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The temperature dependence of the London penetration depth is calculated for a model supercon-
ductor stabilized by antiferromagnetic spin Auctuations. The order parameter has d-wave symme-

try. Results are compared with s- and p-wave calculations and anisotropic as well as strong-
coupling effects are discussed.

I. INTRODUCTION II. THEORY

The temperature dependence of the London penetra-
tion depth k( T) is often used as a means of distinguishing
between different coupling models in superconductivity.
The two-fluid model of superconductivity gives a simple
power-law behavior for the ratio [A,(0)/A, (T)] from T,
down to T =0, namely 1 —t with t = T/T, . Other mod-
els used to describe the temperature dependence of this
quantity result is significant deviations from the two-
fluid-model prediction. Recently there have been many
measurements of the London penetration depth in the
high-T, oxides' and to a lesser degree in the heavy-
fermion superconductors. ' While the situation for the
high- T, oxides is still somewhat controversial, the
heavy-fermion superconductors UBe&3 and UPt3 display
simple power-law behavior of A,(T)- T at very low tem-
pertures. This is in contradiction to the predictions for
an isotropic order parameter (whether it is weak or
strong coupling, clean or dirty limit) which displays the
typical exponential T dependence for low temperatures
because no quasiparticles can be excited into low-energy
states. For the high-T, oxides there seems to be a con-
sensus that the experimentally observed temperature
dependence is s-wave-like, but different models from two-
Auid' to clean-limit BCS (Ref. 2) have been fitted to the
experimental data with equal success. In this work we
calculate the temperature dependence of the London
penetration depth for a mechanism of superconductivity
which is derived from the exchange of anisotropic anti-
ferromagnetic spin fluctuations between quasiparticles.
It leads generally to an order parameter with d-wave
symmetry and has recently been proposed for the heavy
fermions. ' Studies of the pair breaking via inelastic
scattering off spin fluctuations, " the thermodynam-
ics, ' ' and critical fields' have already been worked out
within this model. It could also be related to the high-T,
oxides in the doping regime, where the long-range Neel
state is qualitatively changed, but spin correlations are
still observed. Unfortunately, the critical temperature of
this model seems to be intrinsically lower than that of s-
wave states. At least in the parameter range studied and
within the simplifying assumptions made about the
effective coupling interaction, this is the case. In Sec. II
we sketch the necessary theory. Results are to be found
in Sec. III, while Sec. IV is a brief conclusion.
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where co„=~T(2n + 1), n =0, +1,+2, . . . , and ( )'
denotes an average over the Fermi surface. If we consid-
er only the Born approximation to the impurity scatter-
ing process then the T-matrix terms in the second line of
Eqs. (1) and (2) have to be replaced by

~t+ & n„,(n) )

in (1) and

~t+ (D„(n) )'

in (2), respectively. The anisotropic and energy-
dependent coupling function A. is given in a separable
form" '" as

In order to derive an expression for the London
penetration depth in the spin fluctuation model we first
have to solve the corresponding Eliashberg equations
below T„which have been given by Millis, Sachdev, and
Varma. " We have extended this theory to include the
effect of T-matrix scattering, ' which seems to be neces-
sary for the heavy fermions because the transport
coefticients of this class of superconductors are not prop-
erly described by a simple Born approximation for the
scattering of quasiparticles by impurities.

The corresponding equations for the order parameter
6 and the renormalized Matsubara frequencies co are

cok(n) =co„+irTg ( kk i, (n —m)Qk(m) )'
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A,(k, k', n —m)= [Jo—J, il;(k)i);(k')]
2
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where the functions q; have d-wave symmetry, e.g.,

i),(k) = (k„—k ),

i)2(k)= (k +k —k, ) .

