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Band-structure pictures for layered high-T, materials available in the literature show that, besides
the dispersive broad band responsible for metallic properties, there are at least two additional bands
having minima and maxima near the Fermi surface. These additional bands belong to different
planes (for example, CuO planes and BiO planes in Bi2Sr2CaCu&08) or to planes and chains (in

YBa2Cu307). Provided the Coulomb repulsion is not very weak, pairing of electrons and holes be-

longing to these additional bands in different planes or planes and chains is possible. It is shown

that, if this possibility is realized, a transition in the additional bands into a state of an excitonic
dielectric occurs. The spin of an electron-hole pair can be both 0 and 1. Due to the fact that the
electron and the hole of the pair belong to different planes, there are no charge- or spin-density
waves. This excitonic insulator can serve as a polarizing substance and give a strong attraction be-
tween electrons of the metallic band even if the bare interaction is repulsive. It is also shown that
some interesting gapless excitations exist. Provided there are impurities in the system that scatter
from plane to plane, these excitations are coupled to the electrons of the metallic band. This
effective interaction can be described in terms of an effective mode P (co) with ImP (co) ——sgnco. As
a result, one can obtain such properties of the normal state as a linear dependence of the resistivity
on temperature, linear dependence of the density of states on energy, constant background in the
Raman-scattering intensity, large nuclear relaxation rate, etc. , which are very well known from ex-
periments.

I. INTRODUCTION

Since the discovery of the high-T, superconductivity,
many theoretical models have been proposed in order to
explain this phenomenon. The CuO layered compounds
are interesting not only due to high-transition tempera-
tures, but the normal properties are also unusual. Prop-
erties such as the linear dependence of the resistivity on
the temperature„ the linear tunneling conductivity as a
function of voltage, almost frequency- and temperature-
independent backgrounds in the Raman-scattering inten-
sity, constant thermal conductivity, and a very large nu-
clear relaxation time are qualitatively the same in all
CuO-based high-T, compounds. It is quite reasonable to
expect that this anomalous behavior in the normal state
and the large values of the superconductivity transition
temperature have the same origin.

In many theoretical works the anomalous properties of
the oxide compounds such as the high superconducting
temperature and the properties of the normal state men-
tioned above were attributed to the existence of localized
magnetic moments or to an interaction with other mag-
netic objects; These ideas have the natural basis because
the parent compounds are antiferromagnetic. Doping
destroys the antiferromagnetic order which must lead,
according to Ref. 7, to a spin liquid, and then the super-
conductivity can be obtained. However, until now, at-
tempts to construct a quantitative theory following these
ideas, which would give the superconductivity and, at the
same time, describe the properties of the normal state,
are not very successful. Besides, it is not evident that the

superconductivity is due to magnetic interactions. The
highest-transition temperatures are observed in such ma-
terials as BizSr2CaCu208, T128a2Ca2Cu30, O, and
YBa2Cu307, which are metals in the normal state. The
existence of localized moments in these materials is not
obvious. For example, the authors of the work where
the neutron-scattering study of polycrystalline
YBa2Cu307 was carried out conclude that the Cu atoms
have essentially no magnetic moment. The study of crys-
tals YBa2Cu306+2, with x =0.45 and x =0.5 is presented
in Ref. 9. Although there are clear intensity peaks in the
low-energy region for x =0.45, these peaks become much
smoother for x =0.5. Only in the region of higher ener-
gies do the peaks become more pronounced. The ques-
tion about YBa2Cu306+ with x close to unity cannot be
solved in this way because, although not too much is seen
for lower energies, the scattering peaks, in principle,
could exist at very high energies. Such a situation would
correspond to the picture of localized moments fluctuat-
ing very fast in time. At the same time, independent of
the question of whether the localized moments exist or
not, their importance for the superconductivity is not
clear. Due to all these problems, an attempt to construct
a theory for describing the superconducting and normal
properties of the highly doped compounds based on non-
magnetic mechanisms seems to be motivated.

When using conventional phonon mechanisms of at-
traction between electrons, one encounters difficulties re-
lated, for example, to the necessity of the explanation of
the absence of the isotope e8'ect. The possibility of ob-
taining high-transition temperatures is also not evident.
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Besides, the anomalous properties of the normal state
mentioned above do not follow from phonon models. Of
course, an electron-phonon interaction can result in a
linear temperature dependence of the resistivity for tem-
peratures exceeding the Debye frequency. However, the
linear dependence was observed in Bi2Sr2Cu06 already
starting from 20 K. The other anomalous properties also
do not follow from electron-phonon models.

I want to present in this article an attempt to obtain all
the important properties of the high-T, materials starting
from some peculiar features of the band structure. In the
highly doped limit, the materials show metallic properties
and the results of band-structure calculations can
serve as a good starting point. The high- r, oxides
Bi2Sr2CaCu208, T12BazCa2Cu30&0 and YBa2Cu307 con-
sist of CuOz metallic layers. These metallic layers are
separated by layers of Bi-0 or Tl-0 or by chains of CuO.
The Cu02 layers have a dispersive band which deter-
mines metallic properties of the compounds, but also a
band which has a maximum near the Fermi surface. ¹i
0 layers in Bi2Sr2CaCu208 give two bands with the mini-
ma near the Fermi surface. In TlzBa2CazCu30, 0 these
additional bands with the minima near the Fermi surface
are given by Tl-0 layers.

Below, a pairing of electrons and holes of the addition-
al bands belonging to different layers or layers and chains
is considered. This pairing gives rise to the state of an ex-
citonic insulator. In spite of the dielectric pairing in the
additional bands, the main dispersive band can remain
metallic. The electron-hole pairs constitute an easily po-
larizable substance which can give an attraction between
the electrons of the metallic band even if the bare interac-
tion is repulsive. Due to the polarization, high supercon-
ducting transition temperatures can be obtained. Be-
sides, the electron-hole pairing leads to the existence of
gapless excitations. These excitations can interact with
the electrons of the metallic band provided there are im-
purities which scatter electrons from plane to plane or
magnetic impurities. The interaction of the electrons of
the metallic band with the gapless excitations determines
the behavior of the materials in the normal (nonsupercon-
ducting) state. In fact, the imaginary part of the effective
mode propagator obtained using the model of the
electron-hole pairing is very close to the one proposed
phenomenologically in Ref. 10. As a result, the proper-
ties of the normal state turn out to be similar to those ob-
tained in Ref. 10. This gives the possibility of explaining
the different experiments mentioned above.

A preliminary discussion of the proposed model has
been presented elsewhere. " Now I want to give a more
detailed consideration of the model and present new re-
sults concerning the anomalous properties of the normal
state. The article is organized as follows.

In Sec. II the basic model is introduced. The relevance
of this model to the band-structure picture is discussed.
In Sec. III self-consistency equations describing the for-
mation of the excitonic insulator are derived. Some prop-
erties of the dielectric order parameter are described. In
Sec. IV a two-particle Green function is calculated. The
poles of this Green function determine the spectra of ex-
citations. In Sec. V the polarization of the excitonic insu-

lator is studied. It is shown that it can result in an attrac-
tion between electrons of the metallic band. In Sec. VI a
possible mechanism of the coupling of the gapless collec-
tive excitations to the electrons of the metallic band is
considered. An effective mode which describes this in-
teraction is derived. In Sec. VII I study how the tunnel-
ing from plane to plane affects the results obtained in the
previous sections. In Sec. VIII anomalous properties of
the normal state are derived and a comparison with exist-
ing experiments is made. In Sec. IX a discussion of the
obtained results is presented.

II. CHOICE OF THE MODEL

In the present work, only highly doped materials like
Bi2Sr2CaCu208, T12BazCa2Cu30, 0, YBa2Cu307, etc. , are
considered. Problems such as the study of the destruc-
tion of the antiferromagnetism by holes, structural transi-
tions, and so on are not relevant to the subject of this
work.

For all these materials a large number of electronic
structure calculations have been carried out (see, for ex-
ample Ref. 12). Usually the results of the band-structure
calculations do not provide a good description of un-
doped materials because they predict a metallic behavior
instead of the insulating one observed experimentally. At
the same time, band-structure calculations describe met-
als quite well. The highly doped materials
BizSr2CaCu208, T12Ba2Ca2Cu30, 0, and YBa2Cu307 are
metals in the normal state and therefore one can start
from the results of the band-structure calculations.

