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We propose a theoretical model for high-T, superconductivity based on the existence of two
types of mobile charge carriers: electrons and hole bosons. The bosons are assumed to be
mobile in Cu02 planes and the electrons in separate parts of the crystal in order to prevent
annihilation. We simulate this situation with a uniform mixture of electrons and bosons by
adding a short-range repulsion between them. The model predicts the existence of a linear
electronic sound mode which is analogous to the first sound in He mixtures. The electron
component contributes a linear term and the sound mode a cubic term in the electronic specific
heat. The transition at T, is interpreted as a A transition whereas the pairs are formed at a
higher temperature Tpcs. For small hole concentrations the charge carriers form an excitonic
bound state of heavy-fermion type which is immobile and hence provides an explanation for
metal-insulator transition. The model predicts also the doping behavior in agreement with
experiment including the pressure dependence of T . The specific-heat linear term is predicted
to increase with pressure for hole-doped and to decrease for electron-doped superconductors.
The predictions are valid for all types of high-T, compounds and also for the new electron
superconductors. The value of normalized slope of specific heat discontinuity at T, can exceed
the maximum values obtainable by the BCS and Eliashberg theories. Some features of NMR
experiments can be understood.

I. INTRODUCTION

Since the discovery of high-T, superconductors, ~ no
convincing pairing mechanism has been presented to ex-
plain the phenomenon. It is therefore worthwhile to see
to what extent one can progress without knowing the
exact mechanism. In fact even for normal BCS super-
conductors a first-principle calculation of T, or the gap
parameter 4 is strictly speaking not possible. In previ-
ous papers~ 3 we proposed an electron —hole-boson liquid
(EHBI) model for high-T, superconductivity. The ba-
sic assumption of the model was the existence of both
mobile electrons and mobile hole bosons in these
compounds. Since the coherence length of the paired
holes is small, (o 3—20 A, and hence the gap A is very
large, it was assumed that one can treat them sim-

ply as composite bosons of charge +2e. It was further
assumed that the electrons are moving mainly in the c di-
rection whereas the bosons are constrained to move in a-6
planes. We will relax this condition here so as to assume
that the electrons and bosons are situated in separated
parts of the crystal in order to prevent the annihilation,
but the directions of their mobilities are such that the
exciton bound state for small hole concentrations is local-
ized. This mould then explain the metal-insulator tran-
sition found in the high-T, compounds. In our jellium-
model calculation with uniform densities we will simulate
the situation by modifying the electron-boson interaction
to become repulsive at short distances to lower the anni-
hilation rate20 given by the radial distribution function

g, &(r) at r=O. In reality the annihilation is prevented
by the topology of the lattice: the bosons reside in Cu02
planes, separated from the electrons. The stability of
such a system is clearly connected with the unknown
binding mechanism of the bosons. An analogous situa-
tion occurs in nuclei where the ground state may be based
on a deformed Hartree-Fock but some excited states on
a spherical one or vice versa. Here the system is highly
anisotropic and correspondingly the problem is an order
of magnitude more complicated. We want to stress that
for present purposes it is not necessary to fix the internal
structure of the bosons to be a hole pair. All we need
here is their charge and the fact that they decay into two
holes at temperatures higher than T, Therefore w. ithin
the present approach the scenarios which posess the same
boson-fermion structure are equally possible. However,
we want to use in our presentation, as long as possible,
concepts from BCS, such as pairs, pair breaking, etc. ,

without actually implementing the BCS as the sole bind-
ing mechanism of the bosons. Similarly the "electrons"
here can be taken to be more exotic fermions, but with
the correct charge Q = —e.

Our model then essentially consists of a mixture of
electrons and hole bosons in analogy with the electron-
hole liquid in semiconductors. 2 The evidence for the
existence of both types of carriers in these compounds
is born out by the Hall measurements and there is
some evidence for the existence of pairs well above
T, . The main evidence of mobile electrons comes from
low-temperature specific-heat experiments. It has
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FIG. l. Qualitative picture used as a working hypothesis:
The superfluid density n, (T) g 0, below T„and the gap
E(T) g 0, below Tncs.

become increasingly clear that the linear term in the spe-
cific heat is not due to the impurities but is most likely an
intrinsic property of high-T, superconductors. Although
some controversy remains, 2 we shall nevertheless assume
the existence of mobile electrons also below T, .

The behavior of the resistivity in the magnetic field
for T, & T & To seems to indicate a two-dimensional
(2D) behavior2s 29 near the Kosterlitz-Thouless temper-
ature T, . This merely means that the 2D-plane structure
becomes dominating in the fIuctuations but does not in
any way invalidate the present 3D model. The behavior
of many other quantities such as specific heat can also be
very complicated in this temperature range. so Since ac-
cording to the present model at T, essentially an ordinary
A transition occurs, we will define yet another tempera-
ture T@cs ) T, to be the point where all hole pairs are
broken. If the mobile hole pairs exist for T ) T, they also
can cause unusual experimental efFects together with the
mobile electrons which we assume to exist even below T, .
The size of the discontinuity in the specific heat at T,
depends exponentially upon the temperature difference
TBgs —T, and hence can show wide variation, as is
also observed experimentally. The temperature TBCS can
be sensitive to the impurities. Needless to say the impuri-
ties can cause variation of the density and effective mass
of the mobile electrons and thereby cause sample depen-
dence in quantities like the specific-heat linear term. The
impurities can cause part of the mobile electrons to go
from extended states to localized states.

