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Magnetic-field dependence of the critical current in long Josephson junctions
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The static configurations of a long Josephson junction in the presence of an external magnetic
field are investigated. The theoretical analysis is based on the phase-space configurations of the per-
turbed sine-Gordon equation in the time-independent case. The proposed method allows one to
compute in a very simple way the dependence of the Josephson current on the magnetic field for ar-
bitrary junction lengths.

INTRODUCTION

The investigation of the static and dynamic properties
of long Josephson junctions, i.e., junctions with dimen-
sions larger than the Josephson penetration depth' A. , is
of great interest in both basic and applied physics. Long
Josephson junctions can support, under particular condi-
tions, the propagation of nonlinear waves, Auxons, pro-
viding an ideal testing ground for the models of soliton
propagation in nonlinear media. Moreover, since each
Auxon is associated with a magnetic Aux quantum, their
periodic motion in long junctions generates an elec-
tromagnetic field in the microwave-frequency region.
Devices based on this effect have been proposed to build
millimeter and submillimeter wave generations for appli-
cations in radioastronomy and space communications.

The progress in the understanding of 1ong-Josephson-
junction dynamics has slowed down because, in general,
analytical solutions of the nonlinear wave equation
describing the junction dynamics do not exist. Thus,
only perturbative and numerical methods have been
used.

In the static case, i.e., when no time dependence of the
fields in the junction is considered, the wave equation
may be simplified considerably. This allows the use of
analytical methods, ' which provide important informa-
tion on possible junction configurations and, consequent-
ly, on possible dynamical states.

In the case of in-line geometry junctions, Owen and
Scalapino have developed a numerical method that pro-
vides the dependence of the Josephson critical current on
the external magnetic field for arbitrary junction lengths.

In this paper, using a phase-space analysis, the possible
static configurations relative to a long Josephson tunnel
junction with uniform bias current are investigated, and
their dependence on the external bias current and the ap-
plied magnetic field is obtained.

In the first section the theoretical approach for the
phase-space analysis is shown, and some analytical results
valid for very long junctions are derived.

The second section deals with finite-length junctions.
In this case a fully analytical treatment is not possible,
and a very fast and simple numerical method, based on
the phase-space analysis, has been developed providing

the full magnetic-field dependence of the Josephson criti-
cal current for any junction length.

Finally, further improvements to the proposed method
are discussed.

PHASE-SPACE ANALYSIS

The electrodynamics of a long, overlap geometry
Josephson junction are described by a perturbed sine-
Gordon equation, which, in normalized form, is

p (O, t)+pp„, (O, t) =p„(L,t)+pp„, (L, t) =rl,
where L is the normalized junction length, and g is the
normalized external dc magnetic field.

The time-independent configurations of the junction
are solutions of Eqs. (I) and (2), where the time deriva-
tives are neglected:

P„—sing = —y,
P (0)=P„(L)=q . (3b)

If in Eqs. (3) t replaces x and a new phase g=P —~ is
defined, the equation for a simple pendulum with a con-
stant applied torque y is obtained. In this framework the
boundary conditions (3b) will become constraints on the
initial and final pendulum angular velocity. Thus, follow-

where P is the phase difference between the two super-
conductors, tz is the normalized junction conductance, p
is the normalized superconductor surface conductance,
and y is the dc bias current, here assumed spatially uni-
form, normalized to the maximum Josephson current.
As usual, ' x is normalized to the Josephson penetration
depth A. , and t is normalized to the inverse of the angular
plasma frequency co . Subscripts in Eq. (I) denote partial
derivatives. The phase P is related to the relevant elec-
tromagnetic quantities in the junction, since p, is propor-
tional to the voltage across the barrier and p, +pp„, to
the surface current (P being the normalized Cooper-pair
current and pp„ the normalized quasiparticle current).

The appropriate boundary conditions for this geometry
are
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ing this analogy, all the possible static configurations of
the phase in a long junction correspond to dynamical
configurations of a simple pendulum, subject to a con-
stant torque and to boundary conditions on its velocity.