All the materials under consideration consist of Cu02
metallic layers separated by layers of Bi-0 or Tl-0 or by
chains of CuO. The Cu02 layers contribute a dispersive
band-structure picture crossing the Fermi energy, which
provides the metallic properties of the material (let us call
this band 0). One of the other Cu02 bands touches the
Fermi level from below for Bi2Sr2CaCuzOs (see Ref. 12,
p. 461) or is close to it for T128a2Cu08 (Ref. 12, p. 463) (I
call it band 1). Bi-0 layers for BizSrzCaCu208 give two
bands which have the minima near the Fermi energy (one
of them touches the Fermi energy, the other is 0.2 eV
below E~). Tl-0 layers in T12BazCu07 also give a curve
with the minimum near the Fermi level (band 2). The sit-
uation in YBa2Cu307 is a little bit more complicated.
However, one can see at the point I (Ref. 13) the
minimum of the band corresponding to chains. This
band is denoted by 1 in Ref. 13. The position of this
minimum is below the Fermi energy but not far from it.
Some parts of another band are above the Fermi energy.

Now let us formulate the common feature of the band-
structure pictures of the materials involved which will be
used below: One dispersive (broad) band crossing the
Fermi energy and at least two additional bands near the
Fermi energy exist. These two additional bands belong to
different layers or layers and chains. The only important
property of these additional bands is that there are some
parts of these bands near the Fermi surface and not all
these parts are simultaneously above or below it.

A system with such a band-structure picture can be
very unstable against the formation of a dielectric gap in
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bands 1 and 2 which corresponds to the pairing of elec-
trons and holes from different planes (or planes and
chains for YBazCu307). The possibility of this instability
is not included in the schemes of the band-structure cal-
culations and therefore this instability must be considered
separately.

In principle, there can be more than two additional
bands. For example, there are two bands close to the
Fermi surface in Bi2Sr2CaCu208 which originate from
Bi-0 layers and there are many of them far from the Fer-
mi surface. However, I want to consider as simple a
model as possible, and so, only a three-band model (one
broad band and two additional ones) will be considered.

The Hamiltonian of the system can be written in the
form

H =H1+Ho+HO1,

H, = g f P i(r)E, ( iV)P (r)—dr
a, j=2n+1

+ g fP, (r)Ez( i V )P—, (r)dr.
a,J =2n

+ g f V, (r r')p, —(r)pp~ (r')
i,j,a, p

Xgi3J(r')P;(r)dr dr',

f4 i(r)EO( i V)4 (r)—dr,
a, j=2n+1

(2.1)

Hoi =2
a, fj,i,j=2n+1

V; r —r'4~ r p~i
r'

Xgp;(r')4& (r)dr dr' .

In Eq. (2.1), i,j label the planes, a,P are spin indices,
so( iV), c—, , ( iV), sz( —iV—) stand for the energy opera-
tors for the bands labeled 0, 1, 2, and @,(N,. ), P, (P;) are
the corresponding electron creation and annihilation
operators. Electrons of odd layers belong to bands 0 and
1, electrons of even layers are in band 2.

I assume that the function E&(p ) has a maximum at the
point w, the function ez(p ) has the minimum at the point
w —Q, Eo(p) is the broad band responsible for the metallic
properties of the system. All three bands are represented
in Fig. 1. The interaction V~(r —r ) is assumed to be
repulsive. This situation corresponds to the case when
the Coulomb interaction is stronger than the electron-
phonon one. All integrations in Eq. (2.1) are performed
over the two-dimensional space. Hopping terms are not
included in H in Eq. (2.1). The inliuence of these terms
on the physical properties of the system under considera-
tion will be discussed later.

For studying the model described by the Hamiltonian
(2.1), I will use the following scheme. First, the system
described by the Hamiltonian H, is studied. It is shown
that this system can be unstable against the formation of
an excitonic insulator. This insulator interacts via the in-
teraction Ho, with electrons of the metallic band 0. As a
result, the effective interaction between the electrons of
band 0 can become attractive and the transition into a su-
perconducting state in the metallic band is possible. All
other effects like scattering by impurities, tunneling from

FIG. 1. Scheme of the bands. Band 2 is spatially separated
from bands 0 and 1. The minimum of band 2 and the maximum
of band 1 are close to the Fermi level.

plane to plane, etc. , can be considered as small perturba-
tions and taken into account in the first orders of a per-
turbation theory.

III. KXCITONIC INSULATOR
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FIG. 2. The main contribution comes from (a).

In this section the system described by the Hamiltoni-
an H I in Eq. (2.1) is considered. It is very well
known' ' that such an electron-hole system can be un-
stable against formation of electron-hole pairs. In order
to see this instability, one should sum up the ladder dia-
grams represented in Fig. 2(a), where the solid lines stand
for the Green functions of electrons and holes of bands 1

and 2 and dashed lines stand for the interaction
V„(r—r').

It is not difficult to see that the formation of the exci-
tonic insulator in the system under consideration is more
probable than in conventional semimetals or semiconduc-
tors, where not only the diagrams in Fig. 2(a) play a role
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but the diagrams in Fig. 2(b) are also important. Each
loop in Fig. 2(b) consists of a closed fermionic line and
has the opposite sign with respect to loops in Fig. 2(a).
As a result, the electron-hole instability can disappear.
In the case of spatially separated electrons and holes, the
diagrams in Fig. 2(b) vanish and the diagrams of Fig. 2(a)
give the main contribution. The diagrams in Fig. 2(c)
give a smaller contribution than those in Fig. 2(a) in the
case of a weak interaction and overlapping bands. In this
case the instability exists for any weak interaction' be-
cause each loop in Fig. 2(a) gives a logarithmically
diverging contribution. Generally speaking, it is not so
and the dielectric instability only exists starting from
some finite value of the interaction.

In principle, the diagrams in Fig. 2(c) can give a large
contribution. Nevertheless, I will only consider the
ladder diagrams in Fig. 2(a) assuming that the diagrams
from Fig. 2(c) result in a renormalization of the interac-
tion. This approach corresponds to a mean-field approxi-
mation and is quite usual when studying the excitonic
dielectric state. ' ' One can start calculations by writ-
ing the equations of motion corresponding to the Hamil-
tonian H,

[i c c—,(p )+p]G,"(c,p )
—g «;„G „'(c,p ) =5,

[ic—c2(p —Q )+p]G„, (c,p ) —g «~„G, (c,p ) =5„, ,

[i c c,—(p)+p]G „(c,p ) —g «,,G,„(c,p —Q )=0,
(3.5)

[ic—c2(p —Q )+p]G;„'(c,p —Q )
—g « „G,' (c,p ) =0 .

Equation (3.3) can be rewritten in the form

form. The Green functions were assumed to be matrices
with respect to plane and spin indices. Now I want to
write these equations considering the Green functions as
matrices with respect to spin indices only. The numbers
i,j of planes are present explicitly. I denote the Green
function G," and 6," if both i and j stand for odd planes,
6 j if both P and j stand for even P1anes 6 j and G J if
and j stand for the difFerent types of the planes. Then the
equation for the Green functions in the energy and
momentum representation take the form

BP, (r) = [c,, ( —i V) —p]P, (r)
d p«;„(p)= —& g f V,„(p —p')G „'(c,p')

E. 277 2
(3.6)

where

+ g f V; (r r')P, (r)gi3 (—r')Pi3 (r')dr',
j,p

(3.1)

c,(p), i =2n+1,
c;(p)=

c~(p), i =2n

p is the chemical potential, ~ is the imaginary time.
According to the mean-field procedure, one should

substitute the last term in Eq. (3.1) by the expression

g f «; ~(r —r')e'~"
P& (r')dr', i =2n + 1,

(3.2)
g f [«,z~(r —r')]*e'~"P& (r')dr', i =2n .
j,je

I assume from the beginning that the electron-hole pair-
ing can occur between odd and even planes. Therefore,
«;. can be nonzero for li —j =2n+ 1 only. The effective
field K j must be found from the self-consistent condition

«, P(r r')= V,,(r r')(T, P—, (r, r)P—i3(r, r') )e
(3.3)

12—g «(, «&, G (J.)pc)=«;„.
J, S

(3.7)

Now let us assume that the interaction is most strong in
the plane and between neighboring planes. The sign of
the interaction within the plane is not important but the
interaction between the neighboring planes is assumed to
be repulsive.