The framework of our model is qualitatively presented
in Fig. 1. Above TBcs one has normal metal. When
T,' & T & TBt„-s the conduction is partly due to the
pairs but the superfluid density n, =O. In this temper-
ature range we may call the system a BCS metal. Be-

low T„one has n, & 0 and the system is superAuid
and superconducting. There is ample experimental evi-
dence showing abnormal behavior of resistivity above T, .
Some of the latest ultrasound measurements3~ combined
with specific-heat measurements in Bi2Sr~CaCu208 at
T=240 K show a second-order transition where the ul-
trasound attenuation shows very similar behavior as the
one observed in normal BCS superconductors. There-
fore this temperature could be interpreted as the point
where bosons are formed. One should at least keep
this possibility open although the normal explanation
would be a structural transition. An abrupt drop in
the ultrasound attenuation can be a sign of pair for-
mation like it is in the case of normal superconductors.
This picture is further clarified by recent electron-energy-
loss experiments on single crystals of YBa2Cu307 and
Bi~Sr2CaCu20s (2:2:I:2). The gap seems to exist well
above T, and the size is 2A = 7.8k~T, as compared with
L = 1.76k@TBcs for the normal superconductors. The
two conditions together give TBCS ——2.2T, which for t;he
2:2:l:2 compound lies at about 200 K. Clearly then the
present approach can be looked upon as being a general-
ization of BCS theory.

It was pointed out in Ref. 2 that a mixture of electrons
and bosons exhibits a low-lying acoustic phonon branch
and a high-lying plasmon branch at T=O. The optical
plasmon together with the pair breaking efFect will be
neglected here since they both lie higher in energy. The
electron-phonon spectrum deviates from linearity before
the mode gets dissolved into the particle-hole continuum
at some high value of k. This happens at an energy much
higher than the gap.

Since the pairs in high-T, superconductors are assumed
to be in So state the order parameter is formally the
same as in the BCS theory or in the superfluid mixture
of He and He. In the latter system several sound modes
exist. The analogous modes most, likely also exist here.
In the present work we will explore the consequences of
the electron sound mode which corresponds to the first
sound in the He mixtures. At present we still have no
direct experimental evidence of t, he electron sound mode.

We should stress that within the present model the
bosons and fermions have opposite charges as compared
with the model proposed by Friedberg and Lee. This
makes it possible to understand the metal-insulator tran-
sition as the exciton bound-state formation for low hole
concentrations. In this case also the crucial sound mode
would be completely Landau damped. By exchange of
the roles of electrons and holes one can understand the
electron superconductors as well. It was shown by
Schafroth 35 years ago that ideal charged boson gas is
a superconductor for all densities. The validity of the
Schafroth solution has been recently questioned by Fried-
berg, Lee, and Ren. This criticism does not concern our
approach because we also have the electron component
present which makes the screened boson-boson interac-
tion short ranged, and furthermore we go beyond the
ideal-gas approximation.
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The plan of the paper is as follows: In Sec. II we
present the mathematics of the electron —hole-boson liq-
uid model together with some numerical results at T=O.
We present evidence that Landau damping determines
the end points in hole concentration where T, becomes
zero. In Sec. III we discuss the role of the electron sound
mode in determining T, as a function of electron and bo-
son densities. We also derive an approximate analytical
expression for the behavior of T, in doping. The pressure
dependence of T„ including the asymmetry eA'ect 6 found
in hole-doped "and electron-doped superconductors, is
discussed in Sec. IV. In Sec. V we discuss the specific heat
at low temperature and the specific-heat jump at T, in
the light of He liquids, including also the pressure depen-
dence of the linear and cubic terms.

II. ELECTRON —BOSON-HOLE LIQUID

The starting point of our model is the coexistence of
mobile electrons of density n, and mobile hole bosons
with density n~ on the lattice. The eA'ective masses are
m," and mB. At first we include only the Coulomb in-
teractions between the component particles. The inter-
action between electrons and bosons is attractive. We

cannot perform the full scale calculation on a lattice but
will have to approximate the lattice with a neutralizing
background which supports the mixture of electrons and
bosons of uniform densities. We believe that this model
is accurate in the long-wavelength limit which is sufhcient
for calculation of the elementary excitations and then the
superAuidity. It turns out that for long wavelengths and
high density one can work out the consequences of the
model in closed form. This means that we can calculate
T, as a function of n, and n~ analytically. Hence we

also get a formula for T, in doping. The electrons and
bosons may screen each other completely or partially.
If n, = 2ngy one has local charge neutrality, otherwise
nonmobile background charges keep the system neutral.
Although we cannot carry a full-scale calculation on the
lattice, the existence of the lattice is ultimately crucial
to our model because only then do we have the situation
where the electrons and holes never meet in space and get
annihilated, as they do in the case of normal electron-hole
liquid in semiconductors. We will simulate the existence
of the lattice by introduction of a short-range repulsion
in the v, B channel. This makes g,B(0) small and hence
annihilation also small.

