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Quantum dynamics of a two-state system in a dissipative environment
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An analytical study of the dissipative Landau-Zener model is presented. The model where two

energy levels at constant speed are brought to cross is a standard model used to describe a large
variety of phenomena. In many cases of interest the presence of coupling of the two-state system to
an environment is of importance, the accounting for which shall be done here from first principles.
Analytical results for the excitation transition from the ground state of the two-state system at large
negative times to the excited state at large positive times (as well as the opposite, decay, transition)
are obtained in terms of the speed by which the two levels approach each other, the energy gap be-
tween the adiabatic energies, the coupling strength to the environment, and its temperature. For
the excitation transition we find the following results: In the slow-passage limit of small sweeping
speed it is shown that adiabaticity is limited to low temperatures and the quantitative adiabatic cri-
terion is established. Particularly, at zero temperature there is no influence of the environment on
the transition probability as a consequence of a compensation property shown to be peculiar to the
linear-sweep model ~ The transition is at low temperatures due to quantum tunneling and, with an

increase in temperature, an intermediate region appears where the transition is dominated by
thermally assisted transitions across the energy gap before finally at high temperatures a saturated
regime is reached with equal population of the levels. In contrast to the dependence on the temper-
ature the dependence of the transition probability as a function of coupling strength is nonmonoton-
ic with maximum inhuence at intermediate strength. In the fast-passage limit with rapid sweep

speed there is no inhuence of the environment on the transition probability. For the decay transi-
tion the adiabatic limit does not exist for the linear-sweep model for physically relevant spectra of
the environment and the decay transition is dominated by spontaneous emission, except in the fast-

passage limit and the high-temperature limit where the decay transition probability equals the exci-
tation probability.

I. INTRODUCTION

In a recent Letter' we presented the results of an
analytical study of the inAuence of an environment on the
quantum dynamics of a two-state system. In particular,
we considered the Landau-Zener transition; that is, the
explicitly time-dependent situation in which the energy
levels of a quantum-mechanical system in the course of
time by external means are brought close together, so
that transitions between the levels take place. The transi-
tion takes place in the presence of an environment and we
shall give a detailed account of the effects of such a dissi-
pative environment. We consider a model which in the
absence of coupling to an environment is the standard
model used to describe a large variety of problems and
show that, even in the presence of coupling to an environ-
ment, an extensive analytical treatment can be given.

The level crossing problem appears in numerous con-
texts not only in physics, but also in chemistry, through
its relevance for chemical reaction kinetics, as well as in
biophysics. In physics, the problem is encountered
widely, from the solar-neutrino puzzle to numerous situ-

ations in atomic and solid-state physics: Nuclear mag-
netic resonance, aspects of the behavior of laser-
irradiated atoms, atomic collisions, atoms scattering off
surfaces, and dielectric breakdown in solids are all
well-known examples. The question of the effect of dissi-
pation on level crossing transitions, however, has also
gained renewed interest in view of its relevance to meso-
scopic systems, for example, for estimating the effect of
Zener tunneling on the magnitude of diamagnetic
currents in mesoscopic rings. ' The level crossing transi-
tion in the presence of coupling to the many degrees of
freedom of an environment, which has hardly received at-
tention from a first-principles point of view, thus consti-
tutes an important example of quantum dynamics in a
dissipative environment and is the subject matter of the
present paper.

The question of the effect of dissipation on the
quantum-mechanical behavior of a macroscopic variable
has received much recent interest in the context of mac-
roscopic quantum tunneling and coherence" and with re-
gard to the latter, the present paper addresses questions
relevant for the possible observability of Bloch oscilla-

5397 1991 The American Physical Society



5398 PING AO AND JQRGEN RAMMER 43

tions in Josephson junctions insofar as this effect can be
considered the counterpart of the Bloch oseillations of an
electron moving in a crystal under the inAuence of an
external field. With respect to tunneling, the problem we
shall consider corresponds to the macroscopic tunneling
of the trapped Aux in a superconducting quantum in-
terference device (SQUID) for the situation where the
external fIux is being changed in the course of time.

A characteristic feature for the above physical phe-
nomena is, for the case of a macroscopic degree of free-
dom, invariably, that for many situations of interest the
fact that the degree of freedom of interest is coupled to
an environment is of importance and one has to account
for this circumstance in terms of its effect on the quan-
tum dynamics. The purpose of the present paper is to re-
port in detail on the results obtained for the dissipative
Landau-Zener model. The main body of Ref. 1 was de-
voted to a discussion of the transition from the ground
state to the excited state in the adiabatic limit since the
obtained results corrected erroneous ones in the litera-
ture. In the present paper we shall present the full calcu-
lations for all possible expansion limits. Furthermore, we
shall present the equivalent results for the other possible
transition, the decay transition. We shall qualify the
statement made in Ref. 1 on the identification of the
strong-coupling limit with the high-temperature limit. In
fact, in Ref. 1, we only quoted the high-temperature re-
sult and never stated the strong-coupling result explicitly.
We shall, in addition, give a full account of the applied
real-time Schwinger-Keldysh method. The method we
employ is a general one and an example of the usefulness
of the application of the methods of quantum field theory
to problems in nonequilibrium quantum statistical
mechanics. The formulation we have chosen applies to
arbitrary nonequilibrium states and will be useful in fur-
ther studies of dissipative quantum dynamics.

In outline, the paper is organized as follows: In Sec. II
we introduce the Landau-Zener model for the case where
an environment is present, and describe the problem to be
investigated: The inhuence of dissipation on the transi-
tion from the ground state to the excited state, or
equivalently, investigate how the presence of an environ-
ment destroys phase coherence. In Sec. III we study the
slow-passage limit where the energy levels are slowly
brought together and investigate the question of adiabati-
city. In Sec. IV we deal with the strong-coupling limit
and in Sec. V with the high-temperature limit. In Sec. VI
we present the perturbative treatment of the coupling to
the environment in the slow-passage limit, and in Sec.
VII we deal with the fast-passage limit. In Sec. VIII we
consider the inAuence of dissipation on the decay of the
excited state. In Sec. IX we apply the obtained results to
a discussion of physical situations of interest and in Sec.
X we summarize and conclude. The Appendix contains a
detailed description of the Schwinger-Keldysh technique
adapted to the present problem.

II. THE I.ANDAU-ZKNKR TRANSITION
IN A DISSIPATIVE ENVIRONMENT

In the absence of coupling to the environment, the
nonadiabiatic transition problem we shall consider is cus-

tomarily referred to as the Landau-Zener problem.
Quantitatively, this level crossing problem is described in
terms of a two-dimensional spinor problem, as given by
the time-dependent system Hamiltonian H, (t)

H, (t) =Uto, +b. ,cT„, (2.1)

where o., and o.„are Pauli matrices. Evidently, the
Hamiltonian in Eq. (2.1) need not represent a physical
spin in a time-dependent external magnetic field, al-
though this, of course, is the case for the nuclear magnet-
ic resonance situation mentioned in the Introduction, but
refers, in general, to the situation in which only two lev-
els need consideration. The first term represents the
crossing energy levels and the second term the level
repulsion. As we shall take advantage of in Sec. VI, the
above Hamiltonian is an exactly solvable one.

For the description of the environment, we take a set
of harmonic oscillators as represented by the bath Hamil-
tonian H~,

H~ = g A'cu (a a + —,
' ), (2.2)

and for the interaction between system and environment,
we take the coupling linear in the bath coordinate opera-
tor X, '

H; =o.,X, (2.3)

X=+A (a +a ) . (2.4)

Here a and a denote the boson creation and annihila-
tion operators corresponding to the frequency co and A.

is the oscillator coupling constant. '

Our total Hamiltonian H(t) is thus the spin-boson
Hamiltonian with a time-dependent bias

H(t)=H, (t)+H&+H, . (2.5)

The model is specified by the energy gap 26 between
the adiabatic levels and the effective coupling to the envi-
ronment as described by the spectral function

J(co)= gk 5(co —co )
4

(2.6)

and, as external parameters, we have the sweeping rate v

(assumed positive in the following) describing the rate of
change in energy due to the action of an external force, as
well as the temperature T, since our ealculational scheme
allows evaluation of the transition probability at arbitrary
temperatures.

The results we shall obtain are valid for any physical
spectral function, but when definite expressions are desir-
able, we shall assume the typical form

J (co)= rjco(co/co, )' 'exp( —co/co, ), (2.7)

where q is the effective dimensionless coupling constant
and co, the upper cutoff for the bath modes.

For the physical problems mentioned in the Introduc-
tion, the chosen model represents, to a varying degree of
quantitative reliability, the relevant physics for the situa-
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tion of interest. Furthermore, the model shall be shown
to display a rich variety with regard to the question of de-
struction of phase coherence, and, in view of the com-
plexity of the dynamical situation, the model is therefore
of interest in itself since extensive analytical results can
be obtained. Despite the widespread use of the model in
the absence of the environment, a first-principles calcula-
tion including the effects of the environment has, to our
knowledge, been attempted only in the adiabatic limit in
Ref. 14 which arrives at conclusions contrary to the ones
reached here. Results for the fast-passage limit have re-
cently been considered' but we shall establish them in
more generality. Certain aspects of the problem have
previously been studied from a phenomenological point
of view. ' '' From our microscopic treatment we shall
be able to assess the limits of validity of the results ob-
tained by the phenomenological approaches. Further-
more, we shall point out a subtle compensation property
of the model that has been missed by previous treat-
ments.

Having established the model to be investigated, as
represented by the above Hamiltonian, we can now pose
the problem to be solved: At a remote time (which we for
all purposes can take to be at time to = —~ ), we assume
that our initial state is described by some initial statistical
operator p, for which the system, that is, the spin, is in
the ground state and we then ask for the probability P
that the system in the far future is in its excited state
while the bath is assumed unobserved. In Sec. VIII we
shall study the other possible transition where the spin is
initially in the excited state.