Under this assumption, the largest values of the order
parameter ~,, are achieved when i and r denote neighbor-
ing planes. The general solution «;„ofEqs. (3.6) and (3.7)
can be written in the form

y,„u, [ I+~,(i —r ) ]u„,
2

(3.8)

The order parameter «;„ in Eqs. (3.5) and (3.6) is a 2X2
complex matrix.

One can easily exclude the functions G" and G from
Eqs. (3.5) and reduce these equations to one equation for
612

[i c —ci(p)+p, ][ic c2(p ——Q )+p]G „(c,p )

T, is the time-ordering operator.
Using the equation of motion (3.1) with the substitu-

tion (3.2), one can write down equations for the Green
functions G,~~( r, r; r ', w' ) which are introduced in the usu-
al way:

where

li —rl =1
0, otherwise '

G," &(r, r;r', r')= —(T,P, (r, r)P &(r', r')) . .(3.4)

These equations have been written down" in a matrix
I

u; and u„are arbitrary unitary matrices.
Substituting Eq. (3.8) into Eqs. (3.6) and (3.7), one can

obtain the following equation for Ko:

V»(p —p')~0(p') d p«o(p)=TQ
E+l Ei P P F+l C2P P +&OP

(3.9)
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where V&z is the interaction between neighboring planes.
Equation (3.9) has the trivial solution so=0. However,

a nontrivial solution can also exist provided V&z is not
very weak and essential parts of the ci(p) and c2(p —Q)
are not too far from the Fermi energy. In the case of
overlapping bands, '

Vi2 can be even arbitrarily small.
Of course, the procedure presented above can be per-

formed not only for the case of the two types of planes
but also for a system of planes and chains like those in
Yaa2Cu307. In order to calculate the transition tempera-
ture, the gap Ko, and other quantities, one needs to know
the explicit form of c,(p), c2(p), V, 2(p). The calculation
of these quantities can be done only numerically and this
is not the aim of the present article. To fix ideas, I want
to assume only that the transition temperature and the
gap are not smaller than 0.1 eV. Explicit estimates can
be done, for example, in the case of two parabolas:

c,(p) —p=g(p)(1+c )+co,

c2(p —Q )
—p = —g(p)(1 —c )+co,

2

g(p)= b, ic—
i
&1 .

2fPZ

(3.10)

cm '= —'(m ' —m ')
2

(3.11)

The parabolas in Eq. (3.10) are isotropic and cannot
describe a system of planes and chains. However, the
form of the energies c., (p) and c2(p) (3.10) is only the sim-
plest one. All formulas obtained below can be written
easily when considering each particular case.

In what follows, the temperature will be assumed to be
lower than the characteristic values of the gap Ko and of
other energies involved. In this limit one can substitute
sums over Matsubara frequencies by integrals. The cal-
culation of integrals becomes especially simple when the
Fermi energy is in the gap region. Then, for any mo-
ments p, one of the poles in the integral in Eq. (3.9) is in
the upper plane of complex c and the other is in the lower
one. (The gap in the spectrum can already exist in the
bare spectrum but can also appear due to nonzero values
of ~o.) Below I consider only this case because this
simplifies calculations. At the same time, no important
features of the considered phenomenon are lost.

Calculating the integral over c in Eq. (3.9), one can ob-
tain

The efFective mass m and the coefficient c in Eq. (3.10)
determine the masses m, and m2 of each band

m '= —'(m '+m ')

to the intersection points). For b &0, the gap exists in
the bare spectrum. This case can be also easily con-
sidered. Introducing a new variable f(p),

~(p) =g(p)g(p), (3.13)

one can rewrite Eq. (3.12) in the real-space representation
in the following form

V' P(r) —
—,
' V»(r)g(r) = —Ib lf(r) . (3.14)

G „(c,p ) =~,„f(c,p ),
G '(c,p ) = [ic—cz(p —Q )+p)f(c,p )5J,
G„, (c,p ) = [ic—c,(p)+p]f(c,p )5„, ,

where

(3.15)

f(c,p ) = [ [ic—c,(p)+p][ic—c2(p —
Q )+p] —

~OI

The appearance of the nonzero Ko leads to an addition-
al charge transfer from plane to plane. This additional
charge can be calculated using the Green function (3.15).
For example, the additional charge density Aq& on odd
layers is equal to

bq, =eTQ J {G (c,p) —[ic—c,(p)+p]
F 2~ 2

(3.16)

Equation (3.17) coincides formally with the Schrodinger
equation for a particle in a well.

For any ~b~ one can find strong enough Vi2(r) such
that nonzero solutions of Eq. (3.12) appear. If the bare
gap ~b ~

is small, then nonzero so already appears for
small V,2(r). Of course, these statements are correct not
only in the case when c,(p) and cz(p) are determined by
Eq. (3.10), but for other cases as well.

Let us note that, in contrast to conventional excitonic
insulators, ' ' the electron-hole pairing considered
above does not result in the appearance of static charge-
density or spin-density waves. These waves can exist if
one of the averages (P, (r)P, &(r) ) is not zero and oscil-
lates in space. In the model of spatially separated elec-
trons and holes, these averages are zero at least in the ab-
sence of tunneling from plane to plane. Therefore, a
direct observation of the spatially separated electron-hole
pairing in neutron or Rontgen experiments is impossible.

Having found the solution (3.8) and (3.9) for ~,„, one
can find the Green functions which take the simple form

Viz(p —p') o(p')

8ir [g (p')+~o(p')]'
(3.12)

where e is the electron charge.
Calculating the integral (3.16) with the energy spectra

(3.10), one can obtain

Equation (3.12) is a nonlinear equation which gives the
possibility to find ao(p).

In order to find the region of parameters where
nonzero solutions for ~o exist, one should neglect ~o(p')
in the denominator and solve the linear integral equation
for Kp. For b )0, a nonzero solution already exists for
very small V, 2 (provided the Fermi level is close enough

aq, = '~,'[(b'+~')'"+ ~b ~]
'" (3.17)

The additional charge on even layers has the opposite
sign.

This charge transfer can considerably change the po-
larization properties of the system which are very impor-
tant for studying the possibility of the realization of the
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high-T, supereonduetivity in the metaHie band. Besides,
due to the degeneracy of the ground-state solution (3.8)
(matrices u are arbitrary), low-lying excitations exist.
The presence of these excitations can be very important
for understanding the properties of the normal state in
the metallic band. Both these effects will be considered in
the next section.

All the calculations in the present work are performed
neglecting pair-breaking effects. It is well known' that
normal impurities can destroy the exeitonic insulator.
However, this effect is important only in the limit Ko~ 1,
where ~ is the mean-free time. If the gap ~o is of the or-
der of magnitude 0. 1 —1 eV, the pair-breaking effects can
become important only in the very dirty limit.

Recently, an interesting pair-breaking effect due to the
Coulomb interaction with the electrons of the rnetallie
band was considered. ' Although in Ref. 18 only the
Peierls instability was considered, the same consideration
can be applied to the exeitonie insulator. However, this
mechanism of the destruction cannot be important for
the large values of Ko which are considered in the present
article. Qf course, if there are other gaps in the system
which are smaller than Ko, the pair-breaking effects can
become very important for these additional gaps. One
should remember about this possibility when considering
properties of the high-T, compounds. The model under

I

consideration with only one dielectric gap a.
o is chosen in

order to present the simplest picture for the layered
high-T, compounds.

IV. COLLECTIVE EXCITATIONS

Collective excitations in conventional excitonic insula-
tors have been considered in a number of works. ' ' Due
to the dependence of the interaction V;„(p —p') on mo-
menta, rather complicated excitations can exist. ' Here I
want to consider only the simplest excitations which can
already be obtained in the case when V;„does not depend
on the momenta. In the language of Ref. 19, it means
that only zero harmonic excitations are taken into ac-
count.