The Hamiltonian for the mixture system is

Ne

) v,'—
s=i

N~

. ) v,'. +
1&i&j&N

vee(rij) +
1&i&j&N~

VBB(rij ) + ) ) VeB(rij )
1&i&N 1&j&N~

Even in the case of a simple jellium calculation, approx-
imations such as random phase are not accurate enough
for the radial distribution functions. We therefore resort
to Jastrow ansatz for the ground-state wave function

fee fBB feBC'ec B q

(r) f2 (r)61V~e(r)+E~e(r)

where N p is the nodal function and E p the bridge func-
tion which is small for Coulomb liquids and will be ne-
glected here. Minimization of energy then enables one
to write Euler-Lagrange (EL) equations in terms of the
radial distribution functions g p(r) alone in the form

h'
2V' gg p+ [v p(r)+ zu p(r)]gg p = 0,

2&i~p

where

(4)

where f p are the two-body correlation factors, 4, is
the Slater determinant of plane waves for electrons, and
4B—1. Clearly at this stage we ignore all effects com-
ing from the intrinsic structure of the hole pairs in C ~.
Although we will most of the time use approximate an-
alytical expressions it is important to also have a more
accurate numerical scheme at one's disposal. The ex-
pectation value of the Hamiltonian can be expressed in
terms of the radial distribution functions g„(r), g,B(r),
and gBB(r) alone if one makes use of the hypernetted
chain connections

1 1

4 kp 16 k~
Bk 1(k)S
1, k& 2kF, (6)

S=](S,B SBB) ' ( 0 mB )

The liquid structure factors S p(k) are the Fourier trans-
forms of the corresponding radial distribution functions

g p(r) multiplied by gn np The main in.teractions
v p(r) are Coulombic except at short distances where one

may try to simulate the eA'ect of the lattice by adding a
repulsive part in v,~. One can transform the EL equa-
tions into k space and prove that all S p(k) behave lin-
early at small k in the case of Coulomb forces and also
with the added repulsion.

Once the structure factors S p(k) are known, the col-
lective excitations for the mixture are obtained by diag-
onalization of the matrix

The 2 x 2 matrix of induced potentials is given by

h k2
iv(k) = — [M 'S+ SM —2M

4
+(SMS) ' —(SEMSF) '], (5)

where
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0.5h'k' S-'M-' . (8) V p = v p(k) (n np)/(m mp),
The spectrum turns out to have a plasma branch and
a phonon branch with linear dispersion c hu, k which
one obtains without actually solving the Euler-Lagrange
equation. In a real lat tice calculation the linearity
would remain but the associated sound velocity would
show directional dependence similar to the accoustic
modes including the Brillouin zone structure. This has
been demonstrated by a recent superlattice calculation~
where electrons and bosons reside on separate, paral-
lel layers repeating ad infinitum. This 3D-layer struc-
ture coupled with Coulomb forces develops a nonisotropic
sound mode with velocity exceeding the 2D Fermi veloc-
ity. Since such calculations are an order of magnitude
more diFicult, the aim here is to show that the present
uniform 3D model already contains the essential physics.
Using purely Coulomb potentials for v p, exploratory cal-
culations were done in Ref. 3 by varying the masses and
densities in order to show that the model possesses prop-
erties needed for high-T, superconductors. We define the
number densities n„n~ and concentrations z~ ——z and
z, = 1 —z such that

na = zno n = (1 —z)no,

where no is the total density and ro is given by no ——

0.75/n'(roao), ao ——h /m, e . The local charge neutral-
ity corresponds to boson concentration z = 3.

The Euler-Lagrange equations are highly nonlinear
and hence di%cult to solve. Ultimately one needs to
solve them to obtain good accuracy for quantities like
electron sound velocity u, at realistic densities. They
were solved in Ref. 3 by an iteration procedure in k space
which is a generalization of the method used in Ref. 41
for a single-component case. Since the effective masses
and the component densities are still largely unknown
in high-T, materials, their search would require a large
amount of numerical work unless approximate analytical
solutions can be found for guidance. Fortunately such
an approximation exists for large total density no and
long wavelengths: the generalization of the uniform limit
approximation to multicomponent systems. In connec-
tion with metallic hydrogen this has been discussed in
Ref. 42. In the single-component case one obtains for the
Fourier transform of the pseudopotential u(r) = 21n f(r)
the uniform limit approximation by

1
nu(k) =

SF S'
where n is the density and SF(k) is the structure factor
from Eq. (6) for the uncorrelated electron gas and S(k)
contains the eRect of correlations. Here we have to gener-
alize the definitions of Ref. 42 to allow arbitrary electron
and boson densities, the Bose statistics, and the charge
2e for the second component. We define new 2 x 2 matri-
ces for the liquid structure factors S(k), potentials U(k),
and pseudopotentials u(k) in the following way:

S p(k) = S p(k)gm mp,

u p = u p(k) (n np)/(m mp) . (12)

Similarly we define matrix c~ to be

s2(k) = (—'h k S ')' = s (k)'+ h k'V(k) .