Various choices for the initial correlation between the
spin and the environment can be taken. The bath could,
for example, be assumed initially to be relaxed to the
fixed initial spin direction or the other extreme, the two
systems being initially decoupled with the bath assumed
in thermal equilibrium. As expected, we can show that
the results for the transition probability is the same for
both these choices and therefore insensitive to the initial
condition. For definiteness we shall henceforth choose
the decoupled initial condition

(2.8)

given by

P =Tr[p,. U ( oo, —oo )P t U ( (n, —ca ) ] (2.1 1)

Here P& projects onto the spin-up state,
l 1), f denotes

Hermitian conjugation, and Tr denotes the trace over all
the degrees of freedom.

We shall now perform an analytic calculation of the
transition probability and to this end employ the real-
time quantum dynamical technique originally due to
Schwinger and Keldysh' as this method allows calcula-
tions for externally driven systems at finite temperatures.
The technical aspects of the method and the physical in-
terpretation of the inhuence of an environment on the
quantum dynamics of a single degree of freedom is given
in the Appendix.

III. THE SLOW-PASSAGE LIMIT

X(t)=arccot( —vtlb, ) . (3.1)

The corresponding time-dependent rotation operator is

l
R (t) =exp X(t)o— (3.2)

where the Pauli matrix o. is the generator of rotations
around the y axis in spin space.

Performing this time-dependent unitary transforma-
tion, we obtain for the Hamiltonian in the adiabatic
frame

In this section we shall calculate the transition proba-
bility in the slow-passage limit where the degree of free-
dom traverses the transition region slowly; that is, the
Landau-Zener time ~„z=A/v is much larger than the os-
cillation time of the two-level system 2A/6 or, in terms of
the dimensionless parameter y =6 /2%v, the limit where
y is larger than one. In the slow passage limit we expect
an adiabatic evolution to take place and to facilitate the
calculation, it is convenient to view the transition from
the "adiabatic frame" by rotating around the y axis in
spin space through the angle

such that pz is the equilibrium statistical operator for the
bath

&(r)= H(t) +H( )r

with the adiabatic diagonal part

(3.3)

exp( —PHs )

tr [exp( PH~ )]— (2.9)
Ho(t) = —E,o.,+a, o.,X+H~

and a transition-causing part

(3.4)

U(t, t') = T exp ——J dt H (t ) (2.10)

the transition or tunneling probability P for excitation is

where 13 is inversely proportional to the temperature T,
P '=k&T, and tr denotes trace over the environmental
degrees of freedom.

We can now state the problem quantitatively: In terms
of the evolution operator U(t, t'), corresponding to the
total Hamiltonian H(t) (below T denotes time ordering,
but no confusion with temperature should arise)

H, (t)= o. +—o.„X .
Avh

2E',

Here we have introduced the adiabatic energy

e, =[(vt) +b, ]'

(3.5)

and the abbreviated notation a, =—vt/c, for the time-
dependent coupling function to o., in the adiabatic frame.
The time dependence of the crossing energy levels and
the instantaneous eigenvalues for the system Hamiltonian
are depicted in Fig. 1.

The first term in H&(t) describes the environment in-



PING AO AND JQRGEN RAMMER 43

Uo(t, t') = T exp ——f dt Ho(t ) (3.12)

So far all is quite general and we have arrived at a for-
mula, Eq. (3.9), that is convenient as starting point for a
calculation in the adiabatic limit since it is suScient to
consider ony one Aip of the spin.

Thus, by expanding V we get the expression for P in
the adiabatic limit

FIG. 1. The solid lines represent the crossing energy levels
and the dashed lines the adiabatic energy levels.

P=, tr p~ t I dtH', (tt 1)oo

x ds'ali (3.13)

dependent correction to adiabaticity as reAected by the
transformation to the adiabatic frame being time depen-
dent. The environment coupling to a, in Eq. (3.4) is now
time dependent and weaker in the transition region as
compared to the original frame, but in this region we now
get an additional coupling to o.„represented by the
second term in H, (t), which causes transitions between
the up- and down-spin states accompanied by phonon
emissions and absorptions.

The evolution operator in the adiabatic frame U corre-
sponding to the Hamiltonian &(t)

XBt[s, ,X(t, )]U, (t„t,)) (3.15)

and Po is the bare phase

We can now get rid of the explicit appearance of the
spin operators by utilizing the fact that Ho(t) is diagonal
in space space and rewrite Eq. (3.13) as

P = f dt, f dt2I(t„t2)

X exp I i [Po( t2 ) —$0( t I ) ]], (3.14)

where I describes the Hip of the spin

I(t] t~)= ( U((t& to)B [E( X(t& )]U ](t] t~)

U(t, t')=T exp ——f dt&(t) (3.6)
Po(t) =—f dt'e,2

(3.16)

is related to the U of Eq. (2.10) by

U(t, t')=R(t)U(t, t')R (t') (3.7)

We have introduced the shorthand notation for the act of
the Hip

and the transition probability P is consequently given by
the expression

B [E„X(t)]= +i X(t)Av

2&2 gE
(3.17)

P =Tr[p; U ( oo, —oo )P ) U( oo, —oo )], (3.8) and the adiabatic evolution gives rise to the factors

where P& projects onto the spin-down state
I

J, ).
We have partitioned in Eq. (3.3) the Hamiltonian H(t)

into diagonal and off-diagonal parts with respect to the
z-direction in spin space in the adiabatic frame in order
to be able to set up the perturbative expression in the off-
diagonal nonadiabatic transition-causing part H&(t). Fi-
nally, we therefore switch to the interaction picture with
respect to Ho(t) and obtain the transition probability

P =Tr[p; P'
( oo, —oo )P ) l ( oo, —oo ) ] (3.9)

in terms of the transition-causing evolution operator V
given by

U+, (t, t')=T exp (+1) f dt a ,X(t)-(3.18)

where the bath operator in the interaction picture is
given by

l lX ( t) =exp Hs t X exp—— H~t—(3.19)

The brackets ( . . ) in Eq. (3.15) denote tr(p~ ).
The fact that the probability is a real number is, at this

point, represented by the following Hermitian property of
the integrand I of Eq. (3.14):

V(t, t')=Texp ——f dt H', (t) (3.10) I(t, , t2)=I*(t2, t) ), (3.20)

where

H, (t) = Uo(t, to )H', (t) Uo(t, to ) (3.11)

and the evolution operator corresponding to Ho(t) is

where e denotes a complex conjugation.
This property allows us to choose a definite time-

ordering relation between t& and t2 so that Eq. (3.14) can
be rewritten in its explicit real form
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P =2Re f dt, f dt2I(t„t2) g(t) =P(t) =a, [1—2[8(t —t )
—6(t t—, )]]

XexpIi [P (t ) P—(t, )]] . (3.21)

We shall now employ the real-time dynamical tech-
nique as it is convenient to relate the term in the brackets
of Eq. (3.15) to an expression involving the closed-time-
path Green's function for the bath. ' In order to do so,
we introduce the generating functional for the environ-
mental coordinate along the closed time path c, extending
back and forth along the real axis' '

(3.22)

where T, denotes the contour-ordering operator along
the closed contour c, extending from —ao to + ~ and
back again to —ao. Employing functional differentiation,
we can then express Eq. (3.21) as

P =2Re f dt& f dtze xp Ii [$0(t2) $0(t&)]—]

XB E, ,ik
5
, t, )

XB s, ,i' Z [g]i
1 2

(3.23)

provided we, after the functional differentiation, insert
the proper "force" g=g . On the forward contour from
—~ to + ~, we shall choose

t~ OO &t &t2
= ~

—0.'f, t2 & t & f ) (3.24)

where e denotes the step function, and on the backward
contour from + ao to —~, we shall choose

—oo&t &oo (3.25)

We note the characteristic of dissipative dynamics that
the "force" P is different on the forward and backward
time paths, in contrast to an external classical force.

The calculation of the probability P has now been re-
duced to the calculation of the generating functional Z,
which for the present case of a set of harmonic oscillators
is easily done according to Wick's theorem'

Z[g]=exp — f dr f dr'g(r)D(r, r')g(r')
2g c c

(3.26)

where we have introduced the contour-ordered Green's
function along the closed time patch c for the bath

D(r, r') = i ( T, [X—(r)X(r')]) . (3.27)

We can now evaluate P and obtain for the probability,
after taking advantage of the interrelationships between
the Green's functions appearing when w and ~' resides on
the forward or backward part of the contour (for details
we refer to the Appendix),

2
oo j iP =2Re dt's dt's a*(t2, ti)a(ti, tq)+ — Dii(ti, t2) Z(ti, t2)expIl [P (to~) P (0t&)] ]

oo 00 C Et) I2

where

a (t„t2)= +i dt D (t„t)a,—2 dt D»(t„t)a,Uh

2F AE,

(3.28)

(3.29)

and, upon inserting (=go, Z [g] becomes the function of t, and t2 (when t, ) t2; for the opposite sequence we have the
complex conjugate)

2iZ(t, , t2)=exp — f dt f dt'a, D (t, t')a, . exp f dt f dt'a, D (t, t')a, (3.30)

The Green's functions introduced are the retarded,
Keldysh, and usual time ordered:

D (t, t') = —i6(t —t')( [X(t),X(t')] )

B(t —t') f de J(co)sinco(t t'), —
2 0

(3.31)

R f dc—o J (co)coth(%co/2k~ T)
2 0

(3.32)X cosa'(t —t'),

,'[D (t, t')+D (t',—t)+D (t, t')] . (3.33)

We have now achieved the goal of getting rid of opera-
tors and expressed the transition probability in terms of
integrals. In the following we shall show that, under cer-
tain conditions which establish the adiabatic limit, we
can, in fact, perform the time integrals and obtain a
closed expression for the transition probability in terms
of known functions.

