence of the elements Z„
(upper curve) and Z„(lower curve) of the dressed charge
matrix in the strong-coupling limit. Note the drastically dif-
ferent functional behavior as 6 ~ 0.

2~, (~N, D) =(D, ~-, Z N. ) + —
~

1 ——„~ (D. +-,».)D. ,
7I

i/2
2~;(~N, D) = (D, + —,'~N. )' ——

~
1 ——„~ (D. + —,'», )[D. + (&N. ——,'», )] .

7I

(3 14)

At h & h, a phase transition similar to the one found
at half-filling occurs: excitations with spin develop a gap
and the corresponding contributions to the correlation
functions decay like exponentials asymptotically.

In Fig. 1 we present numerical results based on
Eqs. (3.1) and (3.3) for the magnetic field dependence
of Z„and Z„ for the entire region 0 & h & h, .

First we consider the field-field correlation functions

G';,'(, &) = (4-( t)4.'(O o)) (4.1)

For g =t' the quantum numbers of this operator are
AN, =1 and AN, =O; from (2.14) we find that D, and
D, both take half odd integer values. Hence the leading
contribution with wave number P~ t. to Q&~~&~ is

IV. CORRELATION FUNCTIONS
IN THE STRONG-COUPLING LIMIT

The results obtained in the last section can now be
used to obtain the magnetic field dependence of the crit-
ical exponents of certain correlation functions. The ba-
sic procedure for this has been discussed in our earlier
paper.

ex (pi%'~ T z)
(z —tn, 7)' -+(z+ rn, r) ~ (z —tn, ~)2 +(z+ tn, r)'

(4.2)

where the expressions for the AP, are given by Eq. (2.13)
with AN, = 1, AN, = 0, D, = —D, = ——.Near 6 = 0
these expressions simplify considerably due t, o the simpler
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structure of the Z matrix. We obtain

+ 1 1

4 ln(ho/h)

——1 1 1

2 4 ln(ho/h)

(4.3)

(4.7)

2A, =1 ——~1 ——
~h, p

and for the component with wave number 2p~ ~ + p~ ~

(D, = —1, D, = z) we find

The logarithmic field dependence of L+ cancels to first
order. Fortunately, the next order is completely fixed by
the leading correction to Z„(3.8).

As h approaches h, one obtains for this contribution

2A+=4 ——/1 ——
/h, )

(4 8)

2A+ =0, 2A, =1 ——/1 ——
/

h, p 2K+=1 ——
~

1 ——
~h, y

, 2L, =0.
2A+ = ——

4 (4 4) Another correlation function of interest is the density-
density correlation function

s 4

[Here we neglect contributions of order O(1 —h/h, ).]
There is also a contribution with wave number P~ ~ +

2'P~g (corresponding to D, = D, = —2i) with

16 2&2 I
' 16

1 6 1

2 41 (h /h)
(4.5)

1 1

2 4 ln(ho/h)

2A+=0, 2A, =1+— 1 ——
h,

2&+ = -'+
4 2ir h) (4 6)

2L, =4 — 1 ——

For the spin-down field correlator we have AN, =1,
AN, =1 and D, now runs through all integer, D, through
all half odd integer numbers. The leading terms in the
correlation functions are the ones given above for the
spin-up correlators with P~ y and P~ y interchanged. For
small magnetic field the dimensions are the ones given in
Eqs. (4.3) and (4.5) with h replaced by —h in the ex-
pressions for L+. For h —+ h, the exponents for the
contribution with wave number 'P~ t (D, = 0, D, = —2)
are

for small magnetic field h &( h, (again the corrections
of order [ln(ho/h)] cancel). As h approaches h, one
obtains for this contribution

G-(z t) = (n(z ~)n(0 0))

n(z, S) = n, (z, t)+n, (z, t) .
(4 9)

This operator has quantum numbers AN, = AN, = 0
and D„D, take integer values. The leading contribu-
tions to the asymptotics apart from the constant are
found to have wave number 2'P~ 1 (corresponding to
D, = D, = —1)—. For small magnetic field the cor-
responding critical dimensions are

2A+= 1+ 2h ~~ 1 1
4 ir2h, ' ' 2 41n(ho/h)

' (4.10)

G'o (z t) = (~'(z t)~'(0 0)) (4.12)

(where S'(z, t) = [n1(z, i) —nt(z, i)]/2) has the same
quantum numbers as the density-density correlator.
Hence, the leading term beyond the constant is the one
with wave number 2'P~1 and dimensions (4.10). The
contribution of the spin-density waves L+ is the same as

The contribution with wave number 2'P~y (D, = 0 and
D, = —1) has the same dimensions with h in the expres-
sion for 4+ replaced by —h. At h = 0 the amplitudes
of these contributions are known to be vanishing in the
strong-coupling limit.

