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Dynamical Jahn-Teller effect as a possible microscopic mechanism for anyonic superconductivity
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We show that a (2+ 1)-dimensional Chern-Simons gauge theory where the gauge field couples to
flavored fermions (i.e., fermions carrying an auxiliary quantum number) arises in a natural way from
a chiral two-band model describing the dynamical Jahn-Teller effect. The theory exhibits finite-
temperature superconductivity without Cooper pairing and a second-order phase transition.

I. INTRODUCTION

According to a suggestion by Laughlin, high-
temperature superconductivity is due to the fractional
statistics of the relevant quasiparticles, the semions.!
Seminonic or, more generally, anyonic behavior is a
feature of quasi-two-dimensionality, and once we have a
physical system that is essential two dimensional, we
have to take into account the possibility of fractional
statistics from first principles of quantum theory alone.?
An important consequence is that, because of the statisti-
cal interweaving of kinematics and dynamics, fractional
statistics gases behave as gases of weakly attractive fer-
mions and hence become superfluids or, when coupled to
electromagnetism, superconductors at zero temperature.’
In these new types of superconductors, which are con-
veniently described by a Chern-Simons gauge-field
theory, parity and time-reversal invariance are both
violated.*

There has been a debate about the question of whether
anyonic superconductivity survives at finite temperature,
i.e., the Chern-Simons ‘“‘counterterm” is stable against a
finite-temperature correction, but now it seems that this
is indeed the case.>® It has been proven that the model
displays a Meissner-Ochsenfeld effect at zero and finite
temperature. However, when the model is applied to
realistic situations, no second-order phase transition is
observed, and the Meissner-Ochsenfeld effect persists to
arbitrarily high temperature.®

Recently, Kapusta et al. showed that this serious
difficulty can be handled simply by introducting a two-
component flavorlike quantum number for the Chern-
Simons coupled fermions, i.e., the anyons, provided that
the statistical magnetic field created by the two com-
ponents have opposite signs.” As in particle physics, by
favor we mean a quantum number that labels an auxili-
ary internal degree of freedom.

Up to now the microscopic origin for the Chern-
Simons term has been rather obscure. Recently Wilczek
proposed a general framework to extract anyonic super-
conductivity from elementary electronic interactions by
giving certain condensate values to bilinear Fermi opera-
tors.® In this paper we show that the ansatz of Kapusta
et al. may be put on a firm physical foundation, starting
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from the dynamical Jahn-Teller effect for the oxygen
atoms in the CuO, layers.’ ™12

The paper is organized as follows: In Sec. IT we briefly
recapitulate the analysis of Kapusta et al. After a
description of the relevant Jahn-Teller dynamics in Sec.
I1I, we introduce some useful notions from field theory in
Sec. IV and clarify the physical picture in Sec. V accord-
ing to which the Chern-Simons field is a vector excitation
of the underlying microscopic Jahn-Teller interaction.

II. FINITE-TEMPERATURE PHASE TRANSITIONS
OF ANYON SUPERCONDCTIVITY

At finite temperature ordinary BCS superconductivity
does not exist in two dimensions, because fluctuations
overcome the energy in destroying the off-diagonal long-
range order. But Hohenberg’s theorem!* does not apply
to anyon superconductivity due to the inherent noncom-
mutativity of translations.»® In doing explicit calcula-
tions, this was shown by Randjbar-Daemi, Salam, and
Strathdee:® In the case of only one fermion flavor the
Meissner-Ochsenfeld effect persists at all temperatures,
despite the fact that at T+0 a new type of static magnet-
ic interaction appears. Nevertheless, at limiting tempera-
tures only the long-range component of the interaction is
important.

In order to find a phase transition in the temperature
dependence of the penetration depth Kapusta et al. start
with two fermions flavors.” Consider the Lagrangian den-
sity
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where D,=0,—iga, are the covariant Chern-Simons
derivative, f,,=9d,a,—d,a, the associated field
strengths, o5 a Pauli matrix, and 1 a two-component spi-
nor. One takes g2/2m=1/N, where N labels the frac-
tional statistics. Call the two components “+” and “—.”
In the standard case the usual identity f, = — gl/ITIP leads
to an average Chern-Simons magnetic field
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in the mean-field approximation. But in case of two com-
ponents we obtain

b=—g(Yly_Y—(yly. ), (3)

where the associated gauge couplings have opposite signs.
Symmetry breaking leads to

Wy )=y,

that is the “+” fermion has a higher energy than the
“—> fermion. We may then expect that b(T)=0 at a
certain T =T,70.

