
PHYSICAL REVIEW B VOLUME 43, NUMBER 7

SuperAuidity of He

1 MARCH 1991

Emilio Del G-iudice
Sezione di Milano, Istituto Nazionale di Fisica Nucleare (INFN), uia Celoria 16, I 20133-, Milano, Italy

Matteo Giuffrida and Renata Mele
Dipartimento di Fisica, Universita di Milano, Milano, Italy

Giuliano Preparata
Dipartimento di Fisica, Uniuersita di Milano, Milano, Italy and IN', Sezione di Milano, Milano, Italy

(Received 31 May 1990)

We apply the recently proposed approach of quantum field theory of superradiance to liquid He.
We find natural, and input-free, explanations of (i) the temperature dependence of the roton gap
6( T) and the normal-Auid fraction p„/p, (ii) the microscopic two-Quid structure of superAuid He;
and (iii) the basic mechanism of vortex formation and the associated critical velocities.

I. INTRODUCTION L(t)= f d x% (x, t)i %(x, t) H, , (t—),
v

(1.4)

one can associate a wave field 0'(x, t ) obeying the canoni-
cal equal-time commutation relations

['P(y, t), %' ( tx)]=5 (x—y) . (1.2)

The Hamiltonian can then be given the simple expression

2

H, „= d'x% xt 0 xt
v 2711

+ ,' f d xd—y%(x, t)%(x, t)

X U(x —y)% (y, t )4'(y, t ), (1.3)

and from (1.2) one can obtain the Lagrangian of the
quantum field 4( tx). Indeed, the equal-time commuta-
tor tells us that i4t(x, t ) is just the canonical momentum
operator, so that the Lagrangian of our system becomes

Quantum field theory (QFT) is the natural theoretical
framework for dealing with quantum-mechanical systems
comprising a very large (infinite in the limit) number of
dynamical degrees of freedom, such as those occurring in
condensed matter. The key notion in this fundamental
approach to the dynamics of X elementary matter sys-
tems (atoms, molecules, ions, electrons), contained in a
volume V, is the quantum wave field V(x, a;t ), which is a
function of the translational variable x, of a set of inter-
nal variables a (discrete or continuous) and of time. The
procedure necessary for constructing the wave field
4( ax;t) from the more familiar quantum-mechanical
variables of the elementary matter systems can be found,
for instance, in Ref. 1; here it suffices to recall that, to a
system of pointlike nonrelativistic particles of mass m in
interaction with a hard-core pair potential v(r, ) (such as
He) described by the N-body short-range Hamiltonian

which, by Noether's theorem, implies the conservation of
the number operator

N= f d x% ( xt)%( xt),
v

which, in our case, must equal the number of systems N
present in our volume V. Note that it is here that the
QFT formulation recovers the number of systems N that
appears explicitly in the usual N-body formulation [Eq.
(1.1)].

Coming to the He problem, we could now try and
solve the field theory given by (1.4) by applying the
methods described in Ref. 1 that can be envisaged when
N is very large, and make use of the. saddle-point approxi-
mation to the appropriate path integral. However, as the
solution can be described in terms of a "mean field, " the
"wave function" 4'0(x;t), subject to a short-range pseu-
dopotential v(x) given by Eq. (1.3), we do not expect
great novelty with respect to the excellent work carried
out by Pines and his school.

Instead, we wish to use such a QFT formulation to
study the usually neglected problem of the long-range in-
teraction between the He atoms and the quantized elec-
tromagnetic radiation field. But before we attack this
problem in the sequel of this paper, it is perhaps ap-
propriate that we pause to motivate why we need some
new key element to describe the physics of superAuid He
that has occupied the minds of many physicists since its
discovery by Kapitza in the 1930's."

As it is well known, most of the very peculiar features
of superAuid helium can be attributed to the existence of
a macroscopically occupied quantum state of the X-body
system. The wave function of such a "condensate" may
be regarded as a "classical" coherent field, which is to be
contrasted with the essentially "incoherent" motion of
the particles in the noncondensed phase (the "rotons" of
Landau). It was proposed by London back in 1938 that
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this phenomenon of "condensation" in the superAuid
phase of ~He (also denoted He II) might be closely related
to the well-known Bose condensation that can be proven
to occur in a Bose gas of "pointlike" particles below a
well-defined critical temperature. However, two impor-
tant properties of superAuid helium —a finite critical ve-
locity and a continuous phase transition —both show the
superAuid phase transition to be very diA'erent from Bose
condensation.