As h ~ h, the leading terms beyond the constant in
the asymptotics of the density-density correlation func-
tion are found at zero wave number:

1 1 1 1

(z —iv, 7)2 (z+ iv, i)2 (z —in, 7)2 (z+ iv, ~)2

(4.11)

and at wave number 2(2~1+ 'P~ ~) (D, = —1, D, = 0):
the dimensions do not depend on the magnetic field to
leading order. At infinite coupling u they are known to
be 2A+ = 1 and 2A+ = 0.

The longitudinal spin-spin correlation function



43 CORRELATION FUNCTIONS OF THE ONE-DIMENSIONAL. . . 5659

the one found in the isotropic Heisenberg chain. 's Finally
we want to consider the transversal spin-spin correlation
function

G~.(z, t) = (S-(z, t)S+(O, O)), (4.13)

with S+(z, t) = QT(z, t)gt (z, t). The leading term in the
asymptotics has wave number 'Pg1+ PJ; g and with the
corresponding quantum numbers LN, = 0, LN, = 1,
D, = —

z and D, = 0 we find for the dimensions in the

strong-coupling limit

24+= ~ — for h~0,1

( /)
(4.14)

In our previous paper we have evaluated the long dis-
tance asymptotics of correlators for singlet and triplet
pairs in addition to the ones presented here. The calcu-
lation of the corresponding critical exponents is straight-
forward but will not be presented here, since they are
larger than 2 for all values of h.

V. CORRELATION FUNCTIONS
IN MOMENTUM SPACE

The long-distance asymptotics of zero-temperature
correlation functions consists of terms of the form (2.15),

2~ =-, » =-+4' ' 4 2~ g h) for h~h, . 1.e. )

exp(ikoz)
g z)r

~ ~ +
(z —iv, r) ri. (z+ iv, r) r . (z —iv, r) ~ (z+ iv, r) + (5 ')

To compute tlie Fourier transforms

g(k, ur) = dx dte-'~'- '&g z, S, (5.2)

we first have to rotate the time coordinate from Euclidean time r to real time t. Analyticity requires

r = it + sgn(t) . (5.3)

Equivalently, the correct regularization of the cuts in the complex time coordinate can be obtaiued by replacing ~ = it
in (5.1) and giving an infinitesimal imaginary part to the velocity:

v; v, e (5.4)

All the following equations are to be understood that way. This gives

exp(ikp z)z)t
(z+ v,t) ~-+(z —v, t)'~. (z+ v, t) ~+(z —v, t)~~

(5.5)

As mentioned above, this expression holds asymptotically only. Nevertheless, it allows us to calculate the behavior of
the Fourier transforms g(k, u) near the singularities

~ = +v, ,(k —ko) .

Standard methods yield

(5.6)

const[a) p v, (k —ko)I & ~ +~ +~. & i for ur +v, (k —ko)
g(k, u)

const[~ p v, (k —ko)j ~ ~ +~ + ~ l ' for ~ = +v, (k —ko) .
(5.7)

This formula is applicable only if all the dimensions 4,+
are nonzero. If one of them vanishes (as is the case for
the field-field correlator at zero magnetic field) the cor-
responding singularity disappears, i,e. , const=0.

Note that the integral in (5.2) is not absolutely con-
vergent in general. To prove (5.7) mathematically one
should consider the case where Qb, + ) 1 and the sum
of three of the L's less than —and then continue analyt-

. 2
ically to obtain this expression.

