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A symmetry-based phenomenological model for the modulated structures in the dielectric 4,BX,
family is constructed. The 4,BX, crystals are viewed as layered structures, and the important vari-
ables of our model are the amplitudes of two of the single-layer symmetry modes. The free energy is
written in terms of the amplitudes of these two symmetry modes, and is found to contain a compet-
ing interaction mechanism, which produces a rich phase diagram. The model gives a universal pre-
diction for both the space groups and the modulation wave vectors for the sequences of phase tran-
sitions observed experimentally in the entire 4,BX, family.
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I. INTRODUCTION

Work in recent years has produced much detailed in-
formation on the commensurate and incommensurate
structures of the K,SeO,-type dielectric crystals, com-
monly called the 4,BX, family."> This family contains
a large group of dielectric isostructural crystals having
normal-phase space group Pcmn (DJ§). The symbol
A in the chemical formula A4,BX, represents
K*, Rb*, Cs* or an equivalent monovalent complex
such as NH," and N(CH,),* (we use TMA to denote
[N(CH;),], in this paper). The symbol BX, represents a
divalent tetrahedral complex such as SeO4“2, ZnCl4”2, or
ZnBr4_2. At low temperatures, a variety of structure-
modulated phases, with wave vectors along the ortho-
rhombic ¢* direction, have been discovered; these phases
have been recently reviewed by Cummins.? For example,
the prototypical crystal K,SeO, exhibits an incommensu-
rate phase below 130 K with a wave vector close to ¢* /3
and undergoes a lock-in transition at 93 K to a phase
having a wave vector ¢*/ 3.373 In other materials, the se-
quences of the phases and the corresponding wave vec-
tors are somewhat different. For example, in the case of
Rb,ZnBr,, a commensurate phase with a wave vector
5¢* /17 is believed to exist between the incommensurate
and the commensurate ¢ * /3 states;®’ furthermore, there
exists in this material a transition between two commen-
surate phases having different space-group symmetries
but both corresponding to wave vector ¢ * /3. As another
example, in the case of TMA -CoCl,, a sequence of modu-
lated phases is observed which has wave vectors
(£+8)c*, %¢*, (£—8)c*, and {c*, corresponding to in-
commensurate, commensurate, incommensurate, and
commensurate phases, respectively (in the order of de-
creasing temperature).? 10

Landau-type theories represent one of the two main
types of theories that have been used to understand the
different incommensurate and commensurate phases
which occur in the 4,BX, family.!""!? For example, lizu-
mi et al.? established a model for the lockin to the c¢* /3
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commensurate phase which occurs in potassium selenate
by including a term in the free energy coupling the fer-
roelectric polarization to the cube of the primary order
parameter; since the ferroelectric polarization is cubic in
the primary order parameter, this coupling term is
effectively of sixth order in the primary order parameter
(see also Ishibashi, Ref. 12). This work was extended by
Mashiyama et al.'® to include the couplings of the pri-
mary order parameter to secondary order parameters
which were appropriate to account for the 2¢* /5 phase.
Marion et al.'* then introduced the terms in the free en-
ergy which were needed to stabilize the 3¢* /7 phase. Fi-
nally, Parlinski and Dénoyer!®> gave a general prescrip-
tion for finding the terms in the free energy necessary to
stabilize a commensurate phase characterized by wave
vector nc*/m. The advantages of these Landau-type
theories»!27 13 are that they are symmetry based and can
account for the space-group symmetries of the phases
which they have been developed to describe. The major
difficulty with these theories, from the point of view of
the present paper, is that commensurate phases having
distinct wave vectors are stabilized by distinct indepen-
dent contributions to the free energy, and for materials
exhibiting different sequences of phases, different theoret-
ical models therefore are needed.

Yamada and Hamaya'!® made an interesting attempt to
construct a unified picture for the modulated phases
occurring in the entire 4,BX, family. Their extended
ANNNI (axial next-nearest-neighbor Ising) model!” pro-
duces sequences of incommensurate and commensurate
phases which they used to explain the sequences of phase
transitions experimentally found in some crystals in the
A,BX, family. Also, they suggested that the Ising spin
variable in their model should be identified with a partic-
ular local vibration of the A4,BX, structure. However,
they did not characterize the local vibration in terms of
its symmetry so that the identification of the space-group
symmetries of the various commensurate phases was
beyond the scope of their approach, as was the possibility
of considering transitions between two phases of different
symmetries corresponding to the same commensurate
wave vector.
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Our approach depends on identifying appropriate local
vibrational variables in terms of which a model free ener-
gy can be constructed. The 4,BX, crystals are viewed as
layered structures, and the possible ionic-distortion
modes of an isolated layer are classified according to their
symmetries. We then make use of the fact that the
three-dimensional distortion modes which give rise to the
modulated structures (e.g., the soft mode observed in
K,Se0,)’ have a known symmetry. Two (and only two)
of the layer modes can produce distortions which give
three-dimensional modes of the correct symmetry, and it
is therefore necessary to take the amplitudes of these two
layer modes as the variables in terms of which our model
is formulated. Since the symmetries of these two local
variables are known, the space-group symmetries of any
modulated structure predicted by the model can be
found.

As just mentioned, our model contains two distinct
symmetry modes per layer. The model free energy con-
tains interactions between nearest-neighbor layer modes
of the same symmetry, as well as an interaction which
couples nearest-neighbor layer modes of different sym-
metries. These two different types of interactions favor
ground states of different periods. Hence, our model is a
competing interaction type of model. However, the mod-
el is different from the ANNNI-type competing interac-
tion models in that the competition results from different
types of nearest-neighbor interactions,'®”!° rather than
from a competition of nearest-neighbor and higher-
neighbor interactions.

Janssen'® has shown that the Janssen-Tjon model'® (in
which the distortion of each layer is characterized by a
single variable) can account for some of the observed
modulated phases of the A,BX, family. In this ap-
proach, the stable commensurate phase of a given wave
vector has a unique space-group symmetry, however,
whereas more than one space-group symmetry per wave
vector has been found to occur experimentally.

Finally, it should be noted that the existence of two in-
teracting modes as a mechanism for the formation of in-
commensurate structures has been generally discussed
previously in a number of contexts.”°”2* However, the
discussion has always been carried out in a momentum
space framework and has not led to the complex phase
diagrams which are characteristic of our local layer-
mode, competing-interaction type of approach.