Later on, Bogoliubov showed that, in a weakly in-
teracting Bose gas, the interaction depletes the zero-
momentum "condensate" and that only a fraction of the
total number of particles is in such state even at zero tem-
perature. However, one should notice that liquid helium
is not a weakly interacting Bose gas, so that a perturba-
tive treatment is not warranted. The notion of Bose con-
densation has been later generalized so as to apply to a
system of interacting bosons; ' one found that a statisti-
cal condensation occurs in systems without long-range
configurational order, for the long-range correlation
might destroy this kind of condensation. In such analysis
the idea emerges that a statistical condensation may hold
in spite of the long-range correlation, and such a correla-
tion has the eA'ect of depleting the condensed state, as it
happens for the weakly interacting Bose gas.

Essentially all microscopic approaches start from the
Hamiltonian (1.1), which completely neglects the internal
structure of He. The ground-state wave function and
the density matrix are usually constructed so as to take
into account both the short-range correlation arising
from the strong repulsive interaction between particles,
and the long-range correlation due to the density fluctua-
tion. Variational techniques have been used to investi-
gate the low-temperature behavior of He and, in particu-
lar, the excitation spectrum, and they have greatly
profited from the development of large-scale computa-
tional facilities. This method has been rather successful,
leading to a good understanding of the single-particle ex-
citation spectrum and to a solid evidence for the ex-
istence of a condensed state at T=0.' '"

From a macroscopic standpoint, the properties of He
II as a function of temperature are very well explained by
the phenomenological two-quid model proposed in the
1940's by Landau. ' It is very interesting that such a
two-Quid picture, normal and superAuid, is also borne out
at a microscopic level by detailed studies of neutron
scattering, as emphasized and thoroughly discussed by
Woods and Svensson, ' who also forcefully point out that
the generally accepted theories of He II (of the type we
have discussed above) do not seem to allow any room for
such a behavior. The very complicated nature of the
most popular approaches, together with their apparent
failure to account for the very "raison d' etre" of
superAuidity and its basic two-Auid nature, are, we be-
lieve, good motivations to develop a new way to look at
this system based on QFT and its ability to take into ac-
count an aspect so far neglected of condensed-matter in-
teractions, namely the many-body coupling of helium
atoms through the quantized electromagnetic (em) radia-
tion field. This is what we shall work out in detail in this
paper, completing and extending our previous work.

II. THE "WEAK" SUPERRADIANCE OF He

Our starting point is the Hamiltonian of liquid He
which includes the interaction between the helium atoms
and the radiative electromagnetic field. We work at
T=O. Following Ref. 1, the Hamiltonian of the system is

Hs. r. +Hatom +Hint +Hem Hmat + em (2.1)

H;„,= g f d x A(x, t) j„
/4

. V
(2.2)

H,.= ,' f-d"(lEl'+lBl') . (2.3)

+pe a)' (t)ei(Qii —k x)] (2.4)

where the amplitudes ak~(t) obey the equal-time commu-
tation relations

kk( ) ak'A. '(t)] ~(k', k)~(A. ', A) (2.5)

Inserting this expression in the electromagnetic field
Hamiltonian we obtain

H. = ,' f d'x-(IEI'+ I&l')

1
I a„,(t)a'„,(t)2')k

+ t'~kIa'~ak~(t) —a k~(t)ak~(t) ]

+2~'kak, (t)a«(t) j, (2.6)

where the last term is the usual free field Hamiltonian
and the others, in view of the potentially strong coupling
with matter, cannot be neglected, as is usually done in the
"slowly varying envelope approximation. " The analysis
of our problem will be performed in the QFT frame-
work. ' We introduce the quantum wave field of the
atoms )Ii(x, a, t ) where x is the center of-mass-coordinate,
and a indicates the electrons' relative coordinates. For
our purpose it is convenient to develop the wave field %'

in terms of the one-particle eigenfunctions of
H, , +H„. The eigenfunctions of H„, are very well
known, the treatment of H, , is much more complicated.
As well known, the difhculty arises from the hard-core in-
teraction which cannot be dealt with in a mean-field
scheme; it is for this reason that, in a "realistic" Hamil-
tonian, the variational ground states and the low-lying