In the Lagrangian (1) we have two magnetic coupling
constants g’ and g'’. It is the o, coupling that induces
(pTyp_)#(yL ¢, ). In mean-field approximation the
fermions move independently in the fields a,=const and
b =const. The Landau orbitals have energies

(4)
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and the chemical potentials are

u,=u+gayso, o==x1, n=0,1,2,.... (6)

Minimizing the thermodynamic potential

BE )

)]_aob

no Mo

b|T -
Q=—%2[%ﬁEno+ln(H—e
n,o

(7
at fixed T and p (with B=2/k, T) yields
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From this we obtain ay=a,(b,u,T), which may be sub-
stituted into the thermodynamical potential (7) and the
zero-point-energy shift due to the Casimir effect is given
by
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Numerical integration shows that the Chern-Simons
magnetic field b(7T) approaches zero smoothly at
T =T,50, indicating a second-order phase transition.

As an example, Kapusta et al. get, with m =10m,,

|
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He-ph:_ 2 (ck'l’ck’,ll) 0
LK
=:—3 CI'(gdiag Qaiagl T8orQ@osT3)Ck -
LK

gdiag Qdiag —goﬂ'Qoﬁ'
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N=10(g?/27=0.1), g' /g =9, and u=0.01 eV, the crit-
ical temperature T, =125 K. (The high effective mass for
the fermions will be explained by us as being due to the
usual high-mass values in a Jahn-Teller polaron state
later on.)

Expanding the thermodynamic potential for small b
one gets to order b*

Qb)—Q0)=—Lc,0? +1c,0f , (11)

where ¢, and ¢, are calculable constants, b0 implies
¢,>0, and T, is obtained from c,(7T,)=0. This form is
rather typical for a second-order phase transition. The
real Meissner-Ochsenfeld effect is studied by coupling to
electromagnetic vector potential 4,. Within perturba-
tion theory one arrives at the conclusion that the penetra-
tion depth given at T'=0 by

MT =0)= (12)

172
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diverges at T— T, for A=~(T.—T)"!/2. So we may con-
clude that we have a real superconducting phase transi-
tionat T=T.

III. THE JAHN-TELLER-TYPE
HAMILTONIANS AND LAGRANGIANS

The most general physically reasonable two-band
Hamiltonian describing the interaction between phonons

and electrons may be written as
H=H,+H,+H,,, (13)

with
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where Qg4,, and Qs denote phonons associated to
different symmetry types. We conventionally call them
diagonal and off-diagonal phonons, respectively.

The interaction Hamiltonian H, ;, may be diagonal-
ized giving

0

Cx1
Cxir |’

17)

We write 7; instead of 03 indicating that it is a flavor-type of degree of freedom and not a spin degree of freedom, which
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here plays the essential role.

Consequently, the phonon second-quantized form of the Hamiltonian reads

th = 2 ﬁwoﬁqalﬁqaoﬁ‘q + 2 ﬁwdiagqa giagqadiagq > (18)
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The model may be reformulated in Lagrangian language. The Lagrangian is given by
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where cy;,, and c.g are the diagonal and off-diagonal
sound velocities, respectively. Notice that the coupling
proportional to 1 is a conventional electron-phonon cou-
pling, whereas the term proportional to 7; is due to the
Jahn-Teller effect splitting the energy levels.

A concrete realization of this model was given by Yu
and Anderson.” They take as the 1 and 2 bands the
bands associated with the oxygen s and p orbitals (which
are the orbitals of a different parity) and neglect the diag-
onal coupling. Introducing the chiral (that is, the left-
handed and right-handed) linear combinations of the

fields
¢L 1 ¢s _¢p
= =— (22)
¢R \/2 ¢s +¢p
and setting A := g 4 we get
1 .
L= | 58,90, =393 | T¥'i0, ¥
— Lol — L rpviry) . (23)
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In this Lagrangian the phonons that act between the
left-handed and right-handed electrons are propagating.
A similar interband interaction based on propagating
phonons was discussed by Weger, Englman, and Halpe-
rin,'! and the matching of the coupling signs was con-
sidered in detail in Ref. 12.

However, this is not exactly what Yu and Anderson
had in mind. Yu and Anderson addressed their attention
to a so-called local phonons, i.e., a nonpropagating vibra-
tion mode, which is intimately connected to a ‘“‘solid-state
instanton,” i.e., to a tunneling of an atom in a dynamical-
ly generated double-well potential.’ In the following sec-
tion we will construct a correct field-theoretical analogue
describing such a situation.