In this paper, we present a detailed derivation and
analysis of our model. In Secs. IT A and II B, a symmetry
analysis is presented and the free energy is constructed.
The dispersion curves that determine the incommensu-
rate instability for the high-temperature normal phase are
derived in Sec. IIC. Our numerical procedure and the
results for the phase diagrams are discussed in Sec. IIIL.
Since our model is based on a symmetry analysis, we are
above to relate the basic variables in our model to sym-
metry modes for the 4,BX, family. Consequently, we
can predict space-group symmetries for different modu-
lated phases resulting from our model. Our results are
compared with the experimentally determined structures
in the 4,BX, family in Sec. IV. Some preliminary re-
sults were reported in a Letter.?’
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II. FREE ENERGY
A. Symmetry analysis

The crystallographic setting used in this paper to de-
scribe the high-temperature (unmodulated) structure of
A,BX,-type crystals is illustrated in Fig. 1. The unit cell
contains four formula units, and the structure can be
viewed as being made up of layers which are equidistant
and perpendicular to the ¢ axis. The space group of this
structure, which is Pcmn(D1¢), can be generated by the
symmetry elements {o, |10}, {0,|040}, and {o,[110};
in writing these symmetry elements, the origin is assumed
to lie in one of the layers, and is centered in the rectangu-
lar basal-plane unit cell shown in Fig. 1.

For the crystals of interest in this article, the modula-
tion wave vector k=(0,0,ac*) lies along the ¢ direction
(here c*=2w/c). lizumi et al. have analyzed the
symmetry-mode displacements of wave vector k for
K,Se0,.> [Symmetry modes are those displacements that
transform like the basis vectors of a particular irreducible
representation (IRREP) of the space group.] The liziumi
et al. analysis was subsequently widely used for the entire
A,BX, family.

Here we present a different approach to the symmetry
analysis. The symmetry modes of the individual layers of
the A4,BX, structure are first determined, and the vari-
ous three-dimensional modulated structure in the 4,BX,
family are described in terms of the symmetry modes as-
sociated with the different layers.

The space group describing the symmetry of an isolat-
ed layer of the 4,BX, structure (see Fig. 1) is generated

even-| layers

3 odd-| layers

p> oA o >

(b)

0 a
FIG. 1. The structure of 4,BX, at its normal phase project-
ed along the c axis. The structure is shown here with two layers
at zz%c and %c. Each layer contains two formula units. All
four tetrahedra are symmetry related and the A4 ions with the
same Greek subscripts are symmetry related also. Each layer

has a three-dimensional structure which is hown here by the
projections of ions onto that layer.
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TABLE 1. The character table of the irreducible representa-
tions (IRREP’s) of C,,. The group E, C, o,, 0,, and
IRREP’s T; (i=1,2,3,4) are for layer modes; the group
E, C,,, 0,, 04, and IRREP’s A; (i=1,2,3,4) are for three-
dimensional modes.

E C,, o, o,
I, 1 1 1 1 A
I, 1 1 —1 -1 A,
r, 1 —1 —1 1 A;
i A 1 -1 1 —1 Ay
E C,, o, o,

by the symmetry elements {o,|0L}, {o,[11}, and
{C,,110}. Since there is no modulation in the direction
perpendicular to the ¢ * axis, we consider here only zone-
center modes for a layer, i.e., modes for which the rela-
tive ion displacements in any one unit cell of the layer are
identical to those in any other. The little cogroup for the
zone-center wave vector is C,,, and its irreducible repre-
sentations are listed in Table I. Only the modes of sym-
metry ', and I'; are of interest in this paper (see below)
and these modes are illustrated pictorially in Figs. 2 and
3. Following lizumi et al.,’ the BX 4 tetrahedra are as-
sumed to move rigidly, and the internal degrees of free-
dom are neglected. The movements of the BX, tetrahe-
dra in the I'; and I'; modes are therefore characterized
by giving their rotations about the ¢ and c¢ directions, and
their displacements in the b direction. In addition, to
completely describe the I', and I'; modes, the b-axis dis-
placements of the four A ions in the layer unit cell must

+5 w § 6 $
1e

\

(a) even-I layers (b) odd-I layers

FIG. 2. The ion displacements in the single-layer modes of
I'; symmetry for (a) even-/ layers and (b) odd-/ layers. The two
A, ions in the layer unit cell have b-axis displacements of equal
magnitude but opposite direction, as do the two 4 ions and the
two BX, tetrahedra. The displacements of the 4, and A ions
are indicated by arrows but, for simplicity, the displacements of
the BX, tetrahedra are not shown. The two BX, tetrahedra in
the layer unit cell undergo rotations about the ¢ axis of equal
magnitude and opposite directions as indicated by the arcs with
attached arrows. The two tetrahedra also undergo rotations
about the a axis which are of the same magnitude and direction;
the direction of the g-axis rotation is indicated by putting a plus
sign (or minus sign) next to the corner of the tetrahedron which
is displaced in the positive (or negative) ¢ direction. The loca-
tions of the 4, and Ay are as identified in Fig. 1.
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be specified. Thus, a total of ten quantities (of which five
are independent) must be given to specify the T, or 'y
model of a layer. This can be done in terms of ten-
component basis vectors, called e¢,(I';) and e,(T;), for
layer [ where [ is an integer.

The symmetry properties of the modes illustrated in
Fig. 2 can be obtained by inspection. For example, the
I', modes satisfy

(Cacl300}e,(Ty)=e_,(T) ,

{0,10L0}e,(T,)=—¢)(T,) , (2.1
{o,1110}e/(T,)=—e_,(T,),

whereas the I'; modes satisfy
{Cy [100}e,(T3)=—e_,(T5),
{0,1010}e,(T'3)=—e¢/(T5), (2.2)

[0:1310)e/(Ty)=e_,(T).

For the layer /=0, these results, when compared with
Table I, confirm the fact that the layer modes labeled by
I', or I'; indeed transform according to these representa-
tions. In addition, these modes obey
[sz|%%%}el(rj)=_el+1(rj) s
{0,1050}e,(T;)=—e/(T;), (2.3)
{0,1401)e,(T;))=¢,1((T;),

where j=2,3.

To find out the relationship between the layer modes
the three-dimensional modes, Bloch functions corre-
sponding to an extended-zone c-axis wave vector k can be
formed using

ef=3e"e,(T)), (2.4)
]

where z;=Ic /2 and j=2,3. The character table of the
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(a) even-I layers

(b) odd-l layers

FIG. 3. The ion displacements in the single-layer modes of
I'; symmetry for (a) even-/ layers and (b) odd-/ layers. The two
A, ions in the layer unit cell have b-axis displacements of equal
magnitude and direction, as do the two A4 g ions and the two
BX, tetrahedra. The two BX, tetrahedra in the layer unit cell
also have c-axis rotations having equal magnitudes and direc-
tions, and g-axis rotations having equal magnitudes but opposite
directions.
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little cogroup of the wave k (which contains the elements
E, Cy,, 0y, and o) is given in Table 1. By using Eq.
(2.3), one can show that the Bloch functions in Eq. (2.4)
belong to the IRREP A, if |k|<w/c. If w/c<|k|
<2 /c, the k in Eq. (2.4) should be replaced by the ap-
propriate reduced-zone wave vector k, by making the
substitution k =c* —k,; these modes can then be shown
to transform according to the IREEP A, of Table I. It is
the three-dimensional A, and A; modes which are found
experimentally to be the soft modes which are responsible
for the modulated structures occurring in the A4,BX,
family.! Equation (2.4) shows how the ', and T'; layer
modes can be superposed to give three dimensional A,
and A; modes. Furthermore, it can be shown that the I';
and I', layer modes cannot participate in the A, and A;
modes (since they will produce ion displacements along
the a or ¢ directions, for example). Therefore, in con-
structing a model of the modulated phases for the 4,BX,
family in terms of layer variables, it is the variables
describing the I', and I'; layer modes which are appropri-
ate. Experimental studies of the soft mode in K,SeO, in-
dicate that the I', and I'; contributions are comparable in
magnitude, and this gives an experimental basis for in-
cluding two order parameters per layer as we do. In
comparison, Janssen'® used only one mode (which we in-
terpret to be analogous to our I';, mode) in an attempt to
explain the phase-transition sequences in some A4,BX,
compounds.