For purely Coulombic interactions the high-density limit
of the electron sound velocity for the linear mode is given
by

hk~ 2 1r, =~~r, , r, =—
m, ' 3 (15)

where the electron and boson plasma frequencies are de-
fined by

u, = 4vre n, /m,", u& —16+e n~/m& . (16)

The plasma frequency of the mixture is given by ~& ——

+ ld~.
It is seen from Eq. (15) that I', & I for all concentra-

tions and mass ratios. This means that the sound mode
lies inside the particle-hole continuum since u, ( e~.
The mode may therefore be Landau damped. Otherwise
the general behavior u, (z) is of correct form to explain
the behavior of T, as a function of the hole concentra-
tion, as was explained in Refs. 2 and 3. It was mentioned
earlier that in order to prevent the electrons and bosons
from annihilating each other one should add a repulsive
force at short distances. Such a force can simulate the
efI'ect of the lattice where the electrons and holes can in
reality be confined to different planes. Surprisingly such
a force, when added to the potential matrix V(k), would
also increase the velocity u, by an additional factor:

u, = vFI (z),

r(z) = r, (z)QI+.kFm, ,

where c = 3V,as/h vr is a positive constant determined
by the repulsive potential (here we choose Yukawa po-
tential aV, e "~ /r). The plasma frequency ~„ is inde-
pendent of the repulsion. The situation is shown in Fig.
2, which is obtained by numerical solution of the Euler-
Lagrange equations with the parameters rn*, = rn„rn&
0.5m„V0 ——1 Ry, a = 2ao, and ro ——1.5.

It is seen that near the end points @=0 and 1 there
exist points zi and z2 such that u, (zi) = vF(zi) and
u, (z2) = vF(z2)& but with zi & z & z2 one has
u, (z) ) vF(z). Hence in this region u, (z) behaves like

2h kFk 1 0)
3m,'0 Op

The long-wavelength limit of the collective excitations are
now determined according to Eq. (8) by diagonalization
of the matrix
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around the Landau points zl and z2 require a more thor-

ough study than is possible here, to determine the exact
behavior of u, .

Before closing the discussion of the model it should be
mentioned that the excited-state wave function can be
written in the Feynman form

N, NJe

A(k) ) e'"'" '+ B(k)) e'"'" ' @0,

(0
O

I
t

t

I

p Xq 0.4
I

p8 X2

where A and B are determined by the secular equations
(14). Here $0 is the exact ground-state wave function.
The wave function of Eq. (18) can be utilized to evaluate
various matrix elements connected with the linear mode
in the gap. This wave function is known to be exact for
small k. The excitation energy is shown in Fig. 3 with
the same parameters as in Fig. 2.

Boson Concentration x

I"IG. 2. The velocity of sound u, as a function of boson
concentration x: the solid line with repulsion included, the
dashed line with pure Coulomb force. The Landau points x1
and x2 are determined by the crossing points of u, and v~.

zero sound mode does in He with respect to the particle-
hole continuum. Since also v~(z) vanishes at x = 1 the
point z~ is very close to 1, whereas xl can be some dis-
tance away from z=O. This circumstance in fact is ex-
actly what is needed to explain the metal-insulator tran-
sition and the experimental behavior found in essentially
all the high-T, compounds under doping. The regions

C4

l+
O
V)

C:

III- Tc AS A TRANSITION: DOPING

Since the low-energy excitations by which the bosons
are depleted from the condensate are longitudinal sound
waves, the situation here is similar to He liquids, in
particular the mixture of He and He. The particle-hole
excitations will not deplete the Bose condensate, but will
contribute to the linear term in the specific heat. The
above theory was done at T=O. The properties of the sys-
tem at finite temperatures are in principle obtained from
the spectrum of elementary excitations in analogy with
the He mixtures. Via the two-Quid model the superQuid-
ity is related to the phonon-roton spectrum. In Fig. 4 we
illustrate the situation by comparing our spectrum with
the phonon-roton spectrum of a He mixture. Clearly the
electron sound mode is analogous to the phonons in the
He mixture. The maxon-roton part corresponds to the
pair-breaking excitation shown with an isotropic gap.

According to the two-Quid model the boson component
remains superQuid as long as the density of sound mode
excitations is less than n~, the density of bosons. At T,
they become equal. If that condition is solved for T, one
obtains the basic doping formula

Ql 4

~
0

2
lg

V
)C

UJ

0

k (units of —„' )

FIG. 3. The excitation spectrum of the EHBL model with
the condition of local charge neutrality at the total density
rp ——1.5.

which gives T, as a function of the component densities.
The pair-breaking excitations would modify this formula,
but for simplicity we ignore them here because k~T, &(
2A and A is largely unknown. The electrons, in analogy
with He mixtures, are assumed to be part of the normal
liquid. The exact Landau condition for the normal part
of the liquid would be at T„

Pe Pc) + PB(Tc) ™Br1B+ rne &e

where p, and p~ are the mass densities of electron and
boson excitations defined by the Fermi and Bose distribu-
tion functions. Due to the wave function (18) the density

p, (Tc) is affected by the sound mode excitations and the
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normal particle-hole excitations. The density pn(T, ) is
determined by the sound mode excitations and the quasi-
particle excitations. At this stage the electron excita-
tion mass density p, (T) can be eliminated by the charge
conservation discussed in connection with the pressure
dependence below. This gives p~(T, ) = m*n~, which
leads to Eq. (19). Hence the boson component goes su-
perQuid as if the electron component did not exist if the
charge conservation is used. However, the electron sound
velocity depends upon the electron density and effective
mass. It turns out that the fitting of the pressure de-
pendence (see Fig. 6) requires that the electrons are light
and the bosons heavy. At the charge neutrality point
n, = 2n~, the electrons screen the heavier bosons com-
pletely. Hence the screened interaction between bosons
is short ranged and the existence of the sound mode be-

comes understandable on the basis of liquid He alone
without any detailed calculations. For other density ra-
tios the excess charge is screened by the background and
the detailed theory presented in the previous chapter is
needed. It turns out that we will obtain satisfactory un-
derstanding of doping, specific heat, and the pressure
dependence with this simple formula.