H, , contains the kinetic energy and the short-range em
interactions between helium atoms, which are not includ-
ed in the field A(x, t ). H„, , describing the dynamics of
the electrons of He, accounts for the internal elec-
tromagnetic structure of the particles. H;„, contains jk,
the electromagnetic current operator of the kth single
system, and it acts on the electron's coordinates. The last
term represents the electromagnetic field Hamiltonian.
The quantized radiation field A(x, t) is expanded in a
plane-wave basis as

A(x, t)= g 1

k, ~ V 2~kV
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4(x, a, t)= ga„(t)P„(x,a) . (2.7)

As explained in the Introduction, in this paper we will
not give an explicit form of this set of functions, for we
are mainly interested in the effect of the radiative elec-
tromagnetic field on the ground state of the system and,
as we will see, the x-dependent part of the wave field is ir-
relevant.

We now write the Lagrangian of the system

excited states are usually expressed in terms of the two-
particle correlation functions. ' "" As mentioned, a
different theoretical approach has been developed in
which the consequences of the strong interactions in
liquid He are described in terms of self-consistent fields
whose strengths are determined by physical arguments.
The self-consistent field, or pseudopotential, describing
the position correlation in He is a soft-core two-body po-
tential, whose Fourier transform is taken to be the
Fourier transform of the bare-particle potential. In this
framework we can apply a mean-field description to this
interacting system and obtain a set of one-particle eigen-
functions P„(x,a). Thus, one can write the wave field 4:

L(t)= f d xV (x,a, t)i %(x,a, t). a
V

—H ., +-,' f d'x(IEI' —I&l'), (2.8)

which still admits the conservation of the number opera-
tor

N= f d x@t( x, at)%'( x, a, t) .
V

Introducing the scaled fields

(2.9)

(2.10)

the theory will be formulated in terms of these new fields.
Following the theoretical development of Ref. 1, we can
divide the fields in two components with different ampli-
tude:

% N =%0+6+,
0

kkN kA. +~akA,

(2.11)

(2.12)

where 4'0 and ak& are the vacuum-expectation values of
VN and ak&N, and 6+ and 5akz are the quantum Auctua-
tions. The principle of stationary action applied to the
Lagrangian (2.8) leads us to the classical field equations
for the fields 0'0 and a k&.

.

i 4' (o,x at)=H„, 'P (0,x at) +e i/N/Vg [e„iak&(t)e ' ' "'"'+H.c. I j% (0x, at),
at 0 ' ' "' 0

kx V 2cok
(2.13)

iai&(t) — aiz(t)=e&N/V e "ski f d xe ' "4' (0,xat)j%' (0,x,at) .
2cok

(2.14)

The coupling between the matter system and the radia-
tive electromagnetic field establishes itself on the charac-
teristic frequencies co„of the matter system. The elec-
tromagnetic modes

akim(t),

whose frequencies cok coincide
with these frequencies co„, have a nontrivial "coherent"
time evolution. In our case the frequencies are associated
with the transition 1S-nP of the atomic parastate. We
note that the 1S-2P transition has a frequency of 21.2 eV
while all the other transition frequencies do not differ
from this value by more than 10%. Thus, it is reasonable
that they are coupled to the same em mode with co=20
eV. Within a sphere of radius R =~/co=a/2 we can ap-
proximate

= 1a (t) = g f d A„ak„(t)ski„4~

in Eqs. (2.13) and (2.14) we get

p, (r) = y g„a* (r)p'"'(r),
n, m

p' (r) = —g„a (r)po(r),

a (r)+ —'a (r)= yg„po(. )p'."'(r),
2 6~

(2.17)

(2.18a)

(2.18b)

(2.18c)

j o(cur ) = f d Ai,e'" "=const . (2.15)
where the time derivatives are with respect to a dimen-
sionless time ~=cot and the coupling constants are

ao(t ) =p,(t), a'"'(t) =p'"'(t)e (2.16)

In this domain we can neglect the x dependence of the
wave field while the atoms interact coherently with the
appropriate mode of the electromagnetic field. In such a
coherence domain the "classical field" %0 describes the
part of the system which is involved in this collective be-
havior.