We note that the expression Eq. (3.28) for the probabil-
ity can be written in the more suggestive form using the
hermiticity property Eq. (3.20)
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P= f dt, f dt2A(t, , t2)exp[if(t, , t2)] . (3.34)

4(tl t2) 40( 2) 40(tl ) 4(tl t2)

where

(3.35)

P(t, , t2)= —f dt f dt' f des J(02)a,

X sin[02(t —t') ]a,

(3.36)

The "amplitude" factor is given by

Here the phase factor contains, in addition to the bare
phase p0, a contribution p due to the influence of the in-

teraction

P0=(2rl4) exp( —2~@) . (3.42)

Away from the stationary phase point of
~Ret~ ) rLZ, p0 is a rapidly oscillating function since it is

proportional to y and we therefore need to keep only the
contributions from the small semicircle parts of the in-
tegration contours. The rest of the integrand

integration contour into the complex time plane as shown
, in Fig. 2. Our choice of contour must avoid the station-

ary point of p0 since the prefactor A is singular at this
point, which, furthermore, is the end point of the
integrand's branch cut as depicted in Fig. 2. We note
that, calculating the probability in the absence of cou-
pling by the stationary phase method, we obtain the exact
result [see Eq. (6.37)] up to a small logarithmic correction

A (t„t,)= vA A(t„t, )
2c., c.,

1 2

and 3 is the function

A(t„t, )= A(t„t2)~Z(t„t2)~,

(3.37)

(3.38)

A (t1, t2 )exp[i/(t1, t2 ) ]

is, as long as the temperature T satisfies k~T~A/4y, a
smooth function of t, and t2. Thus, we can quantity the
adiabatic limit to mean y ) 1 as well as k~ T ~ 6/4y, and
in this limit we have, for the transition probability P,

where

A(t, , t, )=
2

2c, c,
a*(t„t,)a(t„t2)

P = A (i rLz irLz)exp['0('~LZ i~LZ)]P0 (3 43)

This expression, as noted above, reduces to

2
P =Z(irLZ —irLZ)P0 . (3.44)

+ — D'(t„t, )
i

1 2

(3.39)

and the absolute value of Z does not depend on the re-
tarded bath Green's function

Z(t, , t2)~=exp 2 f dt f dt'aD (t t')a, .
l2

We are thus left with calculating the quantity
Z(i7LZ irLZ). At this point, it is not evident that we
can express the result in closed form, but in the linear
sweep model under consideration the integrals appearing
can be expressed in terms of known functions. In fact,
after noticing the cancellation between a term in
~Z(irLZ irLZ)~ and the term

exp[i/(i&LZ —irLz)]

The introduced correlation function is

D (t, t') = —i(X(t)X(t') )

,' [D~(t, t') D~—(t',t)+D~—(t, t')] .

(3.40)

P =P0exp[6( T rLZ)] (3.45)

with the environment-dependent exponent 8 given by

we obtain an expression for the tunneling probability P in
the adiabatic limit, valid for y) 1 and k&T~A/4y,
which can be expressed in closed form

Except for the factor 3, the "amplitude" factor is a real
positive function. However, in the evaluation of the tran-
sition probability in the stationary phase approximation
performed below, the effect of the function 3 reduces to
a multiplicative factor which by the chosen normaliza-
tion equals one.

The integrals in Eq. (3.34) in the expression for P can
be evaluated by employing a stationary phase method
since the free phase p0 provides a fast oscillating phase
factor provided that the "adiabatic" parameter y is large,
y ) 1. In the absence of coupling to the environment, the
integrals over t, and t2 are uncoupled and dominated by
the stationary phase point of p0 which, for the integral
over t„must be chosen as i7Lz and for t2 the complex
conjugate number —i~Lz. As we shall demonstrate
shortly, if g(@co,~Lz, then this is also the case in the
presence of the environment. We therefore deform the

Ji
/

& ~~LZ
, C

LZ

FIG. 2. Adiabatic integration contours in the complex-time
plane with branch cuts indicated.
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7LZ) Z(i1LZ 7LZ)

=sr rLz J de J(co) n(co)I
&
(corLz), (3.46)

0

where n is the Bose function and I, is the modified Bessel
function. The temperature dependence originally ap-
pears only in ~Z~ and there in form of a thermal and
quantum fluctuation (zero-point) term

coth(irico/2k' T) =2n (co)+ I .

The above-mentioned cancellation is the exact cancella-
tion of the systematic, dissipative term

exp[i/(irLz irLz)]

by the quantum fluctuations or quantum noise term. The
quantum noise term alone leads to an increase in the
transition probability at zero temperature; this is due to
the circumstance that the exponentially small bare transi-
tion probability is a result of a delicate destructive in-
terference between amplitudes which, in the presence of
the quantum noise, is partially upset. The canceling sys-
tematic force term effectively renormalizes the adiabatic
parameter y, and constitutes a combined renormalization
of the energy gap and the sweeping rate. For the general
distinction between the two terms and their relationship
through the fluctuation-dissipation theorem, we refer to
the general discussion in the Appendix. Surprisingly, we
thus find that, in the adiabatic limit at zero temperature,
the transition probability is not affected by the presence
of the coupling to the environment as e(T =0, rLz) is
equal to zero.

The exact compensation leading to the absence of
inhuence of the environment at zero temperature is a
property of the considered model; to be specific, the
linear form of the external drive Uto, . We have also
studied models where the external drive is not linear in
time and there we find only partial cancellation. The
canceling systematic term is minimal for the linear-sweep
model and for other cases we thus find that the zero-
temperature transition probability is decreased by the
presence of the coupling to the environment.

As noted earlier, in order for adiabaticity to prevail, we
must require that the temperature T is smaller than
5/4yk~. If this requirement is not satisfied, terms in-
volving D will be ultraviolet divergent and our assump-
tion of Z being a smoothly varying function, necessary
for the stationary phase method to be applicable, ceases
to be valid; or, in other words, the bare stationary phase
point determined by the bare phase $0 is no longer a good
approximation to the true stationary phase point. The
breakdown of adiabaticity at low (on the scale of b, /kIi )

temperatures is a consequence of thermal activation
which destroys adiabaticity. Lastly, we must argue that
maintaining only the lowest-order term in H

&
in Eq. (3.9)

for the transition probability P does not amount to a per-
turbative treatment of the coupling; in fact, in the
strong-coupling limit, adiabaticity is recovered, as we
shall show in the next section. This is readily done as
long as the integrals are controlled by the bare stationary
phase point, since then such terms, like A of Eq. (3.39),
has a prefactor which is small near the bare stationary

phase point. The crucial question for the validity of our
calculation in the adiabatic limit is therefore the extent to
which the bare stationary phase points are sufficient.
One restriction for this to be valid we have mentioned al-
ready, namely, that the temperature has to be sufficiently
low, k&T 5/4y; another question is the restriction this
implies for the coupling strength. We have, to this end,
investigated the position of the exact stationary phase
point as a function of the coupling strength and find that
the position of the stationary phase point, after initially
moving further out in the complex plane for sufficiently
strong coupling, moves to the real axis (in fact, very close
to origin, t, =~/co„ in which case our calculational
scheme has long ceased to be valid). However, this hap-
pens only when the coupling strength q is of order
yen, ~„z. Since this criterion only excludes extremely
strong coupling, we find that the stationary phase calcu-
lation is not restricted to weak coupling.

The result Eqs. (3.45) and (3.46) di6'ers qualitatively as
well as quantitatively from the, to our knowledge, only
other published result in the literature' on the inhuence
of dissipation in this model in the adiabatic limit. Firstly,
at zero temperature we do not find any depression of the
tunneling probability as in Ref. 14, the reason being the
compensation between the renormalization and quantum
noise effects. Secondly, our result is not plagued by in-
frared divergences for any physical choice of the spectral
function. The above result leads to the opposite con-
clusion, in general, as compared to the result of Ref. 14.
The dift'erence is due to the use of their Eq. (2.28) for the
adiabatic energy difference in the phase factor which is
insufficient as it neglects the equally important coupling
contribution to the adiabatic energy.

The slow-passage, low-temperature result lends itself to
a simple interpretation: At zero temperature the transi-
tion can take place only through quantum tunneling but
with probability unmodified as compared to the uncou-
pled case. At finite temperatures, the transition probabil-
ity is enhanced due to phonon-assisted transitions.

IV. THE STRONG-COUPLING LIMIT

In the preceding section we found that our scheme of
calculating the transition probability in the slow-passage
limit eventually would break down for strong enough
coupling. A different question, which we now turn to, is
whether adiabaticity is lost in the case of strong coupling.

In order to answer this question, we start out from the
exact perturbation expression in the tunneling matrix ele-
ment 6 for the transition probability P that emerges
when one first eliminates the spin degree of freedom and
subsequently performs the trace over the bath degrees of
freedom. The expression can be obtained with equal ease
from a path-integral approach ' or by the real-time gen-
erating functional technique. For completeness and fur-
ther elaboration of our formulation, we have demonstrat-
ed the latter method in detail in the Appendix where we
obtain the result (we follow the notation of Leggett
et al. ')
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oo
oo t~

P =1+—' g (
—1)"f dt2„ f dt2„1 ' ' f dtlF„(tl, t2, . . . , t2„),

n=1
(4.1)

where the integrand
2n

26
n 2 " g F,F2F3F4

(g. =+1)
(4.2)

Fl =exp —g S (4.3)

n n

F2=exp X
k=1 j=k+1

(4.4)

F, = Q cos
k=2 j=k+1

(4.5)

n
U 2 2F4=cos g g
—(t2 —t2, )

—Xo
j=l

(4.6)

is given by (F, 4 being functions of t, , . . . , t2„as well as
of the g, 's)

A-k =0
J (4.12)

The above general expression is too complicated to al-
low further progress; however, we shall argue that, in the
strong-coupling limit, we can, in our driven and therefore
time-dependent case, also apply the so-called noninteract-
ing blip approximation. This approximation is allow-
able because, crudely speaking, the coupling suppresses
blips; that is, time intervals where the reduced density
matrix of the spin is off diagonal (g = —1) and extends,
sojourns where the reduced density matrix is diagonal
(g =1), so that only nearest-neighboring blips interact.
For a detailed discussion of the noninteracting blip ap-
proximation we refer to Leggett et al. ' Explicitly, the
noninteracting blip approximation amounts to setting all
A k equal to zero as well as the Xjk with kWj —1, and
approximate the rest of the X.k's by the first term in Eq.
(4.9). The prescription for the noninteracting blip ap-
proximation is thus

Sj = Q2(t2&
—t2j, ),

+jk Q2(t2j t2k —1)+Q2(t2j —1 t2k )

(4 7) and

Xjk 5j,k+1Q1(t2j t2j —1) (4.13)

Q2(t2j t2k ) Q2(t2j —1 t2k —1 ) (4.8) The expression for F2 4 then reduces to (F, is un-
changed)

Xjk Ql( 2j 2k+1)+Ql(t2j —1 2k )

Ql( 2j 2k ) Ql( 2j —1 2k+1)

Ql(t) = f deuce J(co)sincot

, f dt f dt D~(t, t')+t f d~

Q, (t) = f den co 'J(co)(1—cosset)coth( —,'Phoo)

, f dt f dt'D~(t, t') .