B. Free energy and competing interactions

The displacements of the ions of layer / are represented
by

u;=v,e)(T,)+w;e(T;) (2.5)

where ¢;(I",) and ¢,(I";) are the normalized basis vector
for the symmetry modes defined in Figs. 2 and 3. The
variables v; and w; are real, and are the amplitudes of the
I', and I'; modes for layer /.

The free energy, which is invariant under the transfor-
mations of the space group Pcmn, [e.g., the transforma-
tions of Eqgs. (2.1)-(2.3)], is written as

F=3 (fav?+tvi+Lia'w}+twi+Lyviw}?)
7

’

J J
+3 Ev,v,+1+7w,w,+1
]

+ X 3wy —v 4 w)] (2.6)
1

where the coefficients of the v;* and w} terms and of the
mixing interaction terms are absorbed into the definitions
of the real variables v, and w,; and the free energy. There
are five undetermined coefficients a, a’, ¥, J, and J' in
the free energy (2.6). In a mean-field theory like that of
Eq. (2.6), these coefficients can be assumed to be system
dependent. For instance, the coefficients a and a’ can be
assumed linear in temperature and pressure.

We note that although our model has the appearance

5637

of a one-dimensional one, it is in fact three dimensional.
This is because the v, and w, are layer variables. In
analyzing the fluctuations, v; and w; would have to be
considered functions of positions in the layer, i.e., v; and
w; would vary as one went from one unit cell to another
in the layer. These fluctuation effects have been ignored
in the present mean-field treatment of the free energy in
Eq. (2.6).

In a mean-field theory, the ground state of the free en-
ergy (2.6) corresponds to the v, and w, profile that pro-
duces the lowest free energy. The terms under the first
summation produce a typical double-well form for
symmetry-breaking phase transitions. This is similar to
the Janssen-Tjon model and the mean-field theory of the
ANNNI model, which also contain terms having double-
well form.!771%26 The self-interaction term coupling v,
and v, favors a ferromagnetic-type profile (+ + + +)
for v; when J <0, or an antiferromagnetic-type profile
(+—+—) for v; when J >0, where + and — refer to
the signs of the variable v;,. The self-interaction term
coupling w; and w;,; also favors a ferromagnetic- or
antiferromagnetic-type profile depending on the sign of
the coefficient, similar to the v;v; ;; coupling term. The
mixing-interaction term coupling v; with w;,, and v,
with w;_,, however, favors a four-layer period for v, of
the form (+ + — —), while w; has the form (+——+).
There is thus a competition between the self- and the
mixing-interaction terms, although only nearest-neighbor
interactions are considered here. This competition is the
fundamental mechanism producing the modulated phases
in our model,; it is different from the mechanism of other
competing interactions models, such as the ANNNI
model and the Janssen-Tjon model, that rely on an in-
teraction higher than nearest neighbor to produce com-
peting interactions.!® 1%

The low-temperature behavior of (2.6), when
lal~la’| >>|J1,1, can be called the “Ising limit.”” At this
limit, the magnitudes of the variables v; and w, are main-
ly determined by the double-well term in (2.6). For small
vy, vyy=*2Va =s;Va and w,=xVa'=t,Va'. At this
limit, the interaction terms are treated as perturbations to
the double-well terms. To first order in the perturbation
theory, the free energy is determined by a particular
configuration of the spin-1-like variables s; and ¢, and be-
comes that of a one-dimensional, axial nearest-neighbor
double Ising model:

Fi=3 (IJa’ss; o\ +1T'atyt; 1)
!

+Eaa’(51t1+1—sl+1tl) . (27)
1

When J=J' and a =a’, one can show that there are only
three stable phases: a ferromagnetic-type phase with
configurations (++++) for both v; and w; when
J < —1, an antiferromagnetic-type phase with (+ —+ —)
for both v, and w; when J>1, and a four-layer period
phase with (+ + — —) for v; and (+ — — +) for w; when
—1<J<1.

In general, the minimum of the free energy (2.6) cannot
be determined analytically. We present in Sec. III a nu-



5638

merical procedure to determine the minima of the free
energies corresponding to periodic solutions in v; and w;.

C. The stability of the normal phase

In this section, we obtain an expression for the free en-
ergy, valid for small displacements of the ions from their
normal-phase positions, which is useful in exploring the
stability of the normal phase.

Introducing into Eq. (2.6) the Fourier transforms of the
variables v; and w,

v, = 2 eiklc,gk, w;= 2 eikIC’L_Ukl. N (2.8)
k k

leads to, for the quadratic term of the free energy per lay-
er,

.4 cn Dy
f2: % (Ukwk) c/2 B wk 5 (2.9)
where
=g—+%coskc’ s
B=E—I+J—,coskc’ (2.10)
2 2 ’ ’
C = —sinkc’ .
and c¢'=c/2. The expression (2.9) can be further
transformed to
f2= S (@AY P42 |V D), 2.11)
k
where
\I’Ij —B a |V 5
ve | T e Bllw |’ (2.12)
with coefficients
_ C
[CP+4(A4—w? )2
) (2.13)
P 2wz —A)
[C2+4(4 -2 )]
The eigenvalues of the matrix in (2.9) are
wi(k)=1{a, +J  coskc’
+[(a_ +J_coske’)?+sin%ke’ 1%} . (2.14)
Here we have defined
a;=Xaxa'), JL=1JXJ). (2.15)

In Eq. (2.14), in spite of the notation, w% can be either
positive or negative. Using Eq (2.3), we can show that
the variables Wi transform like basis vectors for the
IRREP A; when k <c*/2. When c¢*/2<k <c*, k is re-
placed by the reduced-zone wave vector using k =c* —k,
and the variables Wi can be shown to transform accord-
ing to the IRREP A,.
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The branch w_ is always lower than .. The w_
“dispersion” curve has a minimum at wave vector k,, as
shown in Fig. 4. When the temperature is lowered from
the normal phase, the minimum of the dispersion curve
w* (k) goes to zero at the normal-incommensurate transi-
tion temperature, and the system undergoes a soft mode,
second-order phase transition to a modulated structure
with a wave vector k,, which is almost always incom-
mensurate. Just below the normal-incommensurate
phase transition, there exists a region in the phase dia-
gram where a phase having the symmetry of the @ _-only
mode is stable. The free energy for the w_-only mode
can be compared with the Janssen-Tjon model as in Ap-
pendix A. As will be discussed further in Sec. III, when a
and a’ are lowered, the free energy (2.6) exhibits a
second-order phase transition from a phase with the sym-
metry of the  _-only mode to a phase with the symmetry
of the double w_-w, mode. This can be seen from ex-
pression (2.14); when a  is very low, the o mode also
becomes soft.