IV. THE LOCAL PHONON AS A NONPROPAGATIG
OGIEVETSKII-POLUBARINOV PHONON

In relativistic quantum-field theory ‘“phonon modes”
are often associated with massless fields of helicity zero.!*

Whereas a massive particle of spin s has 2s +1 states of
polarization, a massless particle with spin s70 will have
only helicity states, a massless and a spinless particle with
only one helicity state. More abstractly, in the massless
case a system of 2s +1 states is no longer irreducible.
This mechanism plays a distinguished role, when we take
the massless limit of a massive quantum field theory. For
example take a look at the case of a massive spin-1 boson
i.e., a massive photon. It is evident that the two max-
imum polarized states become the two helicity states in
the massless limit, but one is forced to ask what happens
to the other state. In the case of a photon it simply
disappears. Physical states are chosen in such a way that
the longitudinal photon cancels against the scalar but
negative-norm “timelike” photon component. This is the
essence of the well-known Gupta-Bleuler formalism.

Some time ago, Ogievetskii and Polubarinov!® showed
that one can construct tensor field theories in which ex-
actly the opposite happens, namely, the vanishing of the
helicity-(£1) states.

Opposed to the massive Maxwell-Dirac Lagrangian,

—_1 2 m? 2
L=—13,4,—8,4,7+— 4]
=Py H+M)yp+iedy YA, , (24)

the most simple massive Ogievetskii-Polubarinov particle
quantum electrodynamics is described by

2
m
L== 18,4, T3, A, +3,4,,)+ =~ 4],
— Py 3+ M)p— Lge, Py pdr A . (25)

The massless limit m —0 is taken at the end of the com-
putation (infrared regularization). Ogievetskii and Polu-
barinov proved that this Lagrangian can be represented
as a four-fermion theory with an intermediate boson.
This is exactly what we are lookjng for. Moreover, it can
be shown that the Ogievetskii-Polubarinov phonon is
nonpropagating or, using different words, it is neither
emitted nor absorbed: It is a dummy field.

The possibility of constructing a gauge field from fun-
damental fermionic interactions has been known for a
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long time starting with Bjorken’s classical paper,'® which,
by the way, was motivated by the BCS theory. The
difficulties of this approach associated with the nonrenor-
malizability of four-fermion interactions and the inherent
breaking of Lorentz invariance are, of course, of no
relevance in the case of condensed-matter systems.

Now we are able to introduce flavored electrons and
write down the correct relativistic analogue of Eq. (23):

m 2
4
— Py, 3+ M)p—1ge,,, Py 93" 477 . (26)

L=—15(3,4,,+8,4,,13,4,, >+ Afw

Finally, this Lagrangian has to be reduced down to a
nonrelativistic (2+1)-dimensional situation. Canceling
the third row and column in the antisymmetric tensor
field 4,,, we get the dual of a (2+1)-vector potential a,,
such that the interaction term must have the form ‘“field
strength times a current diagonal in flavor.” Since in
(2+1) dimensions a Chern-Simons terms a priori present,
a minimal choice for the Lagrangian is given by

y . 1
L=1e""a,0,a, +¢'iD,p— Ey |D, ¥|?

1
— o fen) @7

where f,=09,a,—09,a, and D,=3d,—iga,. We recog-
nize this as a possible “local-phonon” version of Eq. (23).
It coincides with the Lagrangian of Kapusta et al., who
suggested that the internal degree of freedom may be
identified with the spin, though they did not preclude
other interpretations. From this we get a statistical mag-
netic field

b=—g(yhvr)—(¥fyv.)), (28)

such that a breaking of the chiral invariance at low tem-
peratures gives b a finite value. In a study of the finite
temperature Meissner-Ochsenfeld effect Kapusta et al.
arrived at a set of four coupled integro-differential equa-
tions, indicating that superconductivity terminates at
T=T, With a mean-field approximation and certain
values for the coupling constants and effective mass,
Kapusta et al. arrived at a T, =125 K. In our physically
motivated approach the high effective mass has its origin
in the Jahn-Teller polaron state.!°

V. A POSSIBLE PHYSICAL PICTURE

As Wilczek has pointed out,® to obtain a fictitious mag-
netic field we have to depart from an interaction Hamil-
]

fD:ZDdJexp

i=

but they could not give any physical explanation for the
interesting case N =2, which appears naturally in view of
the Jahn-Teller effect. In our case the four-fermion in-
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Hint= 2 ijlm C;Ckc;cm (29)