For studying collective excitations one must calculate a
two-particle Green function K. For this function one can
write Bethe-Salpeter equations which are represented
graphically in Fig. 3. Due to the existence of the anoma-
lous Green function, one should distinguish between the
functions K, and Kz. The function K, describes process-
es when each particle finishes its propagation in the same
band where it started. The function Kz corresponds to
processes when both the particles change their bands.
The equations for these functions take the form

K;".j „(~,k)[,1+ V,„II;".~(~, k)) = V,„S„S„,S.,a~, V,„g—II,"."." ~ ~(~, k)K,'".
~ „,

al, pi, t, k

Kj.,'„(~,k)t1+ v,„ll,",.(
—~, —k) I= v,„y II3'.." „K',„'J; „(~,k),

a),pl, t, k

(4.1)

where H, , IIz, H3 stands for the loops

11,".,(~,k ) =11,(~, k )

6 c+—p+—11 co k
ii, aa 2' 2

II,".","„(~,k)= J G,i2.. .+—,p+—

Then one obtains a linear equation for X1. Taking into
account the explicit form of the Green functions G, (3.15)
and (3.8), one can obtain

K',"b s(co, k)= V, qD( —co, —k)F '(co, k)5; 5„,y;„

X(5 5fis
—a"'raps)

+ V,2D '(co, k)a"' as'p,
(4.2)

K2'ti~s(co, k)= V,~II (coo, k)F '(co, k)aj"rasp(5;J5„, )

113"'"cis(co,k ) = f G„„' e+ —,p+—

Equations (3.16) give the possibility to find the functions
K, and Kz. Poles of these functions determine the collec-
tive excitations. Equations (4.1) can be solved without
any di%culties. One should first exclude the function Kz.

I

I

I

I

I
I

I
I

I

I

I

I
I

I
I

FICx. 3. Schematic Bethe-Salpeter equations which determine
collective excitations.
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where

Xf E )P Ko
co k 2dFd p

(2n )

D ( co, k ) = 1+V, 2 II, ( co, k ),
F(co, k)=D(co, k)D( —co, —k) —Vi2IIO(co, k),

and a'"& have the form

a '"p =
—,
' y;„[1 +o, (i —r ) ] .

(4.3)

(4 4)

Equations (4.2) and (4.4) are written for the special choice
u; = 1 of matrices u, in Eq. (3.8).

In order to determine the collective excitations one
must solve the equations

D(co, k ) =0,
F(co,k)=0 .

(4.5)

(4.6)

The functions D(co, k ) and F(co, k ) in Eqs. (4.2) are equal
to

cracy of the ground state. [The order parameter v (3.8) is
specified by arbitrary matrices u;.] Equation (4.7) was de-
rived under the assumption co, kv &(Kp.

The gapless excitations (4.7) can contribute to thermo-
dynamic quantities. However, in the absence of impuri-
ties, they do not contribute essentially into kinetic
coefficients. Although both the correlation functions K,
and K2 (4.2) are proportional to (co —v k )

' the diverg-
ing contributions cancel each other when calculating, for
example, the polarization loops P ", P ', P ', and P
Fig. 4(b), because K i and K2 give the diverging contribu-
tions of the opposite signs.

V. POLARIZATION

Now let us study polarization properties of the
electron-hole system. These properties are very impor-
tant because, due to the polarization, the e6'ective in-
teraction between electrons of the metallic band 0 can be-
come attractive even if the bare interaction is purely
repulsive. The polarization properties can be described
by the polarization loops B", B, B ', and B '

represented in Fig. 4(a) and by the contributions of P ",P, P ', and P ' from Fig. 4(b). The B loops in Fig. 4(a)
are equal to

Excitations determined by Eq. (4.5) have a gap. Equa-
tion (4.6) gives two types of excitations, one of them be-
ing gapless. Using the identity F(0,0)=0 which follows
from Eqs. (3.9) and (4.3) and expanding F(co, k ) in co and
k, one can obtain from Eq. (4.6)

(4.7)

B = G. E+,p+mn mn co k
EJ lJ 2' 2

r

XG"; F ——,p ——nm 67 k dEd p
(2~)'

(5.1)

The velocity v depends on the parameters describing
bands 1 and 2. In the case when these bands are de-
scribed by the symmetric parabolas (3.19) and (3.11), the
velocity v of the excitations equals

U
2 [b +(l72+K2)1 2]/ (4.8)

2m

Equation (4.7) describes complicated excitations which
are a mixture of charge and spin excitations. The formal
reason for the existence of these excitations is the degen-

where the Green functions G,""are given by Eq. (3.15).
In the region co, kv ((1~0, the integrals (5.1) weakly de-
pend on co and k. This region is most important for the
effects considered below. Of course, the integrals (5.1)
can be calculated for arbitrary co and k, but the results
are cumbersome. Putting co, k zero in Eq. (5.1), assuming
as before that the Fermi energy lies in the gap region, and
calculating the integrals, one can obtain

B 11 B22
IJ 1J 1J

, 2

BB =B =—y.12 21
v v 2 v '

where

m b

4~ (b 2+ 2)1/2

(5.2)

(b)

y," is defined in Eq. (3.8).
Although the gapless excitations considered in the pre-

vious section do not give a singular contribution into the
polarization, the loops P ",P, P ', and P ' Fig. 4(b)
are not always small and must be taken into account too.
The corresponding calculations are rather lengthy but
not very difficult. As a result, one obtains, for co, kv &(Kp,

FIG. 4. Polarization loops. In (a) both the Green functions
are either normal or anomal. In (b) each loop consists of one
normal and one anomal Green function. The wavy line denotes
the collective excitations given by X I and E2.

P11=P22= Pgij ij ij

(5.3)
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where + (5) (iB +

Summing both the contributions (5.2) and (5.3), one has,
for the full polarization P7J,

P; =P .'=P;- = —p6,j, i and j are both odd or even,
(5.4)

Ptj Prj PIj'p Ij i and j have different parity

where

OZP=
2

FIG. 5. The random-phase approximation for the efFective
interaction. Each loop P;, is equal to the sum of the contribu-
tions of Figs. 4(a) and 4(b).

gion of frequencies and momenta, the bare interaction
can be considered as a constant. I assume that the
screening of the Coulomb interaction by the electrons of
the metallic band has been taken into account and the in-
teraction V; between planes already includes the contri-
bution of the metallic band.

The equation for the effective interaction V takes the
form

The polarization operator P, , (5.4),"can be rewritten in
a convenient form in the momentum representation

V,' = V;,
—g V; P ( Vf~

m, l

(5.8)

IntP, = e'"'P(t)dt,
2~ o

(5.5)

where P; is determined by Eq. (5.4). Using the Fourier
transformation (5.5), one can obtain, for V,',

P(t)= —p( 1 cost—), n =i —j .

e~=1+e md, (5.6)

where d is the distance between layers, e is the electron
charge.

The calculation of the longitudinal dielectric permea-
bility is more lengthy because one must make the expan-
sion in k in the diagrams of Figs. 4(a) and 4(b). However,
in the model under consideration with the spectrum
(3.10), the contribution proportional k comes from the
diagram of Fig. 4(a) only. Calculating corresponding in-
tegrals, one can obtain

It is seen from Eq. (5.5) that P(0)=0. At small trans-
verse momenta P(t)= —(t p)/2. Such behavior is typi-
cal for an insulator. The coefficient p determines the
transverse dielectric permeability e~. Using Eq. (5.4) one
can obtain

1 277 gV' (t)cos(nt )dt,
2~ o

V' (t) = V(t)[1+p(1—cost ) V(t) ]
(5.9)

VJP=a5;J+py;, . (5.10)

I assume that both a and p are positive, so the bare in-
teraction is repulsive within the plane and between the
neighboring planes (CuO and BiO) and is equal to zero in
other cases. Taking the Fourier transformation of Eq.
(5.10) and substituting it in Eq. (5.9), one obtains

where n =i —j.
Equation (5.9) solves the problem of calculating the

effective interaction in the region of small frequencies and
momenta co, kv ((~o. In order to calculate V in an ex-
plicit form, one should make an assumption about the in-
teraction V, . Let us take V, in the simplest form:

ho+a
(5.7)

1 &~ cos(nt )(a+2p cost )dt
2m. 0 1+(1 cost )(a+2p c—ost )

(5.11)

where bo=(b +vo)'~ Equations . (5.6) and (5.7) show
that the electron-hole pairing can give a considerable
contribution to the static dielectric permeability. As a re-
sult, this permeability, especially the parallel one, can be-
come much greater than unity. Of course, when studying
the electromagnetic response, one should take into ac-
count the frequency-dependent contribution of the metal-
lic band too. But this contribution can be easily separat-
ed from the contribution of the electron-hole state which
depends weakly on the frequency over a wide range of the
frequencies.