For the Fourier transform of equal time correlators,
i.e. , terms like

g(k) = dze ' g(z, t = 0+)

e -&(a-k )~
dz

(z —io)2~+(z ~ io)~~ (5.8)

(here E+ = E,+ + 4,+), one has to consider k ) ko and
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k ( kp separately. Contour integration yields

g(kp + p)
g(ko —s')

sin 2xL
sin 2+A+ =(—1)", p&0 (5.9)

where s = 4+ —4 is the conformal spin of the operator
under consideration. From (2.13) it is clear that 2v is
always an integer. Using this we find that

G~~(k = V ~q) - sgn(k —V F q) ~k —V g q~",-(i)

2 (v= —' ——/1 ——
/h, y

(5.14)

g(k = kp) - [sgn(k —kp)] '(k —kp(',

v = 2(A+ + A, + A+ + A, ) —1 .
(5.10) G~~(k 27 r, l + Pp, g) sgn(k 2&s', T 7 &l)

x [k —27'F, T
—7'r, g I

The extra sign will appear in correlation functions of
Fermi fields, e.g. , the field-field correlator (4.1).

The results (5.10) and (5.7) are very general and can
be applied to any correlation function. 5 To illustrate this
let us consider here a few examples in the strong-coupling
limit.

The static field-field correlator has a singularity at
+F,T

The singularities of the correlation function G&&(u, k)
can be obtained from (5.7). For the contributions with
wave number k 'P~1 we find

G~1~1(~, k) - [cu —v, (k —'P~ T)]",

for ~ = v, (k —P~ 1) )

G~~(k Py 1) sgn(k —PF', T) lk —T'F, T
I",

] 1

[41n(hp/h)]'

v= i —— 1 ——
~

for h~h, .
h, y

(5.11)

with

ash~h, ,

(5.15)

The h=Q exponent v = 8 for the strong-coupling limit
has been obtained before. At zero magnetic field v is
a monotonous function of the coupling constant u and
goes to 0 as u ~ O. For large but finite u the leading
correction is

fol' Cd ~ —Vg(k —P~ T)

with (5.16)

G~~1J((u, k) - [~ + v, (k —V~1)]",

3ln2
v(h = 0) = s

— sm~n, .
4~u

(5.12) [4 ln(hp/h)]2

ash —+h, ,

Another singularity is at V~1 + 2K~ t (b is a positive
constant): G~~1J(cu, k) - [~ —v, (k —'P~1)]',

G~ (k = P~, 1 + 27 r 1) - sgn(k —'Pr, 1
—2Pr, t )

(T)

xlk -&~,~ -»r, gl',
(5.13)

foi' cJ ~ vg (k —Py' T) )

(5.17)

[41n(hp/h)] 2

for A~A, .

3 1

2[41n(hp/h)]2
7 r'

2~q h,
ash~6, .

As mentioned above, the corresponding singularities for
the spin-down correlation functions at small magnetic
fields' are obtained by replacing PF T with PF y and vice
versa. Near h = h, one obtains

For the Hubbard model without a magnetic field these
singularities have also been found by Ren and Anderson.
For finite h there appears an additional singularity at
cu + v, (k —P~1) 0 (this effect exists at any value of
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the coupling u):

Ggg((d, k) ~ [ld + Vg(k —py'y)]

for ur — v—, (k —P~ 1),

functions considered here. The method presented can be
applied to arbitrary operators.

ACKNOWLEDG MENTS

with

1 1

2[4 1n(hp/h)]2
3

2~ q h, )
as h ~ h,

(5.18)

V.E.I4. gratefully acknowledges the hospitality of
M. Fowler and the Physics Department (University of
Virginia), where much of this work was performed. This
work has been supported by the National Science Foun-
dation (NSF) under Grant Nos. DMR-8810541 and PHY-
89-08495.

At h = 0 the amplitude of this contribution to G&&(k, ~)
vanishes since 4+ ~ 0 in this limit. Similarly, there will
appear an additional singularity at ~ —v, (k —7 F1-
2PF t) 0 in the presence of a magnetic field.

For the static spin-spin correlator (4.13) we find for the
singularity near wave number P~ y + P~ g

AP PENDIX: WIENER-HOP F METHOD
FOR EQS. (3.1)

f(~) = f'"(&) —& .* f(&), (Al)

In this appendix we review the Wiener-Hopf method
used above to solve integral equations of the type

G..(k = 'PF, ) + PF, l) —Ik —'P~,
y

—&F,t I

where

(5.19) where jC is an integral operator whose action is defined
by

t' 1

2 1n(hp/h
1 (

h,
for h ~ h, .