(4.9)

(4.10)

(4.11)

I'2 =1,

F = g cos[Q, (t „t„,)], —
k=2

UF4=cos g gk (t2k t2k 1)

Xcos[g, Q, (t2 t,)]—

(4.14)

(4.15)

In Eqs. (4.10) and (4.11), we have explicitly stated the
relation between the function Q 1 and the retarded
response function D for the bath, and the function Q2
and the correlation function for the bath D . We post-
pone the interpretation of the functions to the next sec-
tion.

+sin g gk
—(t2l —

t2k 1) Si [(n, Q, (t2 —t, )] .

(4.16)

The summation over the set [g ] in Eq. (4.2) can now
be carried out and we obtain, in the noninteracting blip
approximation for I'„ the result

2n
2A U 2 2exp[ —Q (t —t, )]cos[Q, (t —t, )]cos —(t, —t, , )

Xexp[ —Q2(t2 —t, )] cos —(t2 t, ) cos[Q, (t2 t, )]+sin——(t2 ——t, ) sin[Q, (t2 t,)]—(4.17)

and subsequently, for the transition probability,

oo t~ n n

& =1+—,
' g ( —1)"f dt, „f dt,„, f dt, Q g (t, , t, , )+h (t, t, ) Q g(t...t, , )

n=1 j= 1 J =2
(4.18)
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where the functions g and h are given by

2

need to observe that Q2(t) & 1 only for times
t &(iles, )

'~ . In fact, we then have, as long as co, t & 1

also, the following behavior:

g(t„t, )= cos —(t2 t, )—

X cos[Q
& (t2 —t

&
) ]exp[ —Q2(t2 —t i ) ] (4 19) and

Q, (t) =-,'r(s)Z~,'t' (4.23)

and

2Ah(t„t, )=
2

sin —(t2 —t, )

Q, (t)=r(s)&~, t .

If we therefore require

(4.24)

(4.25)

Q2(t)=
0&s &1,

(4.21)
—,'illn(1+co, t ), s =1,
i)I (s —1)[1—Re(1 iso, t)'—'], s & 1,

and (for arbitrary temperature)

Xsin[Q, (tz t, )—]exp[ —Q2(t2 —t, )] . (4.20)

The integrand in Eq. (4.18) is still too complicated to
allow for an exact evaluation of the integrals. However,
the expression in Eq. (4.18) is considerably simpler than
the exact expression of Eqs. (4.1)—(4.11) and can, in fact,
as we shall demonstrate, in certain limits be evaluated.
In order to simplify the expression in Eq. (4.18), we can
take advantage of the fact that the function Q2(t) is small

only for times t &(ilute, )
'~ . To demonstrate this let us

note that, at zero temperature, we have 21

i)l (s)(1—s) '[1—Re(1+i co, t)' '],

2k —1

xk= g (
—1)'+'t, , 1&k&n,

j=l
(4.26)

the dominating contribution in the strong-coupling limit
to the expression Eq. (4.18) for the transition probability
can be found. We shall call condition (4.25) the strong-
coupling criterion, and note that, if it is satisfied, only
small [compared to ( i)co,'+') ' ~ ] time differences

lt2j t2j, l

—give a significant contribution to the integral
in Eq. (4.18). The exponential suppression of the func-
tions g and h by the factor containing Q2 therefore limits
the range of integration to time differences 6, where
5=(i)co, )

' . Introducing this time difference cutoff al-
lows us to replace exponentials containing Q2 by unity.
Furthermore, the terms containing Q &

are oscillatory
functions with frequency I (s)rjco, for times t & co, ', and
constants for larger times. In order to exploit this fact we
perform the following change of variables:

qr(s)(1 —s) lm( I+i~ t)—

1(t)= '

i) tan '~, t, s=1,
0&s &1,

(4.22)

qr(s —1)lm(1 —i~, t)'-, »1,
In the expression

2 2
J

t2J
—

tz& &
=2yj xj —

Y'yj + X ym
m =1

(4.27)

(4.28)

where I denotes the gamma function.
For our subsequent approximation scheme to work, we

we can drop the quadratic terms in the yk's if, as as-
sumed, g ) 1 and obtain

P=l+' g ( —1)"f dx, f dx, . f dx„f"dy, . f dy„
n =1 oo n —I

2n

2VX 1/1
X cos

2VX 1/1
cos[Q, (y, )]+sin »n[Q i(y i )) e"pl. Q2(y i ) 1

X Q cos cos[Q&(yk)]expl. Q2(yk)) . (4.29)

f dx f dycos cos(coy, )

We can then, upon observing that the integrand in part of the variables is a symmetric function, perform the integrals
to obtain for the dominating contribution (as indicated by the time difference cutoff on the y integration)

2 2
1 2A 2Q «& 2VX 1+1P=1——
2 0f dx f dy cos (4.30)

where co =geo, .
Rescaling the variables we have the expression

P =1—2y f dx f dy cos[(x —1)y]exp —4y f dx, f dy, cos(x,y, )cos(y, )—oo 0 x 0
(4.31)
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which can be expressed in terms of the sine integral

P =1—2y f dx [si[5co(x —1)]]d

(4.33)

and the derivative appearing in Eq. (4.32) is therefore a
peaked function around x= 1 with a width 1/66. We can
therefore perform the final integration and obtain to or-
der I /&g the strong-coupling limit result

P =exp( —2rry) . (4.34)

In the event of high temperature, the present estima-
tion procedure using 6 as the small time difference cutoff
is no longer appropriate because of the temperature
dependence of the function Qz. The cutoff is then depen-
dent on the temperature

—1/2
k~T

5 z- — '/CO~

and, as we discuss in detail in the next section, we find the
restriction on the temperature for the above estimation to
be valid to be

X exp( 2y [ si [5co(x —1 ) ]

+si[5co(x +1)]]) . (4.32)

Since 6co ))1, the sine integral is approximately steplike

there is no inhuence of the environment in this limit. The
result in the strong-coupling limit thus joins up smoothly
with the result in the fast-passage limit. As a consistency
check of our calculations, we note that, in the event the
coupling strength g satisfies the inequalities

1 & 7l & V&c+LZ (4.36)

V. THE HIGH-TEMPERATURE LIMIT

The investigation of the adiabatic limit in Sec. III
showed that a raising of the temperature has a drastic
effect on the transition probability even at temperatures
small compared to the energy gap. This feature is also
born out in the present section where we evaluate the
asymptotic behavior of the transition probability in the
high-temperature limit.

In the high-temperature limit we assume that the
thermal Auctuations completely dominate over the quan-
tum fluctuations so that we require that

we should, at least at zero temperature, verify that the re-
sults of the strong coupling and the adiabatic calculations
coincide, as, in fact, they do. The temperature restriction
Eq. (4.35) in the strong-coupling limit is just that k&T
must not be large compared to the highest energy Am, of
the bath modes. In that event, we are in the high-
temperature regime which we now turn to discuss. In the
high-temperature limit we shall find that there is no can-
cellation between the different influences of the bath and
therefore discuss this important point further.

k~T (Ace, . (4.35)

kB T )f1' (5.1)
The criterion for the strong-coupling limit result for the
transition probability Eq. (4.34) to be valid is thus both
the criteria (4.25) and (4.35). We note that the coupling
to the bath does not appear explicitly in the expression
Eq. (4.34) to lowest order in I/rt, and that to leading or-
der there is no inhuence of the coupling to the environ-
ment. Just as the weak inhuence of the environment in
the slow-passage, low-temperature limit was the result of
cancellation between the two opposing influences of the
bath on the dynamics of the spin, the situation is the
same in the present strong-coupling limit. In the time
span 6, the cutoff'set by the fluctuation part through the
function Q2, the systematic influence tends to weaken the
inffuence of the environment as the terms containing Q&
in time span 6 execute many oscillations. The recovery of
adiabaticity in the strong-coupling limit is thus again the
result of cancellation between the opposing effects of the
environment.

In dropping the quadratic terms in Eq. (4.28), it could
appear that we must require v & g %co, . In view of the
strong-coupling criterion, Eq. (4.25), this restriction on
the sweeping speed v seems to suggest that the result Eq.
(4.34) is not valid in the strong-coupling, fast-passage lim-
it. However, in the fast-passage limit, the rapid oscilla-
tions of the functions containing v leads to absence of any
inAuence of the environment in accordance with the fast-
passage limit of Eq. (4.34). In Sec. VII we study the fast-
passage limit quite generally reaching the conclusion that

In this limit we have, provided co, t(1, the following
expression for Q2:

Q~(t) = co, t (5.2)

As already noted in the preceding section, under the
assumption Eq. (5.1), the time difference cutoff' is then no
longer the one, 6, set by the quantum fluctuations, but
the much smaller one, 6z-, set by the thermal fluctuations.
An estimation procedure based on the cutoff 5~ and the
form Eq. (5.2) for Q2 requires, for consistency, co, 6r (1
or, equivalently,

Ado

k~T )
7l

(5.3)

Although the expression Eq. (5.3) implies that we are
in the opposite limit of strong coupling according to the
preceding section, sufficiently weak coupling violates the
high-temperature criterion Eq. (5.3). However, the
weak-coupling limit can be dealt with perturbatively as
we show in the next section.