Limiting ourselves to a coherence domain, we can ex-
pand the wave field in terms of the atomic eigenfunctions.
Substituting (the index n refers to the transition 1S-nP)

] 1 cop
g„=2vrl, „eV'N/V =2~X.~ Qm,

where the plasma frequency cu

co~ =eV N/V 1

Qm,

(2.19)

(2.20)

has been introduced. It is easy to see that the k„'s, ap-
pearing in (2.19), obey the Thomas-Reiche-Kuhn sum
rule



5384 Del GIUDICE, GIUFFRIDA, MELE, AND PREPARATA 43

g )(,'„=2 (2.21)

that holds if In [ is a complete set of quantum numbers.
As usual, the system admits two constants of motion:

n, m

(2.22)

~p(n)( ) ~2
1

6~ (2.23)

which represents the total number of systems described
by the wave field, and

T

g= g la (r)l2+ —' Ia (r)*a (r) —a (r)*a (r)]
n, m

Po(r) =B()e

p(n)( )
—B(n) '~m

m + m

iP (7)a (r)= —e
3

(2.29a)

(2.29b)

(2.29c)

These transitions are "real" and not "virtual" as in the
standard analysis of the van der Waals forces. The elec-
tromagnetic interaction then couples the incoherent
atomic Auctuations and, through the superradiant mech-
anism described above, renders them "coherent. "

In order to analyze the contribution of the superradi-
ant interaction to the ground state we now turn to the
study of the stationary solutions of our system.

(2) Let us characterize these stable configurations as

that tells us that the total momentum is conserved along
the classical path.

Let us study the system so obtained in two different re-
gimes: (1) short times, i.e., small field amplitudes, and (2)
stable configurations, i.e., solutions for which the field
amplitudes are constant in time.

(1) We differentiate Eq. (2.18c) and make use of Eqs.
(2.18a) and (2.18b)

a (r)+ —a' = g g„[a (r)*p'"'(r)p'"'(r)*
2 6~

—a (r)PD(r)PO(r)*] . (2.24)

The constants of motion suggest the substitutions

Bo cos8= 1, B'"'= 8„,(.)

3

by means of which the system (2.18) becomes

$0(r) = g g„A 8„,
n

(r) =g„
n

(r) —1/2P (r) = g 6~

(2.30)

(2.31a)

(2.31b)

(2.31c)

Neglecting the term containing g„~P(")(r)~ which
represents the fraction of population of the upper levels,
we obtain a linearized equation

with

g= A [1—P (r)]+ 8
6~

(2.32)

2

a (r)+ —a' (r)= — a (r) .
2 6~ (2.25)

=+/2 (2.33)
With the substitution a (r) ~ e')" we get

2

p /2 —p+ =0
6~

For g in the interval

(2.26)

[we put 8„=(g„/g)8]. We compute the constant Q by
substituting in (2.32) the initial amplitudes

(2.34)

20(
6~ (2.27)

CO~g2 yg2 (2 )2
COO

g X„=4.9 . (2.28)

The system is thus in a "weak-superradiant"
configuration where the interaction with the radiative em
field, though amplified by the large number &X, does not
radically modify the physics of liquid helium. The field
amplitude will remain of the order 1/&N, characteristic
of the fluctuation above the quantum electrodynamics
(QED) vacuum; the physical process which we are con-
sidering occurs as follows. The quantum Auctuations of
some of the He atoms induce a transition to the p state.

the solutions will be real, otherwise the system "runs
away, " i.e., evolves toward a completely difterent
configuration. This is not the case in helium, for our cou-
pling constant is

2

where 4~ is the number of modes in the coherence
domain and the factor of 2 stems from the photon polar-
ization (from our normalization we assign 1/2X to each
degree of freedom):

sin 8(t=0)=8 (t=0)= 4~X3
2X

(2.35)

5

3X '

0(r) i/ (r) —Pm(r) =0—.