Finally, we point out an assumption implicit in our
model which has not been mentioned above. It is clear
from Figs. 2 and 3 that there are three independent
translational coordinates and two independent rotational
coordinates for both I'; and I'; modes of a single layer.
Thus, there are five linearly independent modes for each
type of symmetry, I'; and I';. In this paper we assume
that it is necessary to consider only one I', mode and one
I'; mode for each layer (i.e., given bases for the I'; and I'y
modes, we consider only one particular linear combina-
tion of basis vectors for each layer). However, if the ionic
distortions of the normal phase were considered in a
more complete way, all of the I'; and I'; modes of a layer
would be coupled together, and the particular linear com-
bination of the I'; and I'; layer modes which would be
present in a given three-dimensional A, and A; mode of
wave vector k would vary with wave vector. In the

1.4
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00 (, 05 00 (b 05

k(cli‘)
wz.(k) T T T T T 1
n a, =3.0
2.0 J, =25
a =0.4
1.0 J. =0
0.0L 1 1 |
0.0 0.5 0.0 0.5

(©) ke @

FIG. 4. The dispersion curve for the w2 branch [Eq. (14)].
The minimum in the dispersion curve is emphasized by a dot.
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specific cases considered below, the sequences of phases
which are found to occur for a given material all have
wave vectors close to one another. Thus, we expect our
model to be able to predict reasonably well the sequences
of phases which occur in any given member of the
A,BX, family.

It should be noted that in Fig. 4 there is no acoustic
branch of the spectrum,3 i.e., no branch for which the fre-
quency goes to zero at zero wave vector. This is because
we have not assumed that one of the layer modes is a
mode in which all ions are given the same displacement.
A discussion of phase transitions in which an acoustic
mode plays a central role would require an extension of
the approach presented here.

III. DESCRIPTION OF THE PHASE DIAGRAMS

A. Numerical procedure

In this section we present the phase diagram for the
free energy of Eq. (2.6). Our numerical procedure is simi-
lar to that of other competing-interaction models.!”™!°
The minimization conditions

dF J

a—ul=(a +~yw%)v,+v,3+5(v,+,+v,_,)
+%(w1+1—w1,1)=0, (3.13.)

dF , J'

—SE=(a +yvHw, +w}+ 7(w1+,+w,_1)
+%(U1_1HU1+X)=0 (3lb)

are solved numerically using iteration methods. For solu-
tins with a period m, the boundary conditions v, ,, =v,
and w;,, =w; are imposed, which reduces Eq. (3.1) to a
set of 2m nonlinear equations. The iteration procedure is
as follows. For a given m, initial approximations are
chosen before solving the equation. For very large and
negative @ and a’, the analytic solutions of (3.1), i.e.,
v;=0,+|a|'? and w;=0,=*|a’|!"? are used as initial ap-
proximations. All different combinations of these three
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values for v; and three values for w; with periodicity m
must be considered. For all other points in the phase dia-
gram, we choose solutions corresponding to a neighbor-
ing point, usually of a lower a and a’, as initial approxi-
mations. At each step of iteration, approximations are
used for all variables except v; in (3.1a) and w; in (3.1b)
for the Ith set of equations; if it is the first step, the initial
approximations are used, otherwise the results from the
previous step are used as the approximations. The roots
of the cubic equation (3.1a) in v; and (3.1b) in w,; are then
found, which provide new approximations for the next
step.

After the minimization conditions (3.1) are solved for a
given m, the free energy per layer F/m is deduced.
Minimum free energies for all m are compared to yield
the state corresponding to the lowest free energy. If this
state has period m and 2n nodes per period, the main
Fourier component of the profile of v; and w,; has a wave
vector (n/m)c'* with ¢'*=2m/c’. This phase is there-
fore labeled by n /m, which is chosen to be irreducible.

We can determine the space-group symmetry from the
profile of the variables v; and w; using Egs. (2.1), (2.2),
and (2.5). For each phase, we have studied the behavior
of the profile of the parameters v, and w,. For
n/m=p/(2q+1) and n/m=(2p +1)/2(2q +1), where
p and q are arbitrary integers that are chosen to make the
ratio n /m irreducible, there are three different types of
profiles for each wave vector. This yields three different
space groups for a given wave vector, as listed in Table
II. For n/m =(2p +1)/4q, there are only two different
types of profiles yielding two different space groups for
each wave vector.

Because this procedure yields only commensurate
phases, we cannot distinguish between incommensurate
states and very-high-order commensurate states. In prin-
ciple, incommensurate phases should exist just below the
normal-incommensurate phase-transition curve (e.g., see
Ref. 16). It is common to use superspace groups to de-
scribe the space-group symmetry of an incommensurate
state.?’” Appendix B is a discussion of the superspace
groups of the incommensurate states in the 4,BX, fami-

ly.

TABLE II. Space groups determined from our model for commensurate phases.

n/m Phases Space groups Profile of v, Profile of w;
I P112,/n odd in / and even in / and
even in I-m /4 odd in I-m /4
n/m=(2p+1)/2(2g +1) 1I P2,2,2, even in / and odd in / and
odd in I-m /4 even in I-m /4
III P112, no special symmetry
I Pc2n odd in / even in /
n/m=p/(2qg+1) I P2,/c11 even in [/ odd in [
III Pcll no special symmetry
1 P12, /cl odd in /-1/2 and even in /-1/2 and
even in /-1/2-m /4 odd in I-1/2-m /4
n/m=(2p+1)/4q II P2cn odd in / and even in / and

even in I-m /4 odd in I-m /4
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B. Phase diagrams

As the first example, we take J_ =y =0. The resulting
phase diagram is shown in Fig. 5 for an arbitrarily chosen
a_=0.4. At low (i.e., large negative) a_, the profile of
the order parameter implies a structure that has space-
group symmetry corresponding to phase III in Table II
for wave numbers n/m =(2p +1)/2(2q +1) and
n/m=p/(2q+1) and phase I for wave numbers
n/m=(2p +1)/4q. For wave vector n/m=(2p-+1)/4q, this
symmetry (P12,/c1) remains valid all the way to the
normal-incommensurate or normal-commensurate transi-
tion line. The phase boundaries between phases having
different wave vectors are first order. For wave numbers
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n/m=(2p+1)/2(2¢q +1) and n/m=p/(2q +1), there
is a phase transition to a phase having the same wave vec-
tor but a different space-group symmetry (phase I) when
a . increases. This phase transition is second order, cor-
responding to a transition from a phase with the symme-
try of a combined w - _ mode to a phase with the sym-
metry of an w_-only mode. The @ _-only mode is the one
that yields the structures which have the most-often-
observed symmetry in the A4,BX, family. The shaded
areas in Fig. 5 represent possible incommensurate and
high-order commensurate states.