Just as in the strong-coupling calculation of the
preceding section, we start from the noninteracting blip
approximation expression Eq. (4.18) for the transition
probability, but now control the evaluation of the in-
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tegrals by the time difference cutoff 5z- introduced by the
exponential damping due to thermal Auctuations as ap-
pearing through the function Q~.

The difference compared to the strong-coupling limit
now appears, as the cutoff 6z- decreases with increase in
temperature and, in fact, if we require

~B T ) XfflCOc (5.4)

is so short that the terms containing Qi complete no os-
cillations in the time span 5r. Since Qi is zero at time
zero [Q i (0) =0], we obtain, in the high-temperature limit,
the following expression for the transition probability:

P =1+—,
' g (

—1)"
2'

f «i f «2 f « f dy . f dy. ~.cos 'yi, xi,
00 1 ~n —

& /c =1
(5.5)

We note that, in the high-temperature limit, the term
containing the function h in the expression Eq. (4.18) for
the transition probability gives no contribution. The
remaining integral in Eq. (5.5), upon noting that the in-
tegr and is symmetric in the x's, is elementary and
we obtain, in the high-temperature limit, k~ T )A'co„

fico, /g, gkco„ the transition probability

P =
—,
'

[ I+exp( 4vry )] .— (5.6)

(X(t)),=f" dt'D'(t, t )e(t )

= f dt'D~(t, t'),
0

(5.7)

the displacement to a unit disturbance acting in the time
span t. The other inAuence is stochastic, as it is
equivalent to treating the bath coordinate as a Gaussian
Auctuating quantity with the bath correlation function
D proportional to the correlator. The two inAuences,
however, are not independent as they are related through
the Auctuation-dissipation relation.

In the expansion series in the energy gap, the two
iniluences appear, through the functions Qi and Q~, as
certain time averages, as seen from Eqs. (4.10) and (4.11).

We note that the present result is consistent in a nontrivi-
al manner with the result we shall obtain in the fast-
passage limit (Sec. VII).

The result Eq. (5.6) implies that, at high temperatures,
adiabaticity is lost even in the slow-passage limit. In fact,
in the slow-passage limit, the transition saturates at an
equal population of the two levels showing that adiabati-
city is completely lost due to strong mixing between the
levels.

The expression Eq. (5.6) for the transition probability
has also been obtained in phenomenological studies of the
dissipative Landau-Zener model. In Ref. 6, a short-time
relaxation-type approximation was applied to the equa-
tion of motion of the reduced spin-density matrix and, in
Ref. 16, a stochastic treatment was given.

As noted previously and discussed in the Appendix,
the environment inAuences the dynamics of the primary
degree of freedom, the spin, in two different ways. One is
the causal inAuence, describe by the retarded bath propa-
gator, which relates the average displacement of the bath
coordinate to a disturbance. For a 0-function distur-
bance, we have the average displacement of the bath
coordinate

In terms of the displacement of the bath coordinate, we
have, for the function Q i,

Q, (t)= —f dt'(X(t))o+t f d~
fZ 0 0 Cc)

(5.8)

The second term in Eq. (5.8) is the polaroniclike renor-
malization of the energy. At times smaller than the
fastest time characterizing the oscillators t, =1/co„ the
oscillators are not displaced as reflected in Q, by the first
term in Eq. (5.8) being quadratic in time and the sys-
tematic influence is solely from the second, renormaliza-
tion, term which is linear in time and introduces the time
scale t„=I /(r)co, ) characterizing the bath.

The function Q2,

Q, (t)=, t f dt'D~(t'), (5.9)

is determined by the correlation function of the Auctua-
tions exerted by the bath and introduces the characteris-
tic time over which the Auctuations are correlated;
t, = I/co, at low temperatures and tz-=A'/(kii T) at high
temperatures.

In terms of these characteristic times, the high-
temperature limit corresponds to the relationship

fr & tc (5.10)

whereas the strong-coupling limit corresponds to the re-
lationship

t7 ~ (5.11)

At this point we should comment on the stochastic
model of nonadiabatic processes of adsorbates of Ref. 8.
In this work the dynamical processes in chemisorption is
studied. The adsorbates are assumed to be interacting
with the degrees of freedom of the substrate; that is, pho-
nons or electron-hole pair excitations. The study of this
physical system is performed by the use of exactly the
model we are studying. In Ref. 8, a high-temperature
form of the Auctuations is assumed and features like the
cancellation property in the adiabatic limit cannot be no-
ticed. Furthermore, one cannot trust the numerical re-
sults in parameter regimes that violate the assumed
high-temperature condition; that is, kz T ~ A.

Within our microscopic treatment we are able to assess
the region of validity of the phenomenological ap-
proaches and identify their phenomenological parame-
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ters. Comparing with our microscopic model, we see that
the stochastic models of Refs. 6, 8, and 16 correspond to
neglect of the systematic force of the bath; that is,
neglecting terms involving the retarded bath propagator
D; take the high-temperature form of the Auctuating
force term, k&T )Ace, and co, larger than remaining
characteristic frequencies, and assume an ohmic spectral
function

U, (t, t')=Texp ——j dtH, (t)

and the bath by

U~(t, t') =exp — H~—(t t'—)

(6.5)

Cc) /CO

J(co)=qcoe (5.12)

so that the fluctuating force term reduces to the white-
noise form corresponding to

Expressing the transition probability in terms of quan-
tities referring to the interaction picture with respect to
the zeroth-order Hamiltonian H (t), we then get

D~(t) = i ~rtks—TA'5(t) . (5.13)
P =Tr[p, V ( oo, —oo ) U, ( oo, —co )

We can therefore identify the phenomenological Auctua-
tion amplitude parameters of Ref. 6 and the so-called de-
phasing time of Ref. 16 as determined by the combination
A lvrgk~ T.

It should be recognized that the phenomenological ap-
proach is a crude and quite uncontrollable approximation
for the dissipative dynamics of the spin. In contrast, we
start from the noninteracting blip approximation expres-
sion and the intermediate equations in the two ap-
proaches look very diFerent up until the final step at
which they reduce to the same result, Eq. (5.6).

xpt U, (~, —~ )V(oo, —~ ) j, (6.7)

V( t, t ') = T exp ——J dF H,'( t ) (6.8)

is specified by the Hamiltonian in the interaction picture

H,'(t) = U, (t, t, )H, U, (t, t, ) =o,(t)X(t),

where

(6.9)

where the evolution operator in the interaction picture
with respect to H (t)

Vl. PKRTURBATIVE TREATMENT
and

o, (t) = U,t(t, t, )o, U, (t, t, )- (6.10)

H(t)=H (t)+H,

into a zeroth-order noninteracting part

(6.1)

In the calculation of the transition probability in the
adiabatic limit, we did not explicitly exploit any weak-
coupling restriction and, for instance, found a divergent
result except for low temperatures k&T~A/4y almost
independently of the coupling strength. In this section
we shall treat the eFect of the environment on the system
perturbatively and, by working explicitly in the coupling
strength, we shall hereby achieve the possibility of ex-
ploring the weak-coupling but intermediate-temperature
regime. As we shall show, at intermediate temperatures
we are in a highly nonadiabatic regime.

To perform a weak-coupling calculation of the transi-
tion probability, we split the Hamiltonian

X(t)=exp Hs(t —to) Xexp ——H~(t to)——

(6.11)

Introducing a complete set of spin states li ), i = 1,2, we
can express the probability P as

p =«ps g & t I
V'( ~, —~ ) I

~ ) U;, & J I V( ~, —~ )
I t &

(6.12)

where the matrix elements of the spin evolution are given
by

(6.13)

H'(t) =H, (t)+H~

and treat the interaction with the environment

H, =o.,X

(6.2)

(6.3)

The matrix elements U; can be expressed in terms of the
solutions of the Schrodinger equation for the system part

(6.14)
as the perturbation.

The evolution operator corresponding to H (t), that is,
the two separate systems the spin and the bath, decom-
poses into a system and a bath part

Explicitly defining

(6.15)

Uo(t, t')=Texp ——J dt H (t) and

= U, (t, t') U~(t, t '),
where the spin-system evolution is governed by

(6.4)

we can rewrite the transition probability P as

(6.16)
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&=I@,l'«[pg&lII'(, —~)I1&&llew'(~, — )lt&]+(I—lg, l')«[p, &1 I"(~,—~)l&&&ill'(~, —~)lt&]
—2ReI&*, gztr[p~& 1I V (~, —~ )Il && III'(~, —co )I l &]j . (6.17)

So far the treatment has been quite general, but we are now in a position from which we can calculate the transition
probability P perturbatively in the coupling strength by expanding V, and to lowest order in the coupling we obtain

P =P)+P2+P3

S, = ~y, ~'(1 —2~, ),
(6.18)

(6.19)

4i oo

I'z —
z dt) dtzD (t), t z)f)*(t) )Qz(t) )g (|t z)P z( tz),

GO

(6.20)

m 4*, 4z f dt& f" dtz[~4i(ti)~ —~qz(ti)~ ]0&( tz)f (zt z)[ 2~(ti —tz)D (ti, tz) —D "(ti, tz) (6.21)

where the advanced bath correlator is given by

D "(t,t') =i 0(t' t)& [X—(t),X(t')] &

and satisfies the relation

D "(t,t')=[D"(t', t)]* .

(6.22)

(6.23)

I

value

~

A
~

=exp [ (~/4)y—] .