The electron-hole polarization gives not only the con-
tribution to the dielectric permeability, but also changes
the interaction between electrons of the metallic band,
which can become attractive even if the bare interaction
is repulsive. Let us consider the effective interaction in
the region co, kv ((~o and calculate it in the random-
phase approximation (RPA). The corresponding chain
diagrams are represented in Fig. 5. In the considered re-

where

+(1+a+c)f„(a—c)],
(5.12)

c =
—,'(y —1), a =

—,'[(y+1) +2/P]'~

y=, f„(x)=(x —1) 'i [x+(x —1)'i ]2P'

Formally the RPA is valid for a weak interaction.
However, this scheme usually gives reasonable results for
strong interactions. Of course, when carrying out the
calculations, one should use, in Eq. (3.9) for the dielectric
gap, ~o not the bare interaction V&2 but the correspond-
ing interaction V;z( ~i

—j ~

= 1) given by Eqs. (5.9) and
(5.11). For a strong enough repulsive V&z, the dielectric
gap ~0 is large and Eq. (5.11) is valid in a broad region of
co and k. The integral (5.11) can be calculated explicitly
and the result can be written in the form

U„= [( —1)"(1+c—a )f„(a+c )
1
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The interaction v„, (5.12), has no singularities provided
~c+a

~
) 1 and ~a —c

~
) 1. The second inequality is

fulfilled for arbitrary parameters a and I3. The first in-
equality is fulfilled only if

5=—4/3(1 —y) &1 . (5.13)

4y(1+y) '&5&1 . (5.14)

This region exists only for y & 1. If y & 1, the interac-
tion is positive for all n. For n =2, the region of attrac-
tion is even larger due to the absence of the bare repul-
sion between planes with i —j~ =2. One can find a pic-
ture where these regions are drawn in Ref. 11.

Having obtained the effective attraction, one can study
the question about superconductivity. In a rough ap-

The scheme suggested above is only valid in the region of
parameters determined by the inequality (5.13). If the in-
equality (5.13) is not fulfilled, the effective interaction
V~', ~, (5.9) and (5.11), can have a pole at some transversal
momentum t. Such a pole means an instability which can
lead to a structural transition.

It is very important that the interaction U„ is always
positive for odd n. Due to this fact, increasing the bare
repulsion always favors the electron-hole pairing. In or-
der to calculate the dielectric gap Kp in the frame of the
self-consistent scheme, one should substitute V]2 in Eq.
(3.9) by the effective interaction V', 2 which is always
repulsive. A strong bare repulsion V, 2 gives large values
of V&z and provides large values of Kp.

At the same time, the interaction between different
CuO planes or within one plane (~i —j~ even) can be at-
tractive. When 6 approaches I, the first term in Eq.
(5.12) is negative and its absolute value grows for all even
n. It means that at least not too far from the line 5=1,
the effective interaction is attractive. For n =0 the re-
gion where the interaction is negative is described by the
following inequality:

proximation it is possible to try to use a BCS-like theory.
One can obtain high values of the transition temperature
only if the effective interaction is attractive in a large re-
gion of frequencies and momenta. At the same time, all
calculations presented above are valid in the region
co, Uk «Kp. Therefore, high T, can be achieved only if Kp

is large enough. If the effective attraction between
different planes is stronger than within one plane, one can
expect the unusual superconductivity pairing with
nonzero spin. '

VI. COUPLING OF THE GAPLESS
EXCITATIONS TO THE METALLIC BAND

In Sec. IV it was shown that the poles of the two-
particle Green function K can give gapless excitation
with the linear spectrum. These excitations in the ab-
sence of impurities do not give a singular contribution
into the effective interaction between electrons of the me-
tallic band. However, impurities scattering from plane to
plane or magnetic impurities couple the excitations to the
electrons of the metallic band. As a result a very interest-
ing property of the normal state can be obtained.

Of course, one can make calculations using the expres-
sion (4.2) for the two-particle Green function and draw
diagrams describing the coupling of the function K to the
electron Green function of the metallic band. A more
convenient method of calculations is to derive an effective
Lagrangian describing only the gapless excitations. In
this approach one first integrates out the fast-electron de-
grees of freedom thus reducing the problem to the study
of a model containing only slow degrees of freedom.

The derivation of the Lagrangian can be carried out us-
ing the Hubbard-Stratonovich identity for the partition
function Z. The procedure of the derivation is now quite
usual and I only mention the main steps. The partition
function Z can be represented in the following form:

r

Z= Tr exp( I3H, ) =—exp( ——PHI ')T,exp —jH, dr

= A 'Tr exp( HP')T, exp —g j—[P; (r, r)~~(r, r)PJ(r, r)+c.c. ]dr dr
j7J

Xexp ——Tr g Ir, (r, r)v, (r, r)dr d"r Da"1

1,J

1=—f exp( L)Dv, A =f exp ———f g lrt (r, r)lr, (r, r)dr dr Dlr . "
1,J

(6.1)

First, one should calculate in Eq. (6.1) the trace over the
electron degrees of freedom and reduce the partition
function Z to an integral over K.

The integral over ~ in Eq. (6.1) is calculated by the
saddle-point method. As the first step one should find the
minimum of the Lagrangian L, . The condition of the
minimum coincides with the self-consistency equation

(3.3). As a result, one obtains Eq. (3.8) for a in the
minimum. The saddle-point solution given by Eq. (3.8) is
degenerate because the matrix u; can be arbitrary. The
next step is to calculate the contribution of Auctuations
near the saddle point. The fluctuations which are due to
fluctuations of the matrices u are gapless.

In order to write the energy functional describing these
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fluctuations, one should make an expansion of L, in space
and time derivatives of u. Other Auctuations have a gap
and they are not as interesting as the gapless ones.

Expanding the Lagrangian L in Auctuations 5K, one
can obtain usual terms (5k), —(85~/Br ) . Besides,
terms Tr(5~, 5i(;. ) can also appear which describe the
coupling of the gapless excitations with the excitations
having a gap. After integration over the fluctuations
with the gap, one obtains the effective Lagrangian con-
taining only squares of the derivatives of v. The final La-
grangian L describing the gapless excitations only reads

L= QTr J(~; i, +v . V'a.; Vx, )d. r d.r,
8mv0

(6.2)

J [4&, (r)+Pt (r)]P (r)dr+c. c. (6.4)

where ~,. and v are given by Eqs. (3.8) and (4.8), respec-
tively.

It is not difficult to understand why the fluctuations of
the matrix u do not give a singular contribution into the
polarization discussed in the previous chapter. When
writing the polarization loops one always gets invariant
combinations of the order parameter K. For example, one
can have Tr(~; ~;. ) or Tr(~, ~k sk, ~;, ). If the neighbor-
ing matrices ~ are taken with equal space and time coor-
dinates, the matrices u cancel. If the space and time
coordinates are different one can expand the expression
in the difference of the space and time coordinates be-
cause it is assumed that the matrices u vary slowly. As a
result, one obtains expressions containing only deriva-
tives of u and therefore the contribution of small momen-
ta and frequencies is not singular. This result does not
change if a normal impurity scattering within planes is
taken into consideration.

An anomalous contribution into transport properties
of the system from the region of small momenta and fre-
quencies can arise provided there is an impurity scatter-
ing from plane to plane or magnetic scattering. These
two types of impurities couple the gapless excitations to
the electrons of the metallic band in a more or less similar
way.

The normal impurity scattering between neighboring
planes (CuO and BiO, for example) seems to be more im-
portant in the high-T, oxides and only this case is con-
sidered below.

In order to describe the interaction with the impurities
which scatter from plane to plane one can add to the
Hamiltonian H (2.1) the additional term H;

H; = g Ju, (r r, )[4, (r)+—P, (r)]P (r)
a, i,j
+P)~ (r)[4; (r)+P, (v)]dr, (6.3)

where a stands for the number of an impurity, i and j
numerate neighboring planes, i being odd and j being
even. Equation (6.3) describes scattering from bands 0
and 1 into band 2 and back.

The position of the impurities is assumed to be ran-
dom. In order to calculate physical quantities one must
average over the positions of the impurities. In principle,
the average of u; can already result in hopping terms like

R (co)= —d A (q,pi)f (co),

I".a(qi)
~(q q. )=, [g i(q)+g Pq)

12

+2 cos(qJ d )g, (q )g2(q )), (6.5)

where

g, (q)=n~uj(q)~ [G "(q)+G (q)],
g2(q) = n

~ u,"(q) ~
G (q) .

n is the three-dimensional concentration of impurities.
The correlation function f(cv) in Eq. (6.5) has the form

f(co)= J (Trv; (r, 0)Trv; (r, r))e' 'dr . (6.6)

In Eq. (6.6) the angular brackets stand for averaging with
the free-energy functional L (6.2).