From here on the EHBL model is analogous with a
mixture of He and He, where it is known that T~ of

He comes down when the He concentration is increased.
Similarly here when electron concentration is decreased,
which means increasing the boson concentration z, T,
goes up, until it again comes down following the behav-
ior of u„shown in Fig. 2. The minimum boson con-
centration is determined by the Landau damping point
zq, as was discussed in Sec. II. Below this boson concen-
tration the excitonic bound state of electrons and bosons
may occur in analogy with the electron-hole liquid. Ac-
cording to the assumptions, these "heavy fermions" are
localized. Hence for z ( zi we have an insulator. Taking
over the results for u, from Eq. (17) in Sec. II, we obtain
the doping formula

—
E2

Since most of the parameters are still largely unknown
we have reduced Eq. (20) to the following approximate
but simpler form:

T ( ) g( )5/12( )5/s 1/4

2kF

r breaking

le —hole

2kF
k

FIG. 4. {a)The phonon, maxon, roton spectrum of a mix-
ture of He- He. {b) The corresponding spectrum for the
EHBL model. Except for the pair breaking they are very
similar. The crossing of the electron sound mode and the
pair breaking is shown with an isotropic gap 2A. If the gap
was a diminishing function of k, the lower branch would look
very much like the phonon-roton spectrum of the He mixture.

The exact behavior of u, and hence T,' near Landau
points requires further study. In writing down this dop-
ing formula we have assumed that while the hole con-
centration is increased, the concentration of mobile elec-
trons goes down but the total density nu of Eq. (9) stays
roughly constant. Also the effective masses are assumed
to remain constant during the doping. Although it is not
self-evident, we have further assumed that at the Landau-
damping points zi and z2 the u, vanishes and hence also
T,=O. The main argument for the vanishing of n, at zi
and z2 is as follows: When u, gets small the sound mode
goes through the particle-hole continuum. At the right
edge of the continuum the sound mode is pushed down

by the particle-hole states above and the perturbed mode
may have zero energy at Gnite k, which is a signal for an
inst ability.

The results for La-based, Y-based, and Tl-
based superconductors are shown in Figs. 5. A search
was done for parameters A and z2. The point zi was
obtained by simple proportionality between the hole con-
centration scale and the boson concentration z. It is seen
that the formula ('21) gives a good qualitative account, of
the experimental results. It is somewhat unclear how
we should connect our theoretical scale z to the dop-
ing variables in these compounds. There seems to be
some controversy also in the experimental values of hole
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concentrations obtained with diA'erent methods. If the
bosons also act as mobile charge carriers for T & T, the
Hall experiments need to be reexamined. Clearly the
vast amount of data can be utilized, in combination with
the speciFic-heat data, to fix the values of the parameters
such as eA'ective masses and the strength of the repulsive
force needed to fit the Landau damping points.

Due to the deviations from linearity of the electron
sound mode at the crossing point in Fig. 4, some correc-
tions to Eq. (19) are expected at such high temperatures,
but at least the qualitative features will remain.

It is well known from He mixtures that the fermion
component moves with the normal component of the liq-
uid, therefore here also the supercurrent is determined

by the superfiuid velocity in the form J = (2eh jm&)V'4,
where the order parameter is 4 = ~n, e' The proof of
the Meissner efFect for T ~ T, should follow along the
lines of discussion in the BCS case. s2 ss To obtain any-
thing meaningful for critical currents one must wait for
the present theory to be formulated on the lattice.

IV. PRESSURE ASY'M METRY
IN ELECTRON-DOPED

AND HOLE-DOPED SUPERCONDUCTORS

One can now easily derive an approximate formula also
for the pressure dependence of T We regard it first as
a function of component densities T, (n, , n~) and then

(a)

0
Xq

0.4
X2l I

0.8
Boson Concentration x

120 (c)

I ~

0

]x,

OA

X2
I I

0.8 0

Xq
I

0.4

X2
I I

0.8
Boson Concentration x Boson Concentration x

FIG. 5. Transition temperature T, vs the boson concentration x. The experimental data in our scale are compared with
the results of the present calculation. The dashed line shows the result with the repulsion included by multiplying Eq. (21) by
[1+c'(xq —x) ] with c'=0.1. (a) La2 Sr Cu04. A=140, x2=0.75, and Refs. 46—49; (b) Y-based compounds: A=300,
x2 ——0.75, and Ref. 50; (c) Tl-based compounds: A=650, x2=0.75, and Ref. 51.
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1 dT, (DlnT, dingy BlnT, On, i

T, dP ( Bn~ BP Bn, BP)„
f'1 8 ln T, 0 ln T, l
i 2 Ofi~ ODg ) (22)

require the conservation of charge in the form 2n~-
n, = n =const. In fact n should be the carrier density
one measures in a Hall experiment if both electrons and
bosons are the mobile charge carriers for T & T„as our
model presupposes. This statement makes sense only if
the directions of mobilities are restricted.

To obtain the pressure dependence it is convenient to
calculate the constrained logarithmic derivative:

0.2
( )

50

6. A more detailed discussion of the asymmetry effect is

given in Ref. 36.
If we did the calculation with positive charge for the

fermions, most of the formulas in the preceding sections
would remain, provided that we add an extra attractive
force between the boson and fermion. This would pre-
vent the Landau damping of the sound mode. However,
the pressure can no longer be calculated by Eqs. (22) and
(23). In fact the most probable outcome is that the co-

7 5 2+~
~12 16@ 8 4@+M

5 '(1 —*)'~'
241+ c'(1 —z)'~'~ (23)

where M = m&/m, ', p = n~/n„and c'

c42.25~m:/ro.
The exact relation between the compressibilities Ir,„

~~, andric would be

where z, = (i sm,'/6. 13z, ) GPa is the compressibil-
ity of the electron gas.