(2.36)

(2.37)

From the solution of (2.31), substituted in (2.36), we get,
in the limit of small 0,

1 —&1—(g 8/3' A ) =g
0

setting now g= A /8 the solution for (2.38) is

(2.38)

where the factor of 3 comes from the degeneracy of the P
state. Thus, we have the conditions
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(=0.28,
which leads to an em amplitude

(2.39)

(2.40)

It is now possible to estimate the energy contribution of
the superradiant interaction, i.e., the lowering of the
ground-state energy due to "weak superradiance. " We
compute the expectation value of the interaction Hamil-
tonian on the stationary state. Setting

We end this section by pointing out that we have found
an explicit example that a superradiant behavior, con-
trary to expectations, ' can occur spontaneously in con-
densed matter. Indeed, from (2.46) we find that the sys-
tem is esothermic, so that one does not need a "pump, "
and from (2.47) the system develops spontaneously into
an "optical cavity. "

III. PHYSICAL CONSEQUENCES
OF THE SUPERRADIANT INTERACTION

ON THE SUPERFLUID HELIUM

(2.41)

where

)Il (pg(n)p(n)p(n))

we find

(2.42)

b, = —cu2gAO . (2.43)

In order to obtain AE„„the amount of energy gained per
He atom in the superradiant evolution, we must set

tot Emat+Eem+ ~ Ez.p. (2.44)

E, =6mcoi A i
1—gO

is the energy in the coherent em field, and

E
p

=F00+ co
4m.

is the zero-point energy.
The total number of particles interacting coherently in

a coherence domain is

where E „=coO is the energy carried by the excited P
state,

n, m

(3.1)

On the other hand, the normalization condition on the
full wave field is

1= +—f d xq*(x)g(x),
p N v

(3.2)

All systems characterized by a phase transition into an
ordered state, in which some kind of condensed phase is
present, can be described by a two-Auid picture. There-
fore, the two-Quid model is an essential aspect of superra-
diance and it emerges spontaneously if we consider the
system at temperatures different from zero. ' The
superAuid component is the correlated phase while the
normal component consists of thermal excitations. At
T=O the whole system is in the correlated states; this
configuration is, as we have seen, energetically favorable.
Increasing the temperature, the thermal fluctuations de-
plete the correlated phase and the normal component ap-
pears.

We introduce p„ the density of the correlated system
defined as p —p„, where p is the helium density and p„ is
the density of the normal Auid. At T=0, p, /p = 1 and at
higher temperature p, +p„=p. Thus, at finite tempera-
ture Eq. (2.22) becomes

N=A, p=4. 4X10

We evaluate

AEtot 1.1 K

(2.45)

(2.46)

where g is defined by the relationship

15+
& y2 xf e (3.3)

This energy represents a "superradiant gap" for the exci-
tation of quantum Auctuations upon the classical solu-
tion, i.e., the condensate. Put differently, the interaction
with the radiative em field leads the system toward a sta-
bler configuration whose extra binding energy is just
AE„t.

As for the em phase, it assumes the form

(r) =1—&1—(g8/3m 2 ),
(r) = [1—&1—(g /3rrg)]cot .

(2.47)

(2.48)

The expression of the em phase inside a coherence
domain is very interesting for it means that a frequency
shift has occurred or, put differently, the photon has ac-
quired a negative mass squared. As a result the em field
generated by the weak superradiant process cannot prop-
agate outside the coherence domain, thus rendering the
coherence domain a "natural optical cavity. "

k
2mS(k)

(3.4)

S(k) being the liquid structure function. As is well
known, this result fails when the system is probed at
short distances. We shall now determine the effect of the

O ]superradiant state on the short-wavelength (p ) 1 A ')
excitations of the wave field. In particular, we find that
close to the "roton" minimum the spectrum is well ap-
proximated by a parabola

We can now look for the effects of the superradiant in-
teraction on the collective excitation spectrum, i.e., the
Landau dispersion curve, which describes the quanta of
the field q. As mentioned, the Landau spectrum is deter-
mined mainly by the short-range Hamiltonian H, , and it
has been studied in considerable detail during the last SO

years: in the long-wavelength portion of the excitation
spectrum, the well-known Feynrnan relation holds:
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(3.5)
]01