The second-order phase transition between distinct
states having the same wave number can be further stud-
ied by evaluating the Fourier spectrum for the profiles of
v; and w;. For example, the profiles of a 1 phase can be

0.6 0.7 0.8 0.9

1.0

0.5

0.0

2
Normal — |

-0.6 -0.4 -0.2 0.0

FIG. 5. The phase diagrams produced from our model using ¥y =0, a - =0.4, and J_ =0. The commensurate phases are labeled
by n/m where (n/m)2m/c’ is the wave vector. The phases are also labeled by the space groups (phase I or III) in Table II. The
dashed line represents a second-order phase transition within the same wave vector. The shaded areas indicate higher-order com-
mensurate or incommensurate regions. (a) A global phase diagram with m taken from 1—10. (b) An exploded phase diagram near
the 1 phase with m taken from 1-20. (c) An exploded phase diagram near the % phase with m taken from 1-15.
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decomposed as

v,=C0+ClcoszT7Tl+S1sin2—37T—l , (3.2a)
— ’ 2T . 2T
w,—C0+Clcos—3—l+Sls1n—§—l . (3.2b)

When J, =0.5241, J_ =0, and a_ =0.4, the coefficients
Cy, Cy, Sy, Cy, Ci, and S| as functions of a, are
shown in Fig. 6(a). At a, =1.216, there is a soft-mode
normal-commensurate phase transition to the 1 com-
mensurate phase. For low a ., there is no obvious sym-
metry for the profiles of v, and w,, and phase III in Table
IT is valid. When a increases, there is a clear second-
order phase transition when the coefficients Cy, C,, and
S| vanish, leaving the profile of v; odd in / and that of w;
even in /. Then phase I in Table II becomes stable.

One interesting aspect of the phase diagram [Fig. 5(a)]
is that the phase diagram is symmetric about J, =0.
When J_ =0, a sign change of J | is equivalent to letting
all v; with odd [ and all w; with even ! change sign.
Counting the number of nodes of the profile v; and w,, we
conclude that the wave vectors k _ of a stable phase of a
J, <0 can be deduced from the corresponding wave vec-
tor k, of the phase at |J,| using the relationship
k_=Lc™*—k,.

In producing Fig. 5, we have arbitrarily chosen
a_=0.4. We note that if one replaces a __ with —a _ the
phase diagram in Fig. 5 is not changed but the profiles for
v; and w; are interchanged, and thus the space group may
change when a _ changes sign. In particular, phases with
n/m=p/(2q+1) and n/m=(2p +1)/2(2q +1) origi-
nally having phase I now have phase II and vice versa;
for these wave vectors, the region of stability in Fig. 5 of
phase I when a_ >0 and phase II when a_ <0 becomes
small when the magnitude of a _ becomes small. When
a_ =0, phase I (or II) vanishes, and there is only one pos-

sible space group (phase III) for each wave vector. This
1 PHASE Il | PHASE | | NORMAL PHASE il | PHASE I | NORMAL
CI
G, °
CI
s S}x10 / (a)
1
a_=04 c a =04
1 ] ! 1 1 1 1
1 PHASE Il I NORMAL PHASE Wl | NORMAL
K] G
C1
(b)
/ >—4 a =0.0
a =0.0 < Six10
1 1 1 1 1 L L
2 0 2 -2 0 2
a a

FIG. 6. Fourier spectrum for the profiles of v; and w,. Here
we use the 1 phase as an example. Please refer to Eq. (3.2) for
the definitions of the plotted functions. (a) J_=y=0,
J.=0.524,a_=0.4. (b)J_=y=a_=0,J,=1/V3.

5641

can also be illustrated using a Fourier spectrum [Fig.
6(b)] for the profile of v; and w, fora_=0atJ,  =1/V3.
All the coefficients vanish at the normal-commensurate
transition point. This figure can be compared with the
case a _ =0.4 [Fig. 6(a)].

As the second example, we took a . =y=J_ =0. The
a_-J, phase diagram is shown in Fig. 7. For a given
n/m=2p+1)/2(2q +1), n/m =p/(2q +1), all three
phases in Table II exist. For a given n,4q/2m ,, only
one phase is stable.

As the third example, we took J_ =0, J, =—0.09,
and a_ =0.4. The stable commensurate phase for low y
is n /m =, which has space group P12,/c1. When ¥ in-
creases, however, there is a first-order phase transition
via an intermediate incommensurate phase to a + phase
with different profiles for v; and w; and with the space
group P2,cn. This behavior, as shown in Fig. 8(a), is gen-
eral for all n/m =(2p +1)/4q. In the case of n/m =2,
for example, similar phase transitions also exist [Fig.
8(b)].

For wave numbers n/m=p/(2¢+1)>1 and
n/m=(2p+1)/2(2g +1) <41, at sufficient high a_ with
a nonzero a_, phase I for a_ >0 (or II for a,<0) is
stable at ¥y =0 as described above. This phase remains
stable for low ¥, but an increasing y tends to enlarge the
region of stability of phase I (or II). At high y, phase I
(or II) undergoes a first-order phase transition to phase II
(or I). However, for n/m=p/(2qg+1)<4{ and
n/m=(2p+1)/2(2¢ +1)> 4, such a phase transition
does not exist (Fig. 9).

Janssen'® has also deduced the possible commensurate
phase space groups on the basis of symmetry arguments
only, and our results are consistent with his considera-
tions. It should be noted, however, that Janssen’s
analysis of the Janssen-Tjon model!® finds stable solutions
corresponding to only one of the possible space groups
for each commensurate wave vector, whereas our model

2 <

N /il
6
1+
0 1,
a oM 4
11
1+
/’0 |
) - 1” | it
-2 -1 0 1 2
Jy

FIG. 7. The phase diagram produced from our model using
a, =J_=y=0. The commensurate phases are labeled by n/m
where (n/m )27 /¢’ is the wave vector. The phases are also la-
beled by the space groups (phase I, II, or III) in Table II. The
dashed line represents a second-order phase transition within
the same wave vector.
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Normal phase @
1 —

°r n/m=1/4 Phase I
n/m=1/4
a -1 F
U I
2 b b
w, A v (@)
-3 |
0 1 2

Normal phase @

Phase |

,,.,,/,,///////

n/m=3/8
Phase |l

n/m=3/8
-2 F
(b)

Y

FIG. 8. Phase diagrams for a varying y with (a) J, =—0.09, J_ =0, and a_ =0.4. (b) J. =0.80, J_ =0, a_ =0.4. The shaded
area represents incommensurate or high-order commensurate phases. In Fig. 8(a), high-order commensurate phases with wave vec-

tors n/m =1L 1L 11

18

45> 76> 37 are used to determine the phase boundary between the shaded area and the I phase. In (b), a high-order com-

mensurate phase with wave vector 5 is used to determine the phase boundary between the shaded area the the 3 commensurate

phase.

gives solutions for a wider range of possible space group
symmetries, in agreement with experiments.