I is the coupling constant of the spin-fluctuation medi-
ated interaction, the ratio g =J, /J0 describes the degree
of repulsion of the interaction, which is repulsive for all
wave vectors q, but leads to an attraction in the d-wave
gap channel. g & 1 is the case that seems to be relevant to
the heavy fermions. Formally A (co) is the electron spin-
Auctuation spectral density, which we will model with a 5
function. In Eqs. (5) and (6) we have the impurity terms
in the Born approximation, valid for weak scattering with

t+ =ntN(0)~u(k~)~

where nt is the impurity concentration, N(0) is the densi-
ty of states at the Fermi surface, and U is the scattering
potential evaluated at the Fermi momentum kF. In the
T-matrix approximation we have

2

mc
(q n'):(n' q)n'—

++gq.n -q

where n' is the superAuid tensor, which replaces the
superAuid density n' for isotropic order parameters. In
(11) e is the electron charge and c is the velocity of light.
The electromagnetic response K„ is an odd function of
the wave vector. As shown by Hirshfeld, Woelfie, and
Einzel, ' we do not have to consider vertex corrections
for the d-wave order parameters which are even functions
of k as long as we consider only isotropic s-wave scatter-
ing as above. In our case the superAuidity tensor for an
isotropic Fermi surface is given by

heavy-fermion systems because of the underlying Kondo
lattice. '

It is well known that anisotropic order parameters with
zeros of the gap at the Fermi surface lead to collective
mode contributions in the electromagnetic response. A
simple way out of this problem without having to charac-
terize the specific collective modes is to use hydrodynam-
ic theory, which takes into account the phase variation
of the order parameter. The supercurrent in q space in-
duced by a vector potential A is then given by

2

j„'=— E„A
mc

nr
I +=, , c =cot60.

N (0)n.
(10)

(n)
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Both the Born- and T-matrix terms were derived for
pure s-wave scattering. In the T-matrix case 60 is the
scattering phase shift. For very large c (50~0) we recov-
er the Born approximation formula for the scattering,
while for c =0 we are in the so-called unitarity limit
(50= tr/2), which is proposed to be realized in the

I

and we can calculate the two eigenvalues of the penetra-
tion depth corresponding to the vector potential A being
parallel (A,

~~)
and normal (Ai) to the principal axis of gap

symmetry I:
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For the gap functions g, and g2, which belong to the
two-dimensional (2D) representations of the tetragonal
and cubic crystal systems, these eigenvalues turn out to
be sufficient to describe the electromagnetic response be-
cause nondiagonal terms in n„' vanish or are extremely
small.

III. RESULTS

In Fig. 1 we present the ratio [A(T =0)/A(t = T/T, )]
for the i)2 gap with both orientations A~~jl and All and

compare with the isotropic s-wave case. The letters s and
m denote the strong- or weak-coupling case, character-
ized by the ratio T, /co@ (specified in the figure) with T,
the critical temperature and co+ the characteristic excita-
tion energy of the the frequency-dependent part of the in-
teraction parameter A, k k, (n —m). It is easily seen that
both directions give a linear behavior X(T)=aT at low
temperatures with the same prefactor cz. Strong coupling
does not change this power-law behavior, but tends to de-
crease A, (t) with respect to A.(0) at intermediate tempera-
tures in a similar way as in the s-wave case. Choices of
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FIG. 1. Normalized penetration depth vs reduced tempera-
ture t =T/T, . Strong (s) and weak coupling (w) results for s-

wave and d-wave order parameter g2.
FIG. 3. Comparison of the normalized penetration depth for

the d-wave case with p- and s-wave results, Ail.

the ratio g =J& /Jo different from the ones used here do
not change these normalized curves at all.

Figure 2 shows the results for the g, case. We used the
same interaction parameters and see A, (t) —t behavior at
low temperatures, now with different constants of propor-
tionality for the two main directions. The linearity in T
is expected for gap functions with lines of nodes. In the
case of the p-wave polar state this linearity is favored by
the orientation effects on the l axis caused by the magnet-

ic field and superAow, while here both directions show
the same power law proportional to the temperature.

In Figs. 3 and 4 we show the weak-coupling results of
Figs. 1 and 2 and compare them with the results for the
p-wave case, namely, the polar and axial state results used
by Einzel et al. to analyze the k(T) —T2 behavior of
UBe, 3 at low temperatures. The axial A~~l case seems to
be the proper state to analyze the experiment because it
was favored by orientation effects and was the only one
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FIG. 2. Same as Fig. 1 but for d-wave order parameter g, . FICx. 4. Same as Fig. 3 but for A((1.
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