where

b, (T)=5 +b, (0) .
P

(3.6)
10Q

The meaning of this equation should be rather transpar-
ent, for it stipulates that the effect of the "superradiance
binding" 5=DE„, [see Eq. (2.46)] is to increase the
"gap" 6„ that characterizes the "roton" minimum in the
normal Quid (above the critical temperature T&) by the
quantity —5(p, lp)(T). Thus, at T=O, one has
b, (0)= b,„—5. In a simplified model we may describe the
normal component of the Quid as formed essentially by
roton excitations which are distributed according to the
Boltzmann statistics. As a matter of fact, the tempera-
ture of the whole system is the temperature of the "gas"
of elementary excitations, whereas the "coherent" phase
has zero entropy and temperature. Since the superAuid
helium is at T ~ 2 K and the total-energy gap 6 at the ro-
ton minimum is about 8 K, the "classical" Boltzmann
distribution law is a very good approximation to the
correct quantum Bose-Einstein function. The superradi-
ant contribution to the roton energy has to also be taken
into account in the determination of the T dependence of
pn:

—2 Q( )kT )
4 e

—(6( T) lkT)1
ll 3 0 (2 )3/2

(3.7)

1.0

0.0
0.0 1.0

v(v)
2.0

FIG. 1. Comparison of theory and experiment for the density
of the normal-fluid fraction p, /p as a function of temperature.
The experimental points at 0.0 bar are due to Maynard (Ref.
16).

Substituting the expression for b, (T), we can calculate
p„(T). A comparison with the experimental data is
shown in Fig. 1, while Fig. 2 shows the T dependence of
b, (0)—b, ( T). On imposing the condition p„ lp = 1 one
finds, without any extra input, the critical-temperature

10 2

1.0 1.5 2.0

FIG. 2. The shift in the roton energy gap A(T) as a function
of temperature at saturated vapor pressure (SVP). The experi-
mental results are also shown and correspond to the work of
Mezey (Ref. 17) and Wood and Svensson (Ref. 13).

value T, =2.3 K.
The most striking consequence of the superradiant in-

teraction is the emergence of the coherent macroscopic
field %o within a coherence domain. However, it appears
very reasonable that, for T=O, 4o extends throughout
the Quid. This is due to the fact that some tunneling
mechanism, akin to the Josephson effect, should be able
to lock the phases of adjacent coherence domains. We
thus write the coherent field as

qp 1/2 i/(, x, 1)
o p, e (3.8)

where p, is the density of the correlated Quid and it
represents the order parameter of the superAuid transi-
tion.

Let us now estimate the fraction of zero-momentum
particles in the condensed state. As explained above, as a
result of some kind of Josephson tunneling the whole
Auid is in a completely correlated state. However, due to
the nontrivial space structure of the coherent em field, we
must expect that %'o keeps some definite trace of the
coherence domain's structure. Thus, a reliable estimate
of the zero-momentum fraction of the condensate can be
obtained by taking the average of the em field profile

j~0(d'or ) over a coherence domain, thus
3

Pc co 3 g . 2 3I d x~jo(~r)~ =,=0.15, (3.9)
p ~ 4~ v

in good agreement with the experimental data, ' which
give p, /p =0. 13—0. 14.

We think that the appearance of large coherence
domains (600 A) is one of the most striking consequences
of superradiant evolution and could provide an explana-
tion of the nucleation process which is at the origin of
vortex formation. It is well known that the hydrodynam-
ic regime of liquid helium (both normal and superlluid)
exhibits critical velocities, above which turbulence ap-
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p
2M

(3.10)

then gives v, "=75 cm/sec, which is in the range of the
observed critical velocities ( —50 cm/sec). We emphasize
that, in our approach, Eq. (3.10) is a direct measurement
of the size of coherence domains. The existence of such
large domains allows us to understand the interesting
phenomenon occurring at a small orifice (weak link) con-
necting two adjacent baths of superfluid helium. In that
case, the difference P&

—
Pz of the phase across the orifice

is governed by the difference Ap=p& —
p2 of the chemical

potential according to the Josephson relation

(3.1 1)

The phase difference P&
—

P~ changes with time (phase
slippage) when a nonvanishing Ap is maintained across
the orifice. ' When the Aow of superAuid helium through
the hole reaches a critical velocity and vortices are being
produced at a rate v, the energy uptaken by vortices com-
pensates the difference of chemical potential and the
phase slippage is stopped. We have