The calculation of the function f(co) is not difficult. In

IIIllI
/
I
I
I
I

FIG. 6. Interaction with the collective excitations. The dot-
ted line denotes the impUrity correlation, the dashed line is the
effective interaction. The wavy line appears after the integra-
tion over ~ and stands for the gapless excitations.

However, it was assumed (see Fig. 1) that the minima
and the maxima of the different bands are separated not
only in the real space but in the momentum space also.
For example, the maximum of band 1 is at the distance Q
from the minimum of band 2. But the term (6.4) de-
scribes coupling with equal momenta and cannot
inhuence essentially the gapless excitations.

One can obtain interesting effects studying second-
order terms in H; . The interaction of the electrons of
the metallic band with the gapless excitations can be de-
scribed in terms of the interaction with an effective mode
R(cv). This effective mode can be constructed using the
effective Coulomb interaction, electron Green functions,
the gapless excitations and the impurities scattering from
plane to plane. The structure of this mode is represented
on Fig. 6. One of the Green functions in each electron
loop is normal (G" or G ), the other is anomal (G' or
G '). The momenta of the normal Green functions can
be large but essential momenta and energies of the
anomal Green functions are small. Each loop is propor-
tional to K.

~
01 K;~ which are taken at different times.

After integration over fast-electron variables, the effective
mode P(rv) can be expressed in terms of a time correla-
tion of the matrices v; and v," taken at the same point in
space. The coincidence of the space coordinates comes
from the assumed short-range interaction with impuri-
ties. Using Eq. (3.6) one can obtain for the effective mode
R (co)
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the main approximation one should expand the matrices
u in Eqs. (3.8), (6.2), and (6.6) near 1 and calculate the
Gaussian integrals. As a result, one obtains

~o dk
U k —(co+i6)

(6.7)

Substituting Eq. (6.7) into Eq. (6.5) one can find the
function R(co). The imaginary part of this function can
be written in the simple form

ImR ( co ) =d A (q, q j )sgnco,

3 (q, qi)K0
A(q, q~)=

mU

(6.8)

The mode R(co) can be considered as an extra mode
which can be important for studying properties of the
metallic band above the superconducting temperature.

The existence of an extra mode R(co) was proposed in
Ref. 10. This mode had the same form as R(co) (6.8) for
co) T but was proportional to co/T for co & T. Using the
hypothesis about the existence of the mode R(u), the au-
thors of Ref. 10 obtained such anomalous properties of
the normal state as the linear resistivity, linear tunneling
conductance, constant thermal conductivity, constant
Raman scattering intensity, etc. Due to the opinion of
the authors of Ref. 10, this mode leads to a strong attrac-
tion between electrons of the metallic band and to high
superconducting temperatures.

The mode R (co) (6.8), as it will be shown in Sec. VIII,
also gives the possibility to derive the anomalous proper-
ties of the normal state though it differs from the mode
R (co) in the region co & T. At the same time, in the pic-
ture presented above, the main contribution to the attrac-
tion, and hence to the superconductivity, comes from the
polarization which was considered in the previous sec-
tion. Of course, the mode R (co) can also give an impurity
dependent contribution to the attraction but it is not as-
sumed to be the most essential.

VII. TUNNELING FROM PLANE TO PLANE

In Eq. (7.1) only the terms describing the tunneling of
the electrons from bands 1 and 2 are written. These
terms are most interesting for studying the properties of
the excitonic insulator. Of course, the tunneling of the
electrons of the metallic band is very important for prop-
erties of the superconducting state. They can be de-
scribed by similar terms as given by Eq. (7.1). But in the
present article I want to concentrate on studying the

Until now all the results have been obtained neglecting
the possibility of the tunneling from plane to plane. Al-
though the amplitude of the tunneling in the layered
high-T, oxides is small, it is important to understand how
all the results change when the possibility of the tunnel-
ing is taken into account. In order to study the inhuence
of the tunneling, one should write an additional term H,
in the Hamiltonian

H, = —g f Tz(r —r')[P, (r)PJ(r')+Pt(r')P;(r)]dr dr' .

(7.1)

properties of the excitonic insulator only.
The tunneling described by the term (7.1) conserves the

longitudinal momentum and does not give a direct hop-
ping between bands 1 and 2 because they are separated in
the momentum space by the large vector Q. Therefore, it
is quite natural to assume that the hopping amplitude T;
(7.1) has the form

I
~
—jI =2,

0, otherwise .

Equation (7.2) describes hopping from CuO plane to a
neighboring CuO plane for i,j odd and from BiO to BiO
for i,j even.

A very important property of the electron-hole pairing
considered in the present article is that there are no
charge- or spin-density waves. These waves appear pro-
vided the average S &

&.~(r) = (P,'.(r)P,~(r) ) (7.3)

where

8' m
Tr(~i~, +,~, +2, +3+c.c.),4 8~~o

(7.4)

W =2T 1+
(b +~ )'~

Comparing Eq. (7.4) with the main part of the Lagrang-
ian (6.2), one can see that the tunneling from plane to
plane changes the spectrum of the gapless excitations

is not zero and oscillates in space with some wave vector
q.

In the absence of hopping terms the osci11ating part of
the average (7.3) is obviously zero. One can study the
effect of the hopping term (7.1) making a perturbation
theory in T. Charge- or spin-density waves might be ob-
tained provided some terms of the perturbation theory
for S, & (7.3) contained an odd power of a.,". However,
this is impossible because each term of the perturbation
theory contains an even number of the operators P;(P; )

corresponding to band 1 and an even number correspond-
ing to band 2.

Only direct hopping from band 1 to band 2 would give
odd powers of v; . Such terms can originate only from an
impurity scattering. But after averaging over impurities,
the terms with the odd powers ~ vanish again.

Only large tunneling amplitudes which considerably
change the band structure can give nonzero charge- or
spin-density waves. In this limit the system becomes
three dimensional and one can use the very well-known
results. ' '

Now let us consider how the hopping term (7.1)
changes the spectrum of the gapless excitations. The
hopping term leads to the coupling of the order parame-
ters K j from different planes which is completely analo-
gous to the Josephson coupling in superconductors.

Carrying out standard calculations one can obtain, in
the second order in T;~, the following additiona1 term L ~
in the Lagrangian:
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from that given by Eq. (4.7) to

8'
co2=v k + (1—cos2kid) . (7.5)

The corresponding changes must be done in Eqs. (6.7)
and (6.8). As a result, one obtains, for the effective mode
R (co) integrated over the perpendicular momentum k~,

ImRD(co) —= f ImR (co)dk~
1

where the function f(s,p ) was introduced in Eq. (3.15).
Substituting Eq. (7.10) into Eq. (7.9) and calculating

the integral over c, one can easily see that Fz =0 for arbi-
trary s, (p) and s2(p). Hence, the expansion of the free
energy can start from a only. Provided the tunneling
amplitude is not very large, Eq. (3.8) for ~; does not
change its form and one can use the results obtained in
the previous chapter in a broad region of the tunneling
amplitudes.

sgnco, co) 8'
sin 'co/8', co ( 8

where

dA(q)= f A(q, k~)dk~ .2'

(7.6)

Now the imaginary part of the effective mode ImRD(co)
is almost the same as the ImR(co) proposed in Ref. 10.
The only difference is that two different behaviors in Eq.
(7.6) are separated by W and not by the temperature T as
in Ref. 10. Let us emphasize that 8' is proportional to
the tunneling amplitude from one metallic plane to
another (for example, from CuO plane to CuO plane) and
is very small. It can be of the order of T or even smaller.
Therefore, ImR0(co) can be a constant down to very low
frequencies.

At the end of this chapter let us show that the solution
(3.8) for ~,„also corresponds to the minimum of the free
energy for a nonzero tunneling amplitude. In order to
prove this statement, let us calculate the free energy, tak-
ing for K j the following expressions:

VIII. ANOMALOUS PROPERTIES
OF THE NORMAL STATE

Using the hypothesis about the existence of an extra
mode R (co) with some special dependence on the frequen-
cy ~, the authors of Ref. 10 were able to obtain many
well-known properties of the normal state of the high-T,
materials. The mode RD(co) (7.6) differs from the mode
R (co) because the two regimes in RD(co) are separated by
the coupling energy 8'but not by the temperature T as in
Ref. 10. However, this difference is not very important
for an interpretation of the experimental data.