The expressions in Eqs. (6.15) and (6.16) equal g&(t) and
1ijz(t), respectively, taken at time t = ~.

Here

g, (t)
( )= ~(t)

. V

dt'
+ i +(b—. /A) +(vt/A) g)(t) =0 (6.24)

with the initial conditions

d
~ lij, ( —~ )

~

= 1, i A
dt

=v lim [tP(t)] (625)

denotes the solution of the matrix equation Eq. (6.14), '

and accordingly the spin-up component P&(t) satisfies the
equation

A. The weak-coupling, slow-passage limit

Presently, we are not aware of relations that would
give an exact evaluation of the integrals in Eqs. (6.20) and
(6.21). However, in the slow-passage limit where the di-
mensionless parameter y is large compared to one, and at
temperatures T ) b, /yk~, we can extract the leading or-
der behavior. This can be achieved by using the asymp-
totic expansions of the parabolic cylinder functions.

An integral in Eqs. (6.20) and (6.21) is divided into
three parts guided by the possibility of asymptotic expan-
sions of the parabolic cylinder functions. In terms of the
dimensionless parameter for time u =t&2v/A, the three
parts are specified by the adiabatic parameter y. In the
region u ( —&y, the product of the two P's is a rapidly
oscillating function, provided y ) l, since there we have

and the spin-down component gz(t) satisfies the equation D ~ ~—u exp i—
4

. 0=exp i —i y ln~u~+ ——
4 4

+ i +(b /—A')—+(vt/A') gz(t) =0

with the initial conditions

(6.26)

D; 1

. 7r—u exp i—
4

X [1+0[(1/y)'] j,
= /u[ 'exp —y4

(6.30)

gz( —oo ) =0, iA
dt

= v lim [tPz(t) ] . (6.27)
2

X exp —i i i y ln
~
u—~— —

4 4

f,(t)= AD —&2 /Av' t exp i (6.28)

gz(t)

The solutions g, (t) and gz(t) of Eqs. (6.24) —(6.27) can
be expressed in terms of parabolic cylinder functions
D (z) (Refs. 7 and 23)

X Il+0[(1/y) ]j . (6.31)

The contributions to the integral from this region can
therefore be neglected.

In the region u H (
—&y, &y ), we can use the expres-

sions

~ ~—u exp I,
—
4

= —&yexp i—AD . 7T—&2v/A t exp i

(6.29)
where the normalization constant 2 has the absolute

1 I—exp i v'yu + + (1—lny)v'2 4 2

X [ I+0(1/&y ) ], (6.32)
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~ ~D; &

—u exp i—

1 . 77 7T l
exp i &yu i —+ +—(1—lny)v'2y 4 4 2

X[1+0(1/&y)] . (6.33)

In this region the product of the two g's is therefore a
simple harmonic and the integration can be performed.

In the region u )&y, we have the asymptotic forms

mediate regime so that the present result should join up
smoothly with our low-temperature result of Sec. III, the
stationary phase calculation. Similarly, we can not assess
the high-temperature regime as the expression Eq. (6.38)
increases linearly with temperature at high temperatures.
However, as we showed in Sec. V, at high temperatures
the transition saturates at an equal population of the two
levels.

In view of the obtained results, we can now state the
weak-coupling criterion quantitatively as

(6.39)

D

and

D

. 77—u exp i—

. 7T—u exp i—
4

X [1+0(1/y)] (6.34)

&2'
r(iy+ I)

l 2 . 7T
Xexp —u —i@ lnu ——

4 4

X[1+0(1/y)] . (6.35)

l 2 . 3&=exp ——u —iy lnu — y4 4
In the weak-coupling limit the relevant high-temperature
criterion is therefore the expression Eq. (5.3) as Eqs. (5.1)
and (5.4) then are consequences thereof.

We note that weak coupling does not imply that the
effect of the environment is small, as this strongly de-
pends on the temperature. With these results we cover
the whole temperature region in the slow passage, weak-
coupling limit, and collect all the results below:

Poexp[6'(T, rLz)], k~ T & b, /4y,

Po+ vry J (2b, /A')exp
2A

BT

The product of the two g's can therefore be approximat-
ed by a constant and again the integration can be per-
formed.

We therefore perform all the integrals approximately
in the weak-coupling, slow-passage limit, y ) 1, and upon
noting the cancellations among contributions to P, , P2,
and P3, we obtain the result

6/4@ &k T &2,

S

4 &kBT &min Ace, /g,
2U

777jCO

P =Po+AP (6.36) k~ T ) fico, /g .

where Po is the exact transition probability in the absence
of coupling

Pa=~/, ~
=exp( —2~y) .

and the environment correction AP is given by

(6.37)

b.P =—r„zJ(26/fi)n (2b, /A') . (6.38)

The expression Eq. (6.38) is valid for weak coupling
and intermediate temperatures. We can thus easily ob-
tain a prediction for the temperature region where the
environment-dependent contribution AP is more impor-
tant than the bare tunneling probability Po showing that
the dominating contribution is from thermal transitions.
We note that the result Eq. (6.38) is in accordance with a
simple Golden Rule estimation, as the environment-
induced transition probability is proportional to the time
spent in the transition region, the effective coupling
strength at the gap frequency, and the number of pho-
nons at the gap energy.

The present calculation does not allow a discussion of
the low-temperature regime kB T & 6/y since we cannot
control the correction terms beyond, in fact, tempera-
tures kB T & 6/1ny. However, we do not expect any
qualitatively new temperature dependence in the inter-

(6.40)
With the above results we have a complete picture of

the slow-passage, weak-coupling limit. At low tempera-
tures, kz T & b/4y, the transition takes place through
quantum tunneling without any modification due to the
environment. The precursor effect at small temperatures
k~T & b, /y has, according to Eqs. (3.45) and (3.46), the
form

S+3
k, T

P =P 1+2m I (s+3)g(co,r )' '
y

(6.41)

At temperatures b, /y & kz T & b„ thermally assisted tran-
sitions across the energy gap dominates over quantum
tunneling and at these intermediate temperatures we have
the usual form of the transition probability for activation
across an energy barrier. The crossover temperature
separating quantum tunneling and thermal activation
does not depend on the coupling strength (a feature
analogous to the situation of tunneling out of a metasta-
ble state). At temperatures kz T ) b, , the transition prob-
ability increases linearly with temperature T and at
higher temperatures

S

2v
kB T ) A'co, /g,

7TX/CO 25
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we get saturation of the transition probability to the
high-temperature value —,'.

VII. THE FAST-PASSAGE LIMIT

V
g&(t) =exp —i t (7.1)

and

t/rz( t) = —i—exp i t —dt 'exp —i t—
2

(7.2)

and upon inserting these in the expression for P and per-
forming partial integrations, we obtain, after collecting
terms,

In this section we shall calculate the transition proba-
bility in the fast-passage limit where the Landau-Zener
time is much smaller than the oscillation time of the
two-level system. Using the expression for the transition
probability, Eq. (6.18), valid to lowest order in the cou-
pling, we can assess its properties in the weak-coupling
and fast-passage limit where the dimensionless parameter
y is small compared to one. To do this we only have to
observe that in the fast-passage limit we can use the fol-
lowing approximate (lowest order in b, ) solutions to Eqs.
(6.24) and (6.26):

vt ls, ~ 1 (7.6)

Then all integrations in Eq. (3.34) can be performed
and we again obtain the result of Eq. (7.5). This result
has also been obtained in Ref. 15. We obtain the result,
however, without invoking the noninteracting blip ap-
proximation. The reason that we, in the fast-passage lim-

it, do not have any eAect of the bath at zero temperature
is not as subtle as in the adiabatic limit where it depended
on a cancellation between two opposing mechanisms. In
the present limit both of these terms vanish (even at
TWO). The complete absence of influence of the environ-
ment in the fast-passage limit, that is, to the lowest order
in the inverse sweeping rate, is only valid for the con-
sidered linear sweep model. In the fast-passage limit we
therefore obtain the result, in agreement with the high-
temperature strong-coupling results, respectively, that
there is no inhuence of dissipation on the transition prob-
ability even at arbitrary temperatures and arbitrary cou-
pling strength.

substitute the expression for the bare adiabatic phase

f dt c,—,~v (t t —
) (7.7)

and substitute for the amplitude factor
2

(7.8)

Xexp i (t, ——t2) (7.3)

where 8 is the integral of the bath operator

B(t)=f dt'X(t') . (7.4)

The integral in Eq. (7.3) can be evaluated and, after
noticing the complete cancellation between the lowest-
order correction terms due to the environment, we obtain
the result (valid for y ( 1)

P =P0=1—2ny, (7.5)

that is, there is no inhuence of the environment in the
fast-passage limit.

This result can also be obtained, in fact, by a far less
tedious calculation, by evaluating the transition probabil-
ity in perturbation theory, doing lowest-order perturba-
tion theory not as above in the coupling to the environ-
ment but only in the spin-Aip term Ao. of the original
Hamiltonian Eq. (2.5) demonstrating that the result Eq.
(7.5) is not restricted to weak coupling. In conjunction
with the result for the strong-coupling limit, this shows
that there is virtually no inAuence on the environment in
the fast-passage limit. In order to perform the one-Aip
calculation we just note what it amounts in Eq. (3.34) for
the transition probability, to perform the following sub-
stitutions:

P =P, , iq, q, l—'(B( )B(~)&+, lq, 1(,l'(B(t)B(t) &

g2

—4, f dt, f dt, (B(t, )B(t, )&
~4 1 2

VIII. THE INFLUENCE OF DISSIPATION
ON THE DECAY OF THE EXCITED STATE

In this section we shall brieAy state the results for the
decay of the excited state as the calculations parallel that
of the previous sections. At a remote time we thus as-
sume that our initial state is described by the initial sta-
tistical operator p,'. ,

p,
'= ~&&1 i, =P,p, (8.1)

as the spin-down state at large negative times corre-
sponds to the excited state. We then ask for the probabil-
ity P' that the system in the far future has decayed to the
ground state assuming the bath unobserved. This decay
probability P' is then given by

P'= Tr[p,
' Ut( ~, —~ )P~ U( ~, —~ )] . (8.2)

The calculation of the decay probability is equivalent to
that of the excitation probability of the previous sections
and we now state the results in various limits.