By Eqs. (17) and (19), the derivative D would simply
be given in terms of the compressibility of the electron
gas and the concentrations by
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At the local charge neutrality point n = 0 and hence K@
can be eliminated by n, z, = 2n~x~. We continue to
use this approximation also for other nearby concentra-
tions because calculation of k could bring in the whole
complexity of the crystal.

From Eq. (23) one observes that function D becomes
infinite for the boson concentration x=0 and 1:
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The singularities at both ends are cut away by the Lan-
dau points z~ and zg discussed in Sec. II. The qualita-
tive behavior is similar to the one observed recently
for La2 ~Sr Cu04. In particular the gradient stays pos-
itive irrespective of z. A tentative comparison with
experiment 4 is given in Fig. 6. We have used the com-
pressibility of electron gas with ro ——3.65. The use of
crystal compressibility would give an order of magnitude
smaller D.

The electron-doped superconductors obey the same
formalism with roles of electrons and holes being inter-
changed. In the formulas (22)—(25) m~ is the mass of an
electron pair and rn„K, become rnI„&I, of the mobile
holes. Since the energy density for the holes is negative
the compressibility ~I, will be negative. Therefore 7, will
diminish with pressure for electron-doped superconduc-
tors. This agrees with the experiment as is shown in Fig.

-0.2
0

I

60 80 10020 40
T (K)

FIG. 6. (a) Comparison of the experimental pressure ef-

fect (solid circles) for La2 Sr CuOq with the estimation
of the theoretical model. (b) The pressure derivative D of
the logarithm of T as a function of T . Theoretical results
(solid lines) are calculated from Eq. (23) with the fermion
mass equal to 0.07m, and the boson mass 2m, and the
density parameter ro ——3.65, 3.3, and 2.7 for La2 Sr Cu04,
the Y-based compounds and the electron-doped compounds,
respectively. The experimental data are from Ref. 54 for
La2 ~Sr Cu04, Ref. 37 for the Y-based compounds and Ref.
38 for the electron-doped compounds L2 M Cu04 „. No-

tice that only the data for the Y-based compounds from Ref.
37 are included for the sake of clarity. In (a) the correspond-
ing critical temperatures T are shown by open circles.
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efFicient D will change sign in the region 0 & z~ & 1,
although one now needs a more detailed model for the
quantity R in Eq. (24). In any case this would be a model
where the holes are divided into "superconducting" and
"nonsuperconducting" ones, a model rejected in the early
days of superconductivity.

V. EVIDENCE FOR THE ELECTRON
COMPONENT: SPECIFIC HEAT

It has now become increasingly evident 3 that the
high-T, compounds at low temperatures do have a linear
term, which we take to be the sign of the existence of
mobile electrons in these compounds. Other evidence
comes from the ultrasound attenuation which does not
show a discontinuous drop at T, observed for ordinary
BCS superconductors. The main argument in the BCS
case is that in normal metals at low temperatures the ul-

trasound is absorbed mainly by mobile electrons. At T,
they go into the forming of Cooper pairs and hence the
attenuation drops suddenly. With the present approach
the observed behavior can be understood in terms of the
electrons which continue to coexist with the supercon-
ductivity for T ( T„and nothing much happen at T, .
As discussed in the Introduction the drop should more
likely occur at TBgs.

At this time there is still no direct evidence about the
existence of the electron sound mode proposed in Ref.
3. Indirect evidence comes from the Raman experiments
which show a continuous spectrum inside the gap. In
addition the pair-breaking spectrum at 2A in Raman
scattering is not visible as it is in the case of BCS su-

perconductors. In this respect the situation is similar
to the one in ultrasound attenuation. Clearly the wave
function Eq. (18) of the EHBI. model would produce a
continuous spectrum in the gap.

Yet another experiment where the effect of t, he BCS
gap at T, is not seen is the infared absorption. The ex-
perimental evidence supports the idea that; midinfrarec',

absorption is a direct electronic excitation, again sup-

porting the EHBL model.
Direct proof for the existence of electron sound would

come from Brillouin scattering. In addition to the normal
acoustic modes one should see an extra longitudinal mode
below T, but not above TBCS. With neutrons, on the
other hand, only the crystal modes should be visible. In
compounds like I a2 Sr Cu04 the sound velocity should
behave according to Fig. 3 as a function of z in doping.
The speed u, is close to the Fermi velocity corresponding
to the electron density n, .