Let us calculate the same physical quantities as those
calculated in Ref. 10. The first very important quantity
determining transport phenomena, photoemission, etc. , is
the imaginary part of the Green function. Considering
the interaction of the electrons of the metallic band with
the additional bosonic mode R0(co), one obtains, for the
imaginary part of the self-energy X (Ref. 22),

ImX = — f dp& f ds&lmG (p&, s&)
(2m)

X ImR 0(p —p, , s —s, )

KO
v,"(a)= u;[1+a+(1 )oa,—sg (in—j)]u~ (7.7)

X tanh
2T

At a=0, Eq. (7.7) coincides with Eq. (3.8). One can
calculate the free energy in the absence of the tunneling
substituting Eq. (7.7) into Eq. (6.1) and expanding the in-
tegrals in Eq. (6.1) in a. Then one can obtain for the free
energy F(a) in the lowest order in a,

mcx K0 bF(a)—F(0)= 1+
4~ (b 2+ 2)1/2 (7.8)

F2-=&[G,'+2(r, ~)+G,'+2(r, r)] . (7.9)

For a=0 the Green functions in Eq. (7.9) are equal to
zero. In the linear approximation one can obtain, using
Eqs. (3.5) and (7.7),

G;+2„(s P ) =«o[« —s2(P —0)+V]f'(s P»)

G|'+2 |(s,p ) =a~Q[is —s](p)+p]f '(s,p ),
(7.10)

Equation (7.8) is written in the absence of the tunneling.
It is seen that the energy F(a) reaches the minimum at
a =0.

Now let us include the tunneling (7.1) and (7.2) and cal-
culate the free energy in the first order in T and a. Then
one obtains the additional term Fz for the free energy per
layer

C E, i+cotanh
2T

(8.1)

The function RD(co) (7.6) slowly depends on the longi-
tudinal momentum and Eq. (8.1) can be reduced immedi-
ately to a more simple one,

ND(0) E, COImX = ImRD co tanh
2'7T 2T

+cotanh d co, (8.2)2T

where N0(0) is the density of state in the metallic band at
the Fermi surface.

For the calculation of the conductivity, one should
consider a two-particle Green function. However, pro-
vided the effective mode Ra weakly depends on the longi-
tudinal momenta, the calculation reduces to the calcula-
tion of the imaginary part of the one-particle Green func-
tion. The contribution to the resistivity coming from the
scattering by the mode RD is proportional to ImX" (8.2).
The energy c. in X must be of the order of T.

In the limit W « T, the integral (8.2) is especially sim-
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pie and one obtains for ImX

N()(0) A T
(2r )

' = —ImX" = ln (8.3)

where ~~ is the mean time of the scattering due to the R
mode, A can be obtained from A(q) (7.6) by averaging
over all momenta q connecting points at the Fermi sur-
face in the metallic band.

It follows from Eq. (8.3) that the resistivity p depends
on the temperature T according to the law

T
p=p()+ CT ln (8.4)

where po is the residual resistivity, C is a coefficient.
Equation (8.4) diff'ers from the linear law which is used to
fit the experimental results. However, it does not seem
to be possible to distinguish experimentally between the
linear law and the law given by Eq. (8.4). The coefficient
C is proportional to the concentration of impurities
scattering from plane to plane and must correlate with p~
which also depends on the impurity concentration.

Another quantity which was studied in Ref. 10 using
the proposed hypothesis was the density of states N(E).
This quantity determines the tunneling conductance and
photoemission and is connected with the Green functions
as follows:

d2+ IG12(E p )I2) p
(27r )

(8.9)

sity of states has a linear term in
I
c

I
with a positive

coefficient. Hence, the assumption about the existence of
the extra mode R(co) which interacts with the electrons
of one metallic band cannot explain the tunneling and
photoemission experiments, at least in a simple way.
However, in the model considered in the present article,
an important contribution comes from bands 1 and 2,
though these bands are dielectric. This contribution is
due to the possibility of the scattering of the electrons by
the R(co) mode from band 1 to band 0. Both the bands
belong to the same planes and there is no reason to as-
sume that this scattering is small. The corresponding
process can also be represented by Fig. 6. The Green
function of band 0 must be taken in the self-energy X and
that of bands 1 or 2 at the ends. One can see that the
self-energy X differs from X only by a coefficient s which
is the ratio of the squares of the matrix elements of the
scattering from band 1 to band 0 and from band 0 to
band 0. Provided the inverse scattering time is smaller
than the dielectric gap, one can make an expansion in
X(E). As a result, one obtains for Ni(s)+N2(E)

N, ( )e+N, ( )E= f [I G "(E,p)]'

N(s)= ——f [ImG (E,p)+ImG "(E,p)
1

d p+ ImG (E,p ) j (2~)
(8.5)

The calculation of the integral (8.9) is not difficult. In
order to avoid complicated formulas I write the final ex-
pression putting c=0, v~=0 in Eq. (3.10) specifying the
spectrum. Then the final result for the total density of
states reads

For the calculation of the imaginary parts of the Green
functions one should calculate first the imaginary part of
the self-energy X as the function of c.. In the considered
limit W'((T one obtains, for arbitrary IEI/T,

N(E) =N(0)+N
I
s I,

~No(0) m ~, bN= —+tan '
iKp 2 Kp

(8.10)

N()(0) 3 Tcr(e)= —ImX = IEI +2T ln
2m 8

E&(p) = (8.7)

Calculating the first term in Eq. (8.5) one obtains the
corresponding contribution Np(E) to the density of states

M cr(s)+2r (8.8)

where ~ describes scattering by normal impurities.
It is seen from Eq. (8.8) that the density of states of the

metallic band has a linear Ie I
term with the negative sign.

In Ref. 10 it was shown that the tunneling and photo-
emission experiments can be explained provided the den-

Of course, for IeI —T, Eq. (8.5) coincides with Eq. (8.3).
In the region IsI ))T one must omit the second term in
Eq. (8.6) and then Eq. (8.5) is valid for arbitrary T/8'.

Now let us calculate the contribution to the electron
density of state coming from the imaginary part ImX (s).
In order to make certain estimates, let us take the spec-
trum of the metallic band in a quadratic form

The gap Kz was assumed everywhere above to be small-
er than the Fermi energy p. Provided s and m /M are of
the order of unity, the coefficient N is positive, which is
necessary to explain the tunneling and photoemission ex-
periments.

The thermal conductivity ~(T) can be calculated in the
same way as the electrical one. Provided the specific heat
is linear in temperature and using the Wiedemann-Franz
law, one obtains the temperature-independent (or loga-
rithmically dependent) thermal conductivity.

An interesting contribution to the optical conductivity
coming from the extra mode R(co) is seen at frequencies
which at least exceed the temperature (see the corre-
sponding picture in Ref. 10). In this region the mode
R(co) (7.6) coincides with the mode R(co) or Ref. 10.
Therefore, I can only repeat the calculation and the con-
clusion.

The Raman scattering is the most direct way to ob-
serve the extra mode Rii(co) (7.6) because it allows one to
measure the imaginary part of the density-density corre-
lation function. The mode Rz(co) is proportional to the
density-density correlation function which can be ob-
tained from Eq. (6.5) by dividing A (q, qi ) by V,s.(qi) and
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I(co)=b A 8 (8.12)

The crossover between these regimes depends on the ratio
W/T.

A very important property of I(co) (8.11) is that for ar-
bitrary temperatures T, and T2,

I(co)r z.

I(co)r
1+n(co, T, )

1+n(co, T2)
(8.13)

A flat frequency and temperature-independent mode was
observed in many experiments in the region from several
hundreds inverse santimeters up to 0.5 —1 eV.

Recent experiments showed that, in some materials
(YBa2Cu307 and Bi2SrzCaCu208) for certain polariza-
tions of the incident light, the intensity remains constant
even at very low frequencies which favors the hypothesis
about the extra mode in the form suggested in Ref. 10.
However, measurements for Bi~CaCu208 at (xy) polar-
ization showed that, at T=100 K, the Raman intensity
decreases with the frequency. In the limit co=0 this in-
tensity is approximately one-half of the intensity at high

putting qi=0. Of course, one should modify f(co) (6.7)
by introducing the tunneling 8'as it was done in the pre-
vious chapter. Then the Raman intensity I(co) takes the
form

I(cg ) = b[—1+n (co) ]ImR 0(co), (8.11)

where b is a coefficient, Ro(co) is specified by Eq. (7.6),
n(co) = [exp(co/T) —1] is the Bose-Einstein factor.