IV. COMPARISON WITH EXPERIMENTS

The phase diagram developed in this paper, especially
space-group symmetries of the stable phases, can be com-
pared with experimental results in the A4,BX, family.?
The commensurate phases in Figs. 5-9 are labeled by
n/m, where k=(n/m)c'*=(2n/m)c* is the wave vec-
tor. Here k corresponds to the extended-zone wave vec-
tor of Refs. 1 and 2. The experimentally observed wave
vectors of the A, and A; modes are usually characterized
by the reduced-zone wave vectors k, =c*—k and k, =k,
respectively. In this section, unless especially specified,
wave vectors in mentioned experiments are already con-
verted to the extended-zone scheme. A summary of ex-
perimentally observed phases is shown in Fig. 10.

8

A. The K,SeO, group

The first group of crystals, containing the crystals
K,Se0,,*~® K,ZnCl,,* 32 Rb,ZnCl,,** Rb,ZnBr,,%’ and
probably Rb,CoBr,,>*% initially goes through a normal-
incommensurate phase transition, and then undergoes an
incommensurate-commensurate phase transition. The
resultant commensurate phase n/m =1 has the experi-
mentally determined space group Pc2;n corresponding to
phase I in our model, as in Table II and Fig. 5. We also
note that the incommensurate phase is predicted from

our model to have superspace group Psf%”’" (Appendix B).

This superspace group is also observed in the crystals
K,Se0,,° K,ZnCl,,” Rb,ZnCl,,**3%%7 and Rb,ZnBr,.’
In our model, the incommensurate-commensurate phase
transitions are first order. This is supported from experi-
mental evidence in K,SeO, and K,ZnCl,, that the distor-
tion wave vectors change discontinuously across the

FIG. 9. Phase diagrams for different values of y: (a) y =0, (b) y =0.9, (c) ¥ =3, and (d) ¥ =30. Again, the phases are labeled by the
wave numbers n /m and the space groups in Table II. The integer m is taken up to 15.
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incommensurate-commensurate phase transition temper-
atures.>3%32 In the crystal Rb,ZnCl,, the wave vector
seems to change continuously across this phase transi-
tion,’>% but Mashiyama et al. reported that the wave
vector is discontinuous on heating.’® A possible trajecto-
ry, labeled by 1, is shown in phase diagram Fig. 5(a) for
these crystals.

The crystal Rb,ZnBr, belongs to this group, but an in-
teresting £ phase is observed between the incommensu-
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rate phase and the commensurate phase.%” It has been
shown by Randa’® that in an extended ANNNI model,
the £ phase which was originally shown to appear in the
neighborhood of the 1 phase!® actually does not neighbor
the 4 phase. In our model, the % phase indeed neighbors
the 1 phase, in agreement with the observed behavior of
Rb,ZnBr, [see Fig. 5(b)]. The phase transition is first or-
der. The crystal Rb,ZnBr, also displays a sequence of

P
‘Z(Pc21n) lINC. P °s"".1'_‘)l Normal(Pcmn)

K SeO , K ZnCl , Rb ZnCl
2 a2 4 2 4

1 1 s
Rb,ZnBr, 5 (Pe11) | L (Pc2,n) |7 lINC. (Pf’g':;)l Normal(Pcmn)
1 Pcmn
csszBrf csz HgBr‘ z (P112,/n) IINC. P “?)1 Normal(Pcmn)
L s 2 (P12 je1 , N P
(NH ), ZnCI, 3 ¢ 021n)“7(7)l—5 or P1c1) | 5 (P2, ¢n) | INC. (?) L ormal(Pcmn)

o ™ [ NC.) Normal(Pcmn)

© ©®@ & o o 6o 6 6 & 6

() Z0B, ,
(NH))_BeF, %(P21cn) | INc. (P P12 ) Normal(Pcmn)
TMA ZnCl, 1g(l’212121 )l ?—(P21 /e11) lé_(P112‘ /n)] 1g(F’<:21n) ‘ INC. (P P?:‘;")LNormal(Pcmn)v
TMA FeCl, $(P2,/e11) g(P112,/m f(Pe2 m) Z(P2,23) INC. () Normal(Pemn)
TMA GoC} 1;(19212121 )l %(Pg /c11)l1g(|=‘1121 /n)I INC. (?)i ’g(Pcz‘n) IlNc. (?)l Normal(Pcmn)
TMA MnCI, S(P2,/611) (P12 /m) 5 (P12 /61) INC. (7) Normai(Pemn)

™A Niol, $(P2, /1) | $ (P12 /o) [INC. (?), Normal(Pemn)

1
2(P112,/n) $(P2 /c11)  INC. (?) Normal(Pcmn)

@ TMA CuC}

FIG. 10. A summary of modulated phases occurring in the 4,BX, family. The integer label in the front of crystal name is the la-
bel of trajectory in Figs. 5-9. The fractions n /m are the labels for the commensurate phases, where kK =(n/m)2m/c’ is the wave
vector in the extended zone. The A, and A; modes are characterized by reduced-zone wave vectors k, =c* —k and k, =k, respective-
ly.
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phase transitions at low temperatures, including a phase
transition from the +(Pc2;n) phase to a +(Pc11) phase.
This phase transition can be explained by the phase tran-
sition from phase I to phase III in our model [see Table 11
and Fig. 5(a)], which therefore should be second order.
This can be supported by the experimental evidence re-
ported by Ueda et al., who measured the intensities of
the (050) and (500) reflections as functions of tempera-
ture.** These reflections vanish continuously at the
1(Pc2in)-+(Pcll) transition temperature, with second
order phase-transition characteristics. The specific-heat
measurement by Monoto and co-workers*' shows a swol-
len specific-heat anomaly, which seems to have the
second-order phase-transition characteristics, too. A
possible trajectory, labeled by 2, is shown in phase dia-
gram Figs. 5(a) and 5(b) for Rb,ZnBr,.

B. The Cs,CdBr, group

The second group is Cs,CdBr, (Refs. 42-44) and
Cs,HgBr,.*>* This group undergoes phase transitions
from the normal phase to an incommensurate phase, and
then a first-order phase transition to a commensurate
phase.** This commensurate phase corresponds to the
zone-center mode of the IRREP A,, which has n/m =1
here. The experimentally determined superspace group
of the incommensurate phase is PS’; 77" and the space
group for the commensurate phase is P112, /n,** which
is consistent with predictions from our model. A possible
trajectory, labeled by 3, is shown in phase diagram Fig.
5(a) for these crystals.