(5.20)

1
IC)„*f(A) =

2 7l

Ap

dpI~ (A —p, ; 2) f(p) (A2)

for large but finite Ao .
First we extend the definition of the bare function f( l

and of the kernel K to the entire real axis. Following
Yang and Yang2s we rewrite (Al) as

VI. CONCLUSION

In Ref. 5 and the current paper we give a complete de-
scription of correlation functions in the one-dimensional
Hubbard model. Based on exact finite size calculations
and the principles of conformal quantum field theory we

find expressions for the critical exponents that describe
the long-distance asymptotics of the correlation functions
in coordinate space or, equivalently, the singularities of
their Four ier transforms in momentum space . The val-
ues of the critical exponents are given in terms of the
elements of the dressed charge matrix, which in turn is
defined as the solution of a set of Bethe-An@a/z integral
equations (2.10). The critical behavior depends on all the
system parameters, i.e. , the density of electrons, the cou-
pling constant, and the magnetic field. In Ref, 5 we have
concentrated on the dependence on the density and the
coupling constant at zero field and at the critical field
where the ground state becomes ferromagnetic. In the
present work we have computed the magnetic field de-
pendence of the critical exponents in the limit of strong
coupling .

To conclude, we would like to emphasize again that
the integral equations (2.10) fix the critical behavior for
arbitrary values of the system parameters. The reason
for studying limiting cases is to simplify the expressions
for the critical exponents. Furthermore the analysis of
the critical behavior is not restricted to the correlation

(1+@ )
'—= 1 —K

the integral equation (A3) can be written as

(A4)

f(A) = f (A) +
—Ap co)

I dpI~ (A —p) f(p),
o )

(A5)

where f~ is the solution of (Al) for Ap
—oo and I~ is the

kernel of the integral operator K introduced in Eq. (A4).
In the system considered here it is given in terms of its
Fourier transform by

I~(~) =
1 + exp(2~~ ~)

(A6)

Using that f(A) is an even function of A and shifting the
variables in (A5) A: Ap + x we obtain finally

( —)o oo)
(1+K ) * f(A) = ft l(A)+

xdpIi. (A —p; 2)f(p) .

(A3)

The operator (1+K ) can be inverted by Fourier trans-
form. Denoting
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f(z) = f (Ap+ z)+ dyI~(z —y) f(y)

+ dpI'C 2Ap + z+ P tI (A7)

where Q+(u) are analytic for +Im(u) ) 0,

Q'(~)+Q (~) = G (~)g'"(~) (A13)

Note that I&(2AO+z) is O(A& ) for large Ao and positive
z. This fact allows us to treat the last integral in Eq. (A7)
as a perturbation. To every order the resulting equations
are of Wiener-Hopf type:

g'(~) = G'(~)Q'(~)
In terms of this solution we have

(A14)

The analytic properties of the functions involved allow
for the solution of Eq. (A12):

g(z)— d»'(z —y)g(y) = g'"(z) (A8)
dzg(z) = g+(~ = 0), g(z = 0) = i —lim ~g+(~) .

Fourier transformation yields

[1 —It(~)]g+(~) + g (cu) = g& &(w), (A9)

1 —I~(cu) = [G+(~)G (~)] lirn G+(~) = 1.

where g+(u) = f dze(kz)g(z) exp(i~z) are the parts of
g(u) that are analytic for +Im(~) ) 0 [8(z) is the step
function]. The key to the solution of this equation is to
find a decomposition of the kernel into factors G+ that
are analytic in the upper and lower complex u plane,
respectively:

(A15)

To illustrate the scheme outlined above we apply it to
the calculation of the magnetic field dependence of Ap

(3.6): starting from Eq. (3.1) for e, we And

Q+((u)+Q (~) = G (~)
~

mhb(~) —e ' "' xh,
2 cosh cu)

(A16)

From this we obtain

For the present problem that is straightforward:

XZ ' = + —7rx

1
1(2 + iz)(iz) ' e'

2~ 2

h G (0) „ /2vrh, G (—iver/2)

2i ~ + i 0 2i(~ + in. /2)

+o( —swAp/2) (A17)

( ) The second equation in (A15) gives

Using th is fact or ization Eq. (A 9) be comes

[G+(~)] 'g+(~)+G (~)g (~) =Q'(~)+Q (~)

hG (0) p /s 7I h, G (—iz /2)
(A18)

(A12) Finally using (All) and (3.5) we have the result (3.6).
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