Jrk,Lm

and search for a mechanism that produces correlations of
the form

(cfep)=Ay , (30)
where the product

IT A (31)

loop

must be a complex number.® Ignoring fluctuations, we
obtain an effective Hamiltonian, which describes the hop-
ping of an electron is an external magnetic field:

HetT: 2 I‘jklmAjkcchm . (32)
Jkdm

Note that a necessary condition for the formation of a
fictitious magnetic flux is the spontaneous breaking of
parity and time-reversal invariance. In our framework
this is naturally achieved by the double-well potential
characterizing the dynamical Jahn-Teller effect, which
forces the pairs of electron field operators to develop a
nonvanishing vacuum expectation value and, consequent-
ly, generates a parity- and time-reversal-noninvariant
mass term for the ¢ field. Thus we may say that a ficti-
tious or statistical magnetism or, so to speak, anyonic
statistics is created from nonlinear acoustics and quan-
tum mechanics in harmony with the reduction down to
two space dimensions.

The breaking of chiral invariance corresponds in rela-
tivistic quantum-field theory to the spontaneous break-
down of ys invariance in the Gross-Neveu model.!”
More explicitly, our theory is a certain nonrelativistic
limit of a two-flavor chiral four-fermion model. In the
relativistic formulation, chirality is an external quantum
number (as is the spin), which becomes a flavorlike quan-
tum number in the nonrelativistic limit. Thus it may be
identified with an N =2 ad hoc flavor of the relativistic
analogue. Similarly, spin degrees of freedom are treated
as SU(2) flavors or colors nonrelativistically (see, e.g.,
Ref. 138).

Hence, our model is a certain limit of the NV =2 chiral
Thirring or Gross-Neveu model. A relation between
Chern-Simons theories and the N-flavor Thirring models
has already been analyzed comprehensively.!® Mavroma-
tos et al. found a low-energy equivalence between the
number of flavors and the statistics parameter of the
Chern-Simons theory by the correspondence

) g [flz’-[i'y“(alu'*‘l'A‘u)im]¢[+00nstx f(’Z'Y”IIJ')z]l
1

i—l—e“”AA#BVAA—chonstXfFfw(A) , (33)

~exp 5

I

teraction on the left-hand side of Eq. (33) is an effective
description of the dynamic Jahn-Teller effect in the
manner of Ogievetskii and Polubarinov.
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Let us close with a few remarks concerning the physics
of the Chern-Simons term. In their pioneering work
Deser, Jackiw, and Templeton stated that the physical
origin of the Chern-Simons term occurring in (2+1)-
dimensional systems can be traced back to the so-called 6
term of (34 1)-dimensional physics.?’ This 6 term de-
scribes an instantonic or, perhaps more directly, a “tun-
neling impurities” background on which the full (say,
three-dimensional) system lives. That a “hidden long-
range force” is present in quantum field theories with in-
stantons has been known for some time, and its connec-
tion to topological gauge fields, i.e., tensor gauge fields, is
almost straightforward.?!

VI. CONCLUSION

Let us stress the essential point: The electrons are in-
teracting via the dynamical Jahn-Teller effect. The
interaction—mediated through a dynamically created
double-well potential—generates, field theoretically
speaking, a parity- and time-reversal-noninvariant mass
term for the electrons. An electron, embedded in its sur-
rounding lattice distortion and interacting with the vibra-
tion modes, may be regarded as an anyon placed under
the influence of an effective magnetic flux. Now, since we

have two electron chiralities, we will naturally encounter
two anyon flavors just given semionics and a phase transi-
tion at acceptable temperatures if we insert a high
effective mass for the quasiparticles that is expected from
the Jahn-Teller polaron picture. The situation is
somehow reminiscent of quantum chromodynamics at
high temperatures where chiral symmetry is restored.
The restoration of chiral symmetry also happens for the
Jahn-Teller interaction at a critical temperature, thus
causing a real phase transition of second order.

Perhaps it may be possible to construct a more general
physical situation than the one fixed by the double-well
potential giving more flavors and thus another type of
long-range order. In the framework considered here it
remains to be shown that because of the nonpropagating
nature of the nonlinear phonons, we essentially have a
pairing in position space, and thus a possible dynamical
basis for an s-channel resonance mechanism in the .
manner of Friedberg and Lee.?
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