C. The (NH,),MX , group

The crystal (NH,),ZnCl, was found by Belobrova
et al. to be incommensurate.*’” According to the
structural analysis by Sato et al,*®* the crystal
(NH,4),ZnCl, first goes through a second-order normal-
incommensurate phase transition and then a first-order
incommensurate-commensurate phase transition to a 2
commensurate phase. Matsunaga*® determined the space
group P2,cn for this commensurate phase and also
discovered a commensurate-commensurate phase transi-
tion at a lower temperature to a phase characterized by
the same wave vector ¢ but with a different space group
P12;/c1 or Plcl. This commensurate-commensurate
phase transition can be explained by Fig. 8(b). The first
commensurate phase corresponds to the high-y phase. If
the second one corresponds to the low-y phase, it should
have the space group P12,/c1; however, according to
Matsunaga,* the structure fits to the space group Plcl
with a smaller error. Furthermore, the crystal undergoes
a commensurate-commensurate phase transition to the §
commensurate phase with the space group Pc2;n. This
phase transition is also consistent with our model as
shown in Fig. 9(b) and Table II. It was reported by
Warczewski et al.”® and Sato et al.*® that a 3 phase [or
k,(A,)=2c*] may coexist with the 3 phase between the
3 and 1 phases in a very narrow temperature range. Ac-

cording to our model, a 3 commensurate phase is possi-
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ble between these two phases [Fig. 9(b), trajectory 4].

The crystal (NH,),ZnBr, has a similar wave-vector se-
quence as (NH,4),ZnCl,, but there is only one $ phase,
and the 2 phase does not exist.’! Structures of the stable
phases are not determined experimentally.

The crystal (NH,),BeF,, also denoted as AFB, was
discovered by lizumi and Gesi to have an incommensu-
rate phase.>? It first undergoes a normal-incommensurate
phase transition and then a first-order incommensurate-
commensurate phase transition to a 1 phase. Structural
analysis performed by Yamada and co-workers®® indi-
cates that this commensurate phase has the symmetry
P2,cn, which can be explained by our model with a high-
v symmetry [Fig. 8(a), trajectory 5]. However, the super-
space group for the incommensurate phase determined by

Yamada and co-workers is P ;' (Yamada and co-
workers noted that the basic structure has space group
P112)), which is inconsistent with the symmetries of the
incommensurate phases in other crystals in the 4,BX,
family, and is also inconsistent with the prediction of our

model.

D. The TMA-MX, group

The last group in the 4,BX, family consists of a large
group of crystals"? commonly denoted TMA-MX,
(where M =Mn, Fe, Zn, Co, Ni, X =Cl, Br). The modu-
lations in these crystals belong to the IRREP A, instead
of A, as in other groups. When the temperature is
lowered from the normal phase, this group of crystals ini-
tially goes through a normal-incommensurate phase tran-
sition to an incommensurate phase with various wave
vectors. For the incommensurate phase of the crystal
TMA -ZnCl,, Madariaga et al.>* have determined super-
space group Pﬁc{"", which is characteristic for a A; in-
commensurate phase as discussed in Appendix B.

Tanisaki and Mashiyama determined the commensu-
rate structures of the crystal TMA-ZnCl,.>> The first
three modulated phases can be characterized by wave
vectors and space groups +-+68(incommensurate),
+(Pc2in), and L(P112,/n). They also determined the
structures of the crystal TMA-FeCl, which has the se-
quence of  phase® ++8(incommensurate)  and
L(P112,/n). The temperature dependences of modula-
tion wave vector measured by Marion et al.’’ for
TMA-ZnCl, and lizumi and Gesi*® for -TMA-ZnCl, in-
dicates that the -+ 8-incommensurate—1-commensurate
and the 1-commensurate—L1-commensurate phase transi-
tions are first order. Hasabe et al.® determined the struc-
ture of the crystal TMA-CoCl, which has the first four
modulated phases characterized by wave vectors and
space groups +-+3&(incommensurate), L(Pc2;n), 1-
d(incommensurate), and +(P112,/n). The sequences of
phase transitions in these crystals can be easily explained
by Fig. 5(c) (trajectory 6).

The sequence of phases in TMA-MnCl, characterized
by wave vectors and space groups 1 — 8(incommensurate),
+(P12,/c1), and L(P112,/n) is somewhat different from
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the above-mentioned sequences.’® Also, the first two

modulated phases in TMA-NiCl, (Ref. 60) are similar to
the first two phases in TMA-MnCl,. The sequences of
phase transitions in these crystals can also be explained
by Fig. 5(c) (trajectories 7 and 8).

Gesi®! reviewed the sequences of modulated phases in
these crystals and summarized a unified phase diagram
for these crystals. The part of Gesi’s phase diagram cor-
responding to the phases mentioned above is very similar
to the phase diagram in Fig. 5.

In the crystals d-TMA-ZnCl, and TMA-FeCl,, for
small ranges of temperatures, the phase with a wave vec-
tor 2 was observed before th phase transition occurs to
the L or 1 phases.’®>” In our model, the phase sequence
4, &%, +, and 1 is possible. We are not able to extract
clear information on an experimentally determined space
group for this phase from literature.

When the temperature is further lowered, some crys-
tals in this group go through the low-temperature phase-
transition sequence L(P112,/n), %(P2,/c1l1), and
1(P2,2,2,).%%57% The phase diagram in Fig. 11 suggests
that the L(P112,/n)-3(P2,/c11) phase transition is pos-
sible in our model. It also suggests that the 3(P2,/c11)
and +(P2,2,2,) phases have a common phase boundary.
However, the phase sequence +(P112,/n), 2(P2,/cll1),
and +(P2,2,2,) would correspond to an unusual trajecto-
ry in the phase diagram (see Fig. 11). The existence of
the 2(P2,/c11) phase is perhaps related to the fact that
the A, dispersion curve should be acoustic. We have not
included an acoustic mode in our model.

Recently, mixture compounds in the TMA-MX, group
have been studied.®? The phase behavior of these com-
pounds is similar to that discussed above.

TMA -CuCl, also belongs to this group according to
the chemical composition, but the modulation observed
in this crystal belongs to the A, mode,® % which has the
phase sequence 1(1—8), +(P2,/c11), and $(P112,/n).
This phase behavior can be well explained by Fig. 9(c).

FIG. 11. Phase diagram for given a,=0.5, J,=0, and y =1.
The phases are labeled by the wave numbers n /m and the space
groups in Table II. The integer m is taken from 1-15.

TMA -CuBr, is isomorphic to TMA-CuCl, but it is the
only member of the 4,BX, family that displays modula-
tion in the a* direction,® which is beyond the scope of
our model.