A. The slow-passage limit

P'=P eopx(8')

with a nonvanishing exponent 6' at zero temperature

(8.3)

Calculating the decay probability by the stationary
phase method analogously to the calculation of Sec. III,
we find that the two terms that cancelled for the case of
the excitation transition, now instead add so that the de-
cay probability P' is given by
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6'( T, r„z)
=rr rLz J dc' J(cg)[n (co)+ 1]I&(co&Lz) . (8.4)

The transition probability at zero temperature is
enhanced, in fact, except for spectra with a very small
cutoff; co, =l(2rLz), the expression is ultraviolet diver-
gent. Due to strong spontaneous emission, adiabaticity is
thus unattainable for the decay transition, where we start
from the excited state. This result shows that, in the
slow-passage limit, the decay probability has a discon-
tinuity as function of the coupling strength at q equal to
zero.

B. The fast-passage limit

In the fast-passage limit, y & 1, we obtain for the decay
transition, just as for the excitation transition, that there
is no effect of the environment. To lowest order in y, we
have

lowest order in 1/&q at temperatures kz T & Aco„ the re-
sult

P'=1 —exp( —2m@)+exp( —4~y) . (8.9)

In analogy with the result for the excitation transition
Eq. (4.34), the coupling strength does not appear explicit-
ly in the expression Eq. (8.9) to lowest order in I/g.
However, in contrast to the case of the excitation transi-
tion, the result does not reduce to that of the bare transi-
tion probability. For the decay transition the previously
found strong inAuence of the environment due to phonon
emission should result in a decay probability close to one.
This is indeed reflected in the result Eq. (8.9), as for all
values of y, the expression is close to one, except for a
sharp dip at the value y =(In2)/2'. We note that the re-
sult Eq. (8.9) agrees in a nontrivial manner with the result
in the fast-passage limit that there is no inAuence of the
environment.

P'=1 —2~y . (8.S) E. The high-temperature limit

This result is obtained both for a one-Aip calculation
and a more tedious calculation in the weak-coupling lim-
it. In accordance with the result for the strong-coupling
limit [see Eq. (8.10)], this shows that for the decay transi-
tion there is also no inhuence of the environment in the
fast-passage limit, thus completely paralleling the situa-
tion for the excitation transition.

The expression for the decay probability differs only
from the expression for the excitation probability Eq.
(4.18) in the respect that the term containing the function
h appears with the opposite sign. However, as this term
is negligible in the high-temperature limit, k~T &A~„
Am, /g, gAco„we have

C. The weak-coupling limit P'=
—,
' [1+exp( 47ry ) ]— (8.10)

A perturbative calculation in the coupling strength of
the decay probability P gives, in the slow-passage limit,
y & 1, and at intermediate temperatures

6/y & k~ T & Ace, /q,

as a result of the strong mixing between the levels dom-
inating this limit and correspondingly the same expres-
sion ap for the excitation probability.

IX. APPLICATIONS

the result

P'=Po+ AP',

where Po is the bare decay probability

Po=Po

(8.6)

(8.7)

We shall now use the obtained results to estimate the
inhuence of a dissipative environment on the transition
processes in a few of the various physical systems we
mentioned in the Introduction. The present choice of ex-
amples should be regarded as illustrating the experimen-
tal relevance of the obtained results, rather than giving
an exhaustive account for all the relevant physical phe-
nomena mentioned in the Introduction.

2AAP'=~@—J 2h
fi

(8.8)
A. Macroscopic quantum tunneling

As to be expected, the only difference as compared
with the excitation probability is that we, for the decay
probability, have the additional effect of spontaneous
emission. The strong enhancement of the decay probabil-
ity due to the presence of the environment as indicated by
Eq. (8.8) is consistent with the result of the investigation
above of the slow-passage limit where strong spontaneous
phonon emission leads to the absence of adiabaticity and
here limits the range of validity of Eq. (8.8) to weak cou-
pling or low temperatures.

D. The strong-coupling limit

P2
H(Pq„&) = + V(@),

2C
(9.1)

where P+ = CN is the conjugate variable to the fI.ux and
the potential energy Vis given by

In the context of macroscopic quantum tunneling, we
now show that the dynamics of the model we have stud-
ied can represent the behavior of a rf SQUID in a time-
dependent external fi.ux. The electromagnetic behavior of
a SQUID is described in terms of the magnetic ffux N
threading the superconducting ring

The strong-coupling calculation for the decay probabil-
ity is equivalent to that of Sec. IV and we obtain, to

(N —N,„) I,+0I'(@)= cos 27T
2L 2~

(9.2)
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is proportional to the change in electron density at the
resonance

N
dt

(taken to be at time t=0), and the electroweak interaction
constant GF, and 6 is the difference between the free-
space mass squares of the neutrinos. For typical values
we obtain that the slow-passage limit is appropriate, and
the probability for a nonadiabatic transition of the elec-
tron neutrino to stay electron neutrino is given by the
Landau-Zener expression Eq. (6.37).

The question we wish to consider is whether thermal
fluctuations in the electron density in the sun will change
the bare estimate. The fiuctuations in the (free) electron
gas corresponds to an ohmic spectral density J(co)=geo,
where g=(GFmN' Ifi ) . So even though the tempera-
ture in the sun is 10 K, the effect of thermal fluctuations
calculated according to formula Eq. (6.38) will thus be
insignificant. The smallness of the weak interaction con-
stant thus results in negligible effects from electronic den-
sity fluctuations. However, if a magnetic moment ' is at-
tributed to the neutrinos, the much stronger electromag-
netic interaction could come into play as the fluctuating
magnetic field from the fluctuating electronic current
density would couple to such a magnetic moment.

X. SUMMARY AND CONCLUSION

We have performed an analytical study of the dissipa-
tive Landau-Zener model. Analytical results have been
obtained by performing expansions in all the possible di-
mensionless variables of the model and a comprehensive
understanding of the dissipative dynamics has emerged.

Let us first discuss the excitation transition and the
question of adiabaticity. In contrast to the situation in
the absence of an environment where adiabaticity only
depends on the dimensionless parameter y being large,
characterizing the speed with which the levels cross, the
coupling to an environment restricts adiabaticity to the
low-temperature or strong-coupling regime. For weak or
moderate coupling, the temperature restriction is strong-
est as the adiabatic criterion in this regime is

k~T~A/2~Lz, y) 1, q~1 . (10.1)

In the strong-coupling limit adiabaticity is recovered
once the following criteria are met:

Vg) 1, p) —m', ksT &'R~~ (10.2)

We have shown that adiabaticity in both limits owes its
existence to compensation between the dissipative and
fluctuation influence of the bath. In particular, at zero
temperature we found that there is no influence of the en-
vironment due to exact compensation between the two
influences and showed that this is a property unique to
the standard linear-sweep model.

Continuing the discussion of the slow-passage limit
from the low-temperature end, the strong influence of an
increase in temperature renders the transition nonadia-
batic so that above the adiabatic low-temperature regime
where the transition is dominated by quantum tunneling,
without any modification due to the presence of the envi-
ronment, a non adiabatic intermediate regime appears

dominated by thermally assisted transitions. Finally, at
high temperatures the transition saturates at equal popu-
lation of the levels, signifying that adiabaticity is corn-
pletely lost. The transition probability thus exhibits a
monotonic increase as function of temperature.

Quite contrary we find the following behavior of the
transition probability as a function of coupling strength

In the absence of coupling, of course, only quantum
tunneling can take place, with increasing coupling
strength, the transition probability increases, at first
linearly with a coefFicient that depends on the tempera-
ture regime under consideration. Since we in the strong-
coupling limit have recovered adiabaticity, in fact with
complete suppression of effects of the environment, we
conclude that the transition probability is a nonmonoton-
ic function of the coupling strength g, whose initial value
for zero coupling and limiting value for large-coupling
strength equals the bare transition probability and takes
on a maximum value at intermediate-coupling strength.

In the fast-passage limit we have found that there is
virtually no influence on the excitation transition of the
environment; that is, to lowest order in the dimensionless
parameter y, we do not find any environment-dependent
correction to the transition probability. At intermediate
values of y the whole range of possibilities can be
achieved ranging from no influence of the environment
on the transition to almost equal population depending
on the actual temperature and coupling strength.

Let us now discuss the decay transition. We found
that, for physically relevant environments, the adiabatic
limit does not exist for this transition in the linear-sweep
model, not even at zero temperature. Except for the
fast-passage limit and the high-temperature limit, the
transition is dominated by strong spontaneous emission.
In view of Eqs. (8.8) and (8.10), we observe that, for very
weak coupling, the decay transition probability exhibits
nonmonotonic behavior as function of temperature and
Eqs. (8.6) and (8.9) indicate a monotonic increase as func-
tion of the coupling strength. In the fast-passage limit we
found that, just as in the case of the excitation transition,
there is no influence of the environment. In the high-
temperature limit we found the same expression for the
decay probability as for the excitation probability in ac-
cordance with the complete loss of memory of the initial
state in this limit.

We have established, on the basis of a first-principles
calculation, that previous phenomenological approaches
to the quantum dynamics of level crossing in a dissipative
environment is a high-temperature limit where compen-
sation between the influences of the environment is ab-
sent. In conclusion, we have demonstrated that, in dissi-
pative quantum dynamics, one encounters a variety of be-
haviors even for a simple model as the one presently stud-
ied. In the absence of the environment, the model is ex-
actly solvable, whereas in the presence of the environ-
ment the problem becomes nontrivial. Nevertheless, we
have showed that the analytical treatment is sufficiently
exhaustive that a complete description of the dissipative
quantum dynamics can be given. For the sake of com-
pleteness we have compiled our results in the following
table.
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TABLE I. SUMMARY OF RESULTS. Hamiltonian H =uter, +ho„+cr, g k (ci" +a )+ g fico (a "a + —'), y—:6'/2$u,
~„z—=b, /u. Spectral function J(co)—= (4/A') g A, 5(co—co ). When estimation is needed, we take J(co) =i)co(co/co, )* 'exp( —co/co, ).
P is the excitation transition probability, transition from ground state to excited state. P is the decay transition probability, transi-
tion from excited state to ground state.