Ap=nhv, (3.12)

where n is an integer number. According to Eq. (3.12)
the plot of Ap exhibits a steplike behavior. The release of
a quantum of energy corresponding to one step is expect-
ed when the velocity field is switched on by the onset of
turbulence. Recently Avenel and Varoquaux have re-20

ported that, by letting an oscillating fiow of superAuid
helium at T=O K through a 0.3X5 pm slit holed in a
0.2-pm thick wall, a discrete amount of energy
AE =1.2X 10 ' J is suddenly released when the Aow ve-

locity reaches a critical value v, =55 cm/sec. Within our

approach this result is understood as follows: the interac-
tion between Aowing helium and the wall unlocks the
coherence domains sliding on the orifice walls. So we

have

2

hE= n N,
2M

(3.13)

where p is, as usual, -20 eV no is the number of atoms
enclosed in a domain, and %=550 is the number of
coherence domains covering the orifice side walls. We
thus get

DE=1.9X10 "J (3.14)

in fair agreement with observations. It is interesting to
observe that

pears. We are interested here only in the critical veloci-
ties in the purely superAuid phase. In our approach the
minimum vortex is produced when just one coherence
domain is unlocked from the array of interconnected
domains; this occurs when all the atoms belonging to
such a domain are excited by perturbations that have
wavelengths k of the size of the coherence domain and
that impart the atoms the related momentum transfer
p =(2'/A, ). The Landau criterion

th

gobs obs
C

=7
5

(3.15)

so that both discrepancies might be traced to the approxi-
mation used in the evaluation of the size of the coherence
domain.

We think that the understanding of the Avenel-
Varoquaux effect has been obscured just by the fact that
conventional theories cannot easily produce a nucleation
dynamics able to assemble vortices as large as several
hundred A. Superradiance can overcome this difhculty
and furthermore can give some insight upon Josephson-
like phenomena.

IV. CONCLUSIONS AND OUTLOOK

The aim of this paper, that completes and expand a
previous work, has been, on one hand, to provide some
details about the application of the basic ideas of QFT of
superradiance to He, and on the other to utilize this sim-

ple and fascinating physical system to learn more about
the potentialities of this new approach to condensed
matter. Unlike in water and in simple plasmas, ' superra-
diance in He appears to manifests itself in a "weak, "
subtle way. The effective coupling of the atomic 5-P
transitions to the "resonating" coherent em mode turns
out to be too weak [see Eqs. (2.27) and (2.28)] to induce a
massive rearrangement of the He atoms, but it is strong
enough to produce a macroscopically ordered state of
matter, protected against thermal Auctuations by a "gap"
of about 1 K which, at the temperatures of superAuid
He, is a perfectly respectable gap.

Indeed, we believe that the most likely origin of the
superAuid state of He is to be looked for just in the su-

perradiant evolution of the He atoms that we have quan-
titatively determined in this work. This statement is
quite strongly supported by the following results.

(i) The quantum fluctuations' spectrum (Landau spec-
trum) at T=O (i.e., in the superradiant state) has been
found to be modified very simply by a gap whose numeri-
ca1 value is in agreement with observations.

(ii) A microscopic two-fluid (superradiant and normal)
picture emerges naturally in the superradiant state at
TWO and explains the behavior with the temperature of
both the roton gap b, (T) and the normal fluid fraction

p„ /p, and thus of the critical temperature T, =2.3 K (ex-
periment 2.17 K).

(iii) The notion, crucial in the superradiance frame-
work, of coherence domain (whose size in He is deter-

0

mined by the atomic transition dynamics to be —600 A)
allows us to answer two different important questions: (a)
the zero-momentum fraction of the superfluid, and (b) the
formation of quantized vortices. The first is easily, and
successfully, related to the space variation of the em field,
and thus of the wave function Oo across adjacent "inter-
locked" coherence domains, while the second provides a
natural nucleation mechanism for vortices of the right
size, and with the right critical velocities.

We believe that, in spite of their rather preliminary
character, these results look promising enough to recom-
mend further work along this direction. For instance,
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one possible area of investigation might be the analysis of
the process of excitation of fluctuations (by neutron and
Raman scattering) below and above the critical tempera-
ture T&, in search for a quantitative test of the micro-
scopic two-Quid picture. Another interesting problem to

be investigated is a careful analysis of the space depen-
dence of the superradiant equations (2.13) and (2.14), to
clarify, on one hand, the role of the coherence domain
structure in the macroscopic wave function 4, and on the
other to derive the basic hydrodynamics of the superAuid.
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