V. CONCLUSION

This paper introduces a new type of competing-
interaction approach to the problem of finding a univer-
sal description of the phases and phase transitions ob-
served experimentally in the A4,BX, family of com-
pounds. The basic ideas are to view the structure of these
materials as being made up of layers, and to start from an
analysis of the symmetry modes of the individual layers.
The resulting model displays sequences of modulated
phases characterized by both their wave vectors and their
space-group symmetries; these sequences correspond to
the sequences of phases observed experimentally in the
A,BX, family. The free-energy model (2.6) can also be
used to explain the phase-transition sequence and the po-
larization properties observed in betaine calcium chloride
dihydrate (BCCD).%

Our formulation of the problem contains a number of
simplifying assumptions made primarily to reduce the
complexity of the problem. For example, we take into
consideration only one of each of the I', and I'; modes,
and we make no attempt to correctly model the acoustic
branch of A; symmetry of the phonon spectrum. Also,
we consider only nearest-neighbor interlayer interactions,
and these only in the quadratic terms of our model free
energy. In spite of these simplifications, the observed
phase behavior of the 4,BX, family, which is discussed
in detail in Sec. IV above, is well accounted for by our
model. The one exception to this generally good agree-
ment between theory and experiment is the difficulty we
have in accounting for the low-temperature sequences of
phase transitions from wave vector L to O to 1 which
occur in some of the TMA compounds; this difficulty is
possibly due to our inadequate modeling of the A; acous-
tic phonon modes.
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APPENDIX A: THE w_-ONLY MODE

Just below the normal-incommensurate phase transi-
tion, only one mode, i.e., the w_ mode, is stable. We
then have, from Sec. IIC,

f2=3 o2 ()Y, |7, (A1)
k
with
ﬁkzak‘l’k_, wkZBk\I’k_ . (A2)

It is also interesting to transform the quadratic term of
the free energy (A1) back to a real-space representation.
Introducing a real-space variable for each layer
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¢= 3 e™ivy, (A3)
k
we have for the quadratic term per layer
(A4)

f2= EI 12 ¢1814191 5

with the effective force constant of interaction between
layers that are / layers apart,
J= > etw? (k) . (AS5)
k
One can generally prove that J_;=J,. When [ >>1, one
can also show that J;~/ 2. The effective interactions are
nonlocal now, but the force constant decays fast when [/
increases, thus the effective interactions are short ranged.
If the variable ¢, is used, the fourth-order terms in (2.6)
can be shown to have a nonlocal form also.
The free energy (A4) can be compared with the
Janssen-Tjon model' (also called the frustrated ¢* mod-
el):

Fpr=3%

I}

A B
7¢f+:¢?

+ 2 (Ceb 1+ D¢ 4r) -
i

(A6)

There are three major differences. First, the effective
long-range interlayer interactions (A5) exist in our model
as a result of diagonalizing the phenomenological dynam-
ic matrix for the quadratic term, although we only start-
ed with the nearest-neighbor interlayer interaction.
Second, our model contains a nonlocal fourth-order term,
which is absent in both the Janssen-Tjon model and the
mean-field ANNNI model. Third, the variable ¢; is not a
single-layer variable. The relationship between variables
v; and w; and ¢, can be shown to be

v =i 12 ra_p, W= §¢1'31—1' ) (A7)
where &, and 3, are the Fourier transforms of the func-
tions «a; and fB;. Note the nonlocal relation between
(v;,w;) and ¢;. The variables (v;,w,;) represent displace-
ments on layer I; ¢, represents a displacement on and in
the neighborhood of the layer /.

APPENDIX B: SUPERSPACE SYMMETRY
FOR THE INCOMMENSURATE PHASES
INTHE A4,BX, FAMILY

In this appendix, we deduce the superspace group for
the incommensurate phases in the 4,BX, family. We as-
sume that the incommensurate phases can be represented
by a single harmonic modulation function and that the
w_-only mode is valid throughout the range of the in-
commensurate phases. The first assumption is a good ap-
proximation near the normal-incommensurate transition
point. For the purpose of characterizing the symmetry of
the incommensurate phases, this simple assumption
should be adequate. The second assumption is based on
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the fact that at a lower temperature when phase transi-
tion from the incommensurate phases to commensurate
phases occurs, the commensurate phases have the w_-
only mode in the 4,BX, family.

Using Egs. (2.5), (2.8), and (A2), we can show that the
displacements of the ions in layer / are represented by

u;(A)=ccos(kc'l +A)e)(I'y)+c,sin(kc’'l +A)e)(T3) ,
(B1)

where A is the phase of the variable ¥, in (A2) and ¢,
and c, are two constants. For a A,-mode incommensu-
rate state with wave vector k,=«c* in a reduced-zone
scheme, kK = 1(1—«)c’*, and Eq. (B1) becomes

u(A)=c,(—1)lcos(kml —A)e,(T,)
+c,(— 1) Tlsin(krl — A)e,(T) . (B2)

The positions of the ions as defined by Eq. (B2) depend
on the phase A, which can be chosen to have any value,
yet not change the free energy. One can then define a
four-dimensional superspace structure for the positions of
the ions by the coordinates x, y, z, and A. The function
(B2) describes a “supercrystal” in superspace. The physi-
cal displacements can be obtained by a constant-A section
of the superspace.?’

A vector in superspace is defined by

=x] (B3)

where r represents a usual three-dimensional vector. The
incommensurate crystal is periodic in superspace. For in-
commensurate states of the A, mode in the 4,BX, fami-
ly, the superspace Bravais lattice translation vectors are

a 0
_ |0 _|b
A= 0l Ay= ol
0 0
(B4)
0 0
_ 10 _ 10
AS_ ¢ ’ A4 0
27K 21

The superspace transformation g =[S |W ] are defined to
take one superspace vector 7 into another, r’, where

r=gr=[S|Wilr=Sr+Ww, (BS)

and S denotes a superspace point-group operation defined
by

Sr= (B6)

Here S denotes a physical space point-group operation,
and S, denotes a point-group operation on the A coordi-
nate which transforms like the z coordinate in physical
space under S.

Using these defintions we can show that for the A,-
mode incommensurate phases in the 4,Bx, family, the
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superspace group PF¢"" is valid, which contains the gen-

ss1
erators
[Ux|%A1+';‘A3+%A4] ’
lo,134,+34,], (B7)
lo,l+4,+14,+14,],

and the translational-group generators (B4).
For a A; mode with a reduced-zone modulation wave
vector k, =«c *, Eq. (B1) becomes

u;(A)=ccos(kml+A)e;(T",)+c,sin(kml + A)e;(T5) .
(B8)

The unit vectors are

5647
a 0
— |0 _|b
A 1 0 y A 2 0 )
0 0 (B9)
0 0
_ 0 _ 10
4= c | 4= o
—2mK 2T
Pcmn

The superspace group is p 7", which contains generators
[le%A1+%A3] s
lo,l34,+54,], (B10)
[o.134,+54,+34,+54,],

and the translational-group generators (B9).

*Present address: Xerox Research Centre of Canada, 2660
Speakman Drive, Mississauga, Ontario, Canada L5K 2L1.
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