Transition probabilities Validity regimes

P =exp( —2~y)
P' =exp( —2~y )

2

P = — exp( —2~y)exp
4

P' = — exp( —2~y )exp

00

~ ~Lz f dco J( co) n(co)I i (corLz)
0

7r'7Lz f dco J( co)[ n( co) +1]I', ( cow zL)
0

g=O

y arbitrary

k~T~, g~1
4y

'

2A
&Lz& ~

P =exp( —2~@)
P' = 1 —exp( —2~@)+exp( —4~@)

2A 2hp =my —J n

26

kB~ &~CO +9
y arbitrary

%63
&k~T &min Ace /g

4y w'/co 2A

2A
1 wLz&

P = —'[1+exp( 4ny)—]
P' = —' [1+exp( 4~@)]-
P =1—2my

P'= 1 —2~@

kg & & 4'm, lg, gA'co„%co,

y arbitrary

k~T and g arbitrary

2'
&Lz& ~

APPENDIX: DERIVATION OF THE FORMAL
PERTURBATION EXPRESSION IN 6

FOR THE TRANSITION PROBABILITY P

In this appendix we show how to arrive at the formal
perturbation expansion in 6 for the excitation probabili-
ty P using the real-time nonequilibrium generating func-
tional technique. In Sec. II we used the method, in par-
ticular, in connection with the adiabatic calculation. Be-
sides supplying the technical details of the method, we
shall discuss the characteristic features of dissipative
quantum dynamics.

We split the Hamiltonian in Eq. (2.5) into oft'-diagonal
and diagonal parts in spin space

H (r) =H„(r)+H~,
Hd(r) =uto, +H~ +H, ,

H~ =Ao.„.
(Al)
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The expression for the transition probability is given in

Eq. (2.11) and since Hd(t) is diagonal in spin space, we

have

(A2)

where Vz is the evolution operator in the interaction pic-
ture with respect to Hd(t)

V, (r, r')=Texp ——f dr H~(r)
t

(A3)

so that

H~(r)= Udt(t, —~ )H~ Ud(r, —~ ), (A4)

where

Ud(t, t') = T exp ——f dt Hd(t ) (A5)

With the given initial and final condition on the spin
value (spin up), both matrix elements in Eq. (A2) will,
upon expanding the exponential, contain an even number
of transitions, so, for example,

oo

&t~v (,— )ll)= g
where

2n
tl 2n —1f dry f drz f dt2„W(ti, . . . , r2„), (A6)
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and

(t]t i t2tt ) U](t]i ~ )U —](t]it/)U+](t2it3) U —](t2)t —]tt2)t )U](t2)te ()c )

U+](t, t') = T exp ——f dt(+vt+Ht]+H, ).
t'

(A8)

are operators on the bath states, being different by rejecting the virtual state of the spin.
Combining with a similar expression for the complex conjugate matrix element, we have traced out the spin degree of

freedom and can express the transition probability as
2(n +m)

oo '2n -i '2m —iI' = g ( —1)"+ — f dt, f dt, „f dt, f dt, G(t„. . . , t,„;t„,t, ), (A9)
m, n =0

where the closed-time-path integral G,
e

G(t„. . . , tt t„.„.. ,, tt„)=(T,exp —i/ti I de@ (e)[ve+X(e)]
C

(A10)

has the form of a generating functional in g (r), which is short for the function of contour time r as well as the times
where the perturbation acts (spin Qips) (tj )J, z„, (t~ )J

and has the form

"(&)= '

2)i

P(r) =1—2 g (
—1)"8(r t& ), r o—n upper branch,

k=1
2m

gz (r) = 1 —2 g (
—1)"0(r tk ), r on—lower branch .

k=1

(A 1 1)

The structure of the sign changes for g (r) is depicted in Fig. 4 and corresponds to the diagonal and off-diagonal ele-
ments of the reduced spin-density matrix. The bath operator X(t) in Eq. (A10) is in the interaction picture as given in
Eq. (3.19).

As in Sec. II we can invoke Wick's theorem to obtain the generating functional for the bath in terms of the "history
of the spin motion" g" and according to Eqs. (3.22) (3.26), and (3.27), and a reintroduction of real time, we obtain

Z (g" ] = (T exp i lti j de+ (e)X(e—l
C

=exp —,f dt f dt'[g](t)D„(t, t')(](t')+$2 (t)D22(t, t')g, (t')

—g](t)D]2(tt t')(2 (t') —
g~ (t)D~] (t, t')(p](t')] (A12)

where we have introduced the Green's functions

D»(t, t') = —i(X(t')X(t) ) =D '(t, t'),
»D(t, t') = —i(X(t)X(t') ) =D '(t, t'),

(A13)

(A14)

t+, 2n— Pp-I + ..~ + , 2 —
, I +

+ +

2N

O. . .
S S2N-I 2N-2

0
S~ S2 SI

~2 rn f2 0 ( 0

FIG. 4. The sequence of sign changes for g" (r}.
FICz. 5. The typical sequence of values attained by g+ and
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Dzz(t, t') = —i ( T[X(t)X(t') ] ) = —[D»(t, t') ]* . (A15)

Here T denotes antitime ordering and D» is defined in Eq. (3.33). Z is the scalar product of two amplitudes for two
possible spin histories in the presence of the interaction with the environment (expansion of the reduced density matrix
for the spin degree of freedom).

We can split the exponent into real and imaginary parts and obtain

Z[g'"' ']=exp — f dt f dt'[2g'" '(t)D (t, t')g'" '(t')+g'"' '(t)D (t, t'g'" '(t')]
00

(A16)

where we have de6ned

g(+ '(t)= —,'[g)(t)+g, (t)] . (A17)
[g(, )( ) g(

(0, 1), s &szz

(+1,0), sz)v &s &sz)v

(0, 1), sz)v, &s &sz)v

g(, )(t) —+g(, )(t) (A18)

Pairing up these terms, each other's complex conjugate,
displays explicitly that the transition probability P is real.
The functions g~g' ' take on the values +1 and 0, and
change value at all interaction times tk and tk's. To deal
with the intertwined time orderings of the two sets, we
denote by (sk)k, z(„+ ), a given time ordering on
the real axis of the combined sets and note that all possi-
ble time orderings correspond to the following possible
choices:

In this representation the history of the spin motion is
recounted by g(+' ' whose alternating series of 0 and +1
are depicted in Fig. 5.

In the present approach products of amplitudes are de-
scribed jointly by the introduction of the closed time path
as evident in Eq. (A10). Accounting for the effects of the
environment couples the upper and lower branch. We
note the following Hermitian property resulting from in-
terchanging the interaction times on the upper and lower
branches:

(+1,0), sz &s &s,

(0, 1), s, &s

+0(s —s, )+0(sz))t —s), (A20)
N

(s) = g gk [0($ —sz( )
—8(s —szl, , ) ] . (A21)

k=1
The expression for the transition probability can then be
written as

(A19)
Since g(+' ' refers to the combined set, we can introduce
the shorthand notation g+, where % is the number
N=n+m. When g+(s)=+1, then g (s)=0 and vice
versa; the final and initial values for a numerically large
value of s are fixed by the choice of initial and final spin
states. We can therefore express g+, as depicted in Fig. 5,
in terms of the sets of numbers (71k )k z

(gk )k», where rjk and gk only take values +1 [the
explicit dependence on s„.. . , sz)v and (rtk) and (gk) is
suppressed],

N

g+($) = g 'gk [0($ szk ) ) 0($ szk z )]
k=2

oo
Np —y ( I ))v

N=O

2N

f ds, f dsz~ g exp
' f dt f dt'g (t)D (t, t')g (t')

S
1

» s2W t. 9k'~k 1

Xcos 2f dt g (t) vtlfi+ f dt'D (t, t')g+(t')
oo

(A22)

Expression (A22) for the transition probability has the
following interpretation: The interaction with the bath
provides a systematic force on the spin described by the
retarded bath propagator D", which adds to the external
force, and a fluctuating force with correlations described
by the Keldysh bath propagator D (corresponding to
treating X not as an operator but as a fluctuating quanti-
ty).

The spin history is recounted by g+ describing when
the reduced spin-density matrix is diagonal and ofF diago-
nal. When the density matrix is diagonal, /+%0, the

gz)(t)=(X(t)) =—„f ™
dt'D (t, t')g+(t') . (A23)

When the density matrix is off diagonal, g %0, the bath
records it and the suppression of the quantum interfer-
ence terms by the fluctuating force term is reflected by
the property of the prefactor, the exponential being less

bath records this and reacts back with a systematic,
history-dependent infiuence gz) which is equal to the
average displacement of the bath variable in the presence
of the "force" g+,
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D (ca) =2i ImD (ca)coth(A'ca/2k& T) . (A24)

Here D ' (co) are the Fourier-transformed functions

DR, K( ) f d(t t )
ia)(t —t')DR, A(t t ) (A25)

than 1. The relationship between the two types of
inAuences required by the fluctuation-dissipation theorem
is expressed by the equilibrium property of the bath prop-
agators

and the imaginary part of the retarded function D (co) is
given in terms of the spectral function Jby the relation

vrA'
ImD (co)= — sgncoJ(~ca~) .

4
(A26)

Performing the integration in Eq. (A22) for given spin
histories (a given sequence of switching times), and per-
forming the (rik ) summation, we obtain the expression of
Leggett et al. ,

' which is given in Eq. (4.1).
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