In the region co )T, W the intensity I(co) (8.11) is equal
to a temperature-independent constant Ab. In the limit
co~a the intensity I(co) is equal to

frequencies. A comparison with the results of the mea-
surements at T=240 K showed that the law (8.13) fits
very well. This measurement confirms the form of the ex-
tra mode Ro(co) (7.6) and with the help of Eq. (8.12) gives
an estimate 8'=200 K. Strictly speaking, for such 8'
Eqs. (3.8) and (8.4) are not valid because they were ob-
tained in the limit 8'(( T. However, one can expect that
the correct behavior for 8'- T does not differ too much
from the linear one.

In principle, relaxation processes can modify the mode
Ro(co). They can be introduced by substituting co+iy in-
stead of co in Eq. (6.7). The form of the extra mode of
Ref. 10 can be obtained if y —T. If these relaxation pro-
cesses contribute in a different way for different direc-
tions, the behavior of the Raman intensity can be
different for different polarizations in the light. For the
directions where the relaxation is not important Eqs.
(8.11)—(8.13) with Ro(co) (7.6) can give a good description
of the extra Raman mode for all frequencies. As a conse-
quence of the relaxation, the dependence of the resistivity
on the temperature can become linear without a logarith-
mic factor.

The gapless excitations related to the fluctuations of
the matrix ~ are a mixture of charge and spin excitations.
Therefore, they can affect magnetic properties of the sys-
tern. Let us calculate the magnetic susceptibility y. This
quantity can be calculated in the same way as the
density-density correlation function. One should calcu-
late essentially the same diagrams as represented in Fig. 6
for the extra mode R (co). Just as in the previous section,
one can integrate first over fast-electron variables and
represent the susceptibility in the form of integrals of
correlation functions of ~ taken at a different time. The
result can be written in the form

4V~gi'(q)
y&~(q, co)= (Trcr ic;;+,(r, r) Trcr@;;+,(r, r'))e' 'dr,

12

(8.14)

T, &
(T)- —lim —f Imp&(co)

—i T 0 g
co~0 CO (2~)

(8.16)

Substituting Eq. (8.15) into Eq. (8.16), one obtains for the

where pii is the Bohr magneton 1=1,2, gi(q) is intro-
duced in Eq. (6.5).

The susceptibility is written in the space representation
with respect to transverse coordinates and in the momen-
tum representation with respect to longitudinal ones.
The calculation of the correlation function in Eq. (8.14)
can be carried out in exactly the same way as for f(co) in
Eq. (6.6). As a result, one can obtain for the imaginary
part of the susceptibility

p&2lc2O g&2(q) sgncu, co ) W
Impel(~) =— (8.15)

V2 (q) sin co/W, co( W

The imaginary part of the susceptibility determines the
nuclear relaxation rate T, '(T)

nuclear relaxation rate T,&'(T),

T J T
11 (8.17)

The coefficient of the proportionality in Eq. (8.17) is
different for I =1 and 2. The contribution to the nuclear
relaxation rate given by Eq. (8.17) does not violate a Kor-
ringa law. At the same time, T»'(T) given by Eq. (8.17)
can be 1 or 2 orders of magnitude greater than estimates
based on the Fermi surface density of states because 8'
can be several orders of magnitude smaller than the Fer-
mi energy. In YBa2Cu307, T '( T) on chains is more or
less linear and 2 orders of magnitude larger than the one
estimated from the density of states. T '( T) on planes
is more complicated and different for Cu and O sites.
The present work, and particularly Eq. (8.17), can at least
explain very large values of Ti '(T). For a detailed
description of the temperature dependence one should in-
clude something else in the consideration.
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IX. DISCUSSION

An attempt to derive the most important properties of
the high- T, materials starting from some peculiar
features of the band-structure pictures is presented. Be-
sides the broad metallic band, additional bands near the
Fermi surface exist. These bands belong to different
planes or plane and chains and have maxima and minima.
In this situation, the formation of an excitonic insulator
is quite possible. Electrons and holes of each electron-
hole pair belong to different planes or planes and chains.
Due to this pairing a dielectric gap exists in the addition-
al bands. At the same time the main band is very broad
and remains metallic. Although the dielectric order pa-
rameter can be large, no charge- or spin-density waves
appear. Therefore, this dielectric order cannot be seen in
neutron experiments.

The most direct way to observe this pairing is to study
the spectra by photoemission and to compare them with
the results of the band-structure calculations. If, accord-
ing to a band picture, a band crosses the Fermi energy
but this crossing is not seen experimentally it can mean
that a gap appears in this band. In recent experiments
for YBa2Cu30& (Ref. 24), the results of the band-structure
calculations' for the main metallic bands belonging to
CuO planes were confirmed very well. At the same time,
no crossing of the band belonging to the chains was seen.
It is in a striking contradiction with the results of the
band-structure calculations and can mean the appearance
of dielectric gap. Comparing the results of x-ray absorp-
tion with the results obtained using the local density ap-
proximation, the authors of Ref. 25 came to the con-
clusion that the experimentally observed density of states
on the chains is considerably smaller than the one given
by the calculations. Therefore, the appearance of dielec-
tric gaps in additional bands cannot be unprobable.

If this dielectric substance exists, it can serve as a po-
larizing medium for electrons of the metallic band. Due
to the layered structure of the system this polarizing
medium can be considered as located between the layers.
This idea, in principle, is similar to ideas proposed long
ago by Little and Ginzburg. A strong enough polar-
ization can give an attraction between the electrons of the
metallic band.

A very strong support of the ideas presented above
comes from the comparison of the results of the band-
structure calculations for the high-temperature supercon-
ductor Bi2Sr2CaCu20& and for the related compound
Bi2Sr2Cu06 which superconducts only below 6 K. Both
the materials have almost the same broad metallic bands
band 0 if describing the material in terms of the three-

band model suggested above). However, the band which
has the maximum very close to the Fermi energy in
BizSr2CaCuzOs (band l in our notation) is shifted down in
BizSr2Cu06. Besides, the minimum of band 2 in
BizSrzCo06 is higher than in Bi2Sr2CaCu208. Therefore,
the proposed electron-hole pairing must be much weaker
in BizSrzCu06 than in BizSrzCaCuz08. But the polariza-
tion is efBcient only for frequencies and momenta satisfy-
ing the inequality co, kv ((Kp. Therefore, for all small Ko,
the electron-hole polarization cannot give high supercon-
ducting temperatures. In my opinion, a detailed com-
parative study of the compounds Bi2Sr2CaCuz08 and
Bi2Sr2Ci06 would be very useful.

Due to the dielectric pairing proposed above, some
gapless excitations can exist. These excitations do not
inAuence much the superconducting temperature. In a
system without impurities these excitations also do not
give an interesting contribution to quantities describing
the normal state of the metallic band. However, if the
probability of the impurity scattering from plane to plane
is not equal to zero, the contribution of the gapless exci-
tations becomes important. This contribution can be de-
scribed in terms of the interaction of electrons of the me-
tallic band with an effective mode R(co). The imaginary
part of this mode has the form ImR(co) ——sgnco in a
broad region of frequencies m. This mode is very similar
to the hypothetical mode proposed in Ref. 10. The main
difference is that the authors of Ref. 10 assume that the
mode gives a considerable contribution to the supercon-
ducting transition temperature. In the model considered
in the present article, the main contribution comes from
the polarization of the excitonic insulator. The fact that
the Raman intensity practically does not change for the
frequencies up to 0.5 —1 eV means in the present ap-
proach that the dielectric gap is large (it is at least of the
order 0. 5 —l eV). Therefore, Eq. (5.9) for the effective in-
teraction V,z is valid in a very broad region of frequen-
cies and momenta and high superconducting transition
temperatures can be obtained.

The effective mode R(co) determines anomalous prop-
erties of the normal state. This question was discussed in
the previous section. Of course, all quantities must be
dependent on the impurity concentration. This is an im-
portant difference with the hypothesis suggested in Ref.
10.

In conclusion, an attempt to explain high supercon-
ducting transition temperature and anomalous properties
of the normal state starting from a simple model was
presented. To the author's opinion, this model can be
considered as a candidate for the explanation of various
phenomena of high-T, oxides.
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