The main evidence for the existence of electrons in the
superconducting state comes from the linear term in spe-
cific heat at low temperatures. Since the bosons con-
tribute a cubic term one can write the specific heat at
Iow temperatures in the form

This assumes a spherical Fermi surface which is perhaps
too idealized for such complicated lattices. Microscop-
ically the electron-hole excitations would enter in y(0).
The coefFicients y3 and pl. are given by

ys ——2n. k~ j15, yL, = 3ys . (28)

At higher temperatures T & T, the existence of the
Brillouin zone structure also for the k vectors of elec-
tronic excitations would suggest a kind of Debye model
for the electronic part as well. The p3 term would then
be a low-temperature limit of such an expression. The
simplest way to proceed is to allow for u, a slight tern-
perature dependence. The numerical model calculations
show that the sound mode dispersion develops a plateau
before cutting into the particle-hole continuum as is also
evident from Fig. 3. This plateau lies orders of magni-
tude higher than the gapi7 (2—8)k~T, . Similar struc-
ture will evidently occur at much lower energy due to
the pair-breaking excitations. We anticipate that this
crossing together with fluctuations can cause sharp tem-
perature variation of the sound velocity near T„similar
to the one occurring in He mixtures near T&. Effectively
this will be refiected as a sharp temperature variation of
the coefIicient a3 in the specific heat. We can proceed to
analyze the situation near T, in the light of He mixtures
and allow temperature dependence for u, .

A useful way to analyze the jump of the specific heat
at T, is to calculate the normalized slope

R= T lnAc (29)

where Kc(T) is the diff'erence between the superconduct-
ing and the normal state. If we allow some modification
of the cubic term in Eq. (26) at elevated temperature
near T, due to the efI'ects discussed above we may use
the following form for c(T):

(T) = 7(0)T+ s(T)T + I-(T) . (30)

The discontinuity in the slope is then given by the sec-
ond term in Eq. (30), the lattice term cl. and the linear
term are supposed to have continuous derivatives at T„
therefore the normalized slope is given by

The lattice part can in principle be determined by the
measurements above T, but no data exist for a single
specimen all the way from T & T, down to T 0, ac-
curate enough to enable one to separate out the lattice
part. Accurate determination of the average lat;tice ve-
locity u would also enable one to determine the value of
u, . In the most simplified theory, p(0) is given by the
same expression as for normal metals

y(0) = k~~m,'k~/3h

(k~T (k~T'
( hu, ( hu

R = 3+T, Ina3
d= 3 —3T, lnu,
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The experimental results for R scatter between 8 and
25. The maximum value for R obtainable from Eliash-
berg theory is 5 and the BCS theory gives R=2.6.
In order to reach the experimental values with the
present model using Eq. (31), the electron sound veloc-
ity u, should diminish strongly with temperature near T,
within a small temperature interval. Since present theory
is closely related to the case of superAuid He mixtures,
many features known from there should also apply here.
It is well known that in these mixtures the nature of
the discontinuity in the specific heat depends in a sen-
sitive way upon the concentrations and the pressure. In
pure He the derivative of the first sound velocity has a
dip. 8 For the He mixture the feature fades away with
increasing He concentration.

To take an example, let us suppose that near T, also
in the high-T, superconductors the sound velocity gets
diminished by the following exponential law:

u, (T) = up(1 —Pe '), t = 1 —T/T, ,

for T & T, Then, . if p is small, we obtain

(33)

Suppose further that the maximum variation of u, is
5% which occurs within 2 I& for T, 100 K, we then
obtain P=0.05, n=l00, and R=18. Clearly Eq. (32) and
the numbers obtainable from there are purely illustrative,
but it shows that large values of R can be understood
within the present approach.

Our final remark concerns the dependence of the low-

temperature specific heat upon pressure and magnetic
field. To our knowledge no direct measurement of the
pressure dependence of the specific heat exists. In Ref.
60 it was found that the linear term was increased and
the cubic term decreased in high magnetic field at low
temperatures. Applying the available theories there, this
experimental result remained unexplained. so Our expla-
nation would start with the assumption that the main
effect of external magnetic field would be the compres-
sion of the specimen. We know from the pressure depen-
dence discussed in Sec. IV that n„n~, and u, would
all increase. Therefore y(0) would increase as k~ and ys
would decrease. The relevant formulas for the coeKcients
p(0) and as of Eq. (30) are simply

0 ln 7(0) :K 3

ulnas (Olnu, 101nu, l
BP ( Bn, 2 On~

The gradient of y(0) is determined by the electron gas
, compressibility, and using the notations of Eq. (23) the
gradient of the cubic term can be written in the form

0 ln as ( 3M(l —2p) c'n',—Kg 1+
4(4P + MP) 2(1+ c'n ~ ))

This is always negative. Unfortunately we do not know
the relation between the hydrostatic pressure and the
magnetic field to be able to make a comparison with the
experiment, but we can at least understand the signs. As
was discussed in Sec. IV the signs of the pressure gradi-
ents would be opposite for electron-doped superconduc-
tors.

VI. DISCUSSION

What can be said about various parameters of the
high-T, superconductors in the light of the theory pre-
sented here? Unfortunately not very much as yet because
the temperature dependence is still not accurately done,
various correction terms are difficult to evaluate, and be-
cause u, has to be obtained from the Euler-Lagrange
equation by numerical calculations. The effect of non-
isotropy can also be large. Nevertheless we find it use-
ful to recollect here the most relevant quantities one
may start using in order to extract information about
densities n„n@, the effective masses m', = p, m, and

= pI3rn„ the Landau points z~ and z2, and the fac-
tor I'(n„n&). We start by recollecting formulas from
preceding sections in the following form:

p~) E p~

(36)

u, = 4.20 x 10 I (1 —z) ~ /rap, m/s, (37)

y(0) = 19.7p, ,(l —z) ~ /ro m3/K mol, (38)

BlnT, (5 7 5 (2+p)
8(4„+M)

24 1+c' 1 —z res)

~, = [r,p, /6. 13(l —z)'~ ] GPa ' . (40)

The most inaccurate of these is perhaps the formula
for T, of Eq. (36), partly because the linear spectrum
cannot be correct all the way up to T, . The main source
of inaccuracy, however, is in the sound velocity u, which
should be determined by experiment or numerical calcu-
lation with the Euler-Lagrange equations and not sim-

ply from Eq. (37). Therefore the determination of the
parameters at this stage may not be meaningful. The
pressure formula would require the density parameter ro
to be approximately 3.6. The best fit for the pressure
curve gives m*, O. 1m, and rn& 2m, . This assumes
that the correction term in the T, formula is a nearly
constant, multiplicative factor. The simplest way to es-
timate the effect of the depletion of the Bose condensate
by hole pairs is to replace the boson density n~ in Eq.
(19) by rl(T„TBcs)n~. At the Present we do not know



SS74 A. KALLIO AND X. XIONG 43

whether tl can be taken from the BCS theory or from its
two-dimensional variant. In any case it will give a multi-
phcative factor ( 1 and hence not change our theory in a
major way. The reduction factor g will depend upon the
way the crossing of the sound mode and the pair breaking
takes place. In liquid He the phonons alone would give2

T~ 7 K, and only after adding the roton contribution
it comes down close to the experimental value. Further-
more near Tg roton-roton interactions become important
there.

With reference to the picture given in the Introduc-
tion, we have presented evidence that within the present
model one can understand at least qualitatively many ex-
perimental findings. The solution of the central problem
of the exact binding mechanism of the pairs is not at-
tempted in any way here. However, since our model pre-
dicts a crossing of the pair-breaking excitation and the
sound mode, some understanding of the binding mecha-
nism is needed in the continuation, likewise the behavior
of the sound mode at Landau damping point zq and z2
needs more study. In principle the model can readily be
generalized to a lattice but one no longer can work with
analytical expressions as was done here.

In the present paper we have not discussed the resistiv-
ity, magnetic properties, Raman experiments, and NMR.
We believe that in the two former ones the nonisotropy
plays a major role. For the Raman experiments we pre-
dict the existence of a continuum spectrum in the gap
which is also observed. In the case of NMR we can
present only some very preliminary ideas. Clearly our
model would predict linear temperature behavior for the
relaxation rate near T=O. This linear term should be
there for the same reason as in the case of specific heat:
due to the free electrons. This seems to agree with some
experiments. si Correspondingly in the Knight shift at
T=O, part of the "orbital" shift can be interpreted as
a constant shift due to the electrons which in BCS do
not exist. 2 We therefore predict an approximate Kor-
ringa relation for the relaxation rate T& for the plane
Cu(2) at low temperatures. At elevated temperatures
T & T, the superAuid part of the Knight shift would fol-
low a (T/T, )4 behavior up to T, . This would predict a
(T/T, )s behaviorss for Ti below T, with no shoulder. s2

The shoulder should be visible at TBCS but the structure
does not need to be BCS-like. For Cu(2) such a shoulder
appears to be presentsi in YBa2Cu40s at 500 K which
is another fact in favor of existence of TBgs at this tem-
perature. Depending upon the mechanism of binding for
the hole pairs the present model can predict nonmetallic
behavior for T, ~ T & TBcs in NMR.

For elements situated outside the CuOq planes the su-
perfluid contribution to the Knight shifts comes from the
collective sound mode. The Korringa relation seems to
be valid in some experiments for the nonplane elements
below T, . This again is due to the mobile electrons. In
Ref. 63 for the Cu(2) site the Knight shift was shown to
be constant in temperature when H

~~
c. This we in-

terpret to mean that the superfluid density vanishes at
the Cu(2) sites but the electrons can travel through the
Cu02 planes at these points and the bosons are situated
at plane sites O(l). This would be in agreement with
our annihilation argument. The real pair-breaking ef-
fect for T & T,' in the Knight shift should only be seen
for O(1) sites in NMR for i70, which is also found in
Lai ssSro isCu04. For this compound TBcs would be the
point where this Knight shift becomes constant, which
happens at T 270 K.

In conclusion, we make the following points: (1) our
EHBL model proposes the existence of electrons and hole
bosons as mobile charge carriers. (2) Such a mixture ex-
hibits a collective electron sound mode. The speed of the
electron sound is of the order of magnitude of the Fermi
velocity corresponding to the electron density n, . (3)
At T, essentially a normal A transition takes place. (4)
The electronic specific heat contains a linear term due to
the electrons and a cubic term due to the electron sound
mode. (5) The asymmetry in the pressure dependence of
T, for electron-doped and hole-doped superconductors is
in agreement with experiment. In both cases the effec-
tive mass required for the fermion component is roughly
one-tenth of an electron mass whereas the boson mass
is larger than 2m, . In both cases we make a definite
prediction for the pressure dependence of specific-heat
coefficients p(0) and as. (6) Within the present model
the normalized slope of the specific-heat discontinuity at
T, can reach the experimental values which are found to
be larger than the ones predicted by BCS and Eliashberg
theories. (7) The existence of the sound mode can be ex-
perimentally confirmed by Brillouin scattering. Besides
the Brillouin scattering experiments we would still need
new specific-heat data, done with a single specimen, all
the way from T 0 to T & T„ to enable one to separate
out the lattice part. (8) Some features of NMR can be
readily understood.
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