In the absence of external magnetic field (g=O), a solu-
tion of Eq. (3a) is, for —1 & y & 1, simply P=arcsiny, and
corresponds to the stable equilibrium position of the pen-
dulum.

Equation (3a) can be integrated, yielding

P, (&,y, P ) =+[2(IC —yP —
co sf ) ]

'

where K is an integration constant.
Equation (4) defines the phase space of Eq. (3a), as is

shown in Fig. 1 for y =0.3 and different values of K. As
it is clear from Eq. (4), the phase plane is symmetric with
respect to the P =0 axis and replicates itself under a
phase shift of 2vrn (with n integer), provided that the in-
tegration constant K is redefined as K'=K —2nmy. For
y & 1, Eq. (3a) admits two infinite sequences of fixed
points:

A „=—( arcsiny+2n vr, 0)

8„—= ( ~—arcsiny+2n vr, 0) .

The points B„and A„correspond to stable and unstable
static pendulum configurations, respectively.

In the following, the case n =0 will be considered,
since the extension to the n %0 case can be obtained by a
simple phase redefinition.

In Fig. 1, two families of closed and open curves are
shown, the closed curves surrounding the fixed point Bo.
The two sets of curves are separated by a curve (the
separatrix) containing the fixed point A o.

The particular case of a semi-infinite junction will be
considered first. In this case the external magnetic field is
assumed to inhuence only the x =0 edge of the junction,
while, on the x ~ ~ side, there is no external field (i) =0),

Inserting the boundary condition (5) into Eq. (4), an ex-
pression for the integration constant E is obtained, corre-
sponding to the separatrix:

E*=(1—y )' +yarcsiny . (7)

Substituting K* into Eq. (4) with Eq. (7), the analytical
expression for the separatrix, shown as a solid curve in
Fig. 1, is obtained:

P„=+[2[(1—y )' +y arsciny' —cosP —yP] J
'~~ .

Since the separatrix tends to the point Ao with linear
slope, the integral in Eq. (6) computed along a branch
containing the point Ao tends to infinity. Hence, the cor-
responding solution belongs to an infinite length junction.

The arrows in Fig. 1 denote the direction along which
the x variable increases. Therefore, the first three
branches, CAD, EAo, and DEAo, represent solutions for a
semi-infinite junction, having the point Ao at x=+ ~,
while the latter two branches, DAo and EAOD, represent
solutions having the point Ao at x = —~.

In Fig. 2 several separatrices, corresponding to
different values of the bias current y, are shown. It is
worth noting that, for y)0, the separatrices are not

and the phase P relaxes to the equilibrium value:
P =arcsiny. Hence, the boundary conditions (3b) become

„=0, P~ „=arcsiny+2nvr .

The boundary conditions (5) imply that all the solution
curves must end in a fixed point A, and, therefore, lie on
a separatrix. In Fig. 1, for instance, five branches can be
identified, all satisfying the boundary conditions (5):
CAD EAo DEAD DAo and EDAO. Once the phase is
known, the x dependence of the phase can be easily ob-
tained by integrating P„along the corresponding branch
in the phase plane, e.g. , the branch starting in the point C
in Fig. 1:

x= J p 'dp.

0
'qc

0

-4
-2TI 0 4-2'

FIG. 1. Phase-space configuration for y=0. 3 and various
values of the integration constant K. The continuous line is the
separatrix and contains the stable fixed point Ao=(arcsiny, 0).
Bo=(~—arcsiny, 0) is the unstable fixed point and q is the nor-
malized dc external magnetic field.

FICx. 2. Separatrices for diA'erent values of the normalized
bias current y: (a) y =0;, (b) y =0.3, (c) y =0.6, and (d) y =0.9.
g, is the critical magnetic field for y =0.3. The abscissa of the
point A gives the value of the phase at the point x =0.
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bounded in P . In the case of a semi-infinite junction ly-

ing on the negative x axis, and in the presence of a mag-
netic field g, the phase configuration will be described by
the branches DAp and EApD of Fig. 1 for g) 0 and by
the branch FAp for g &0.

For a fixed positive magnetic field g and increasing the
bias current y, the points D and E in Fig. 1 get closer un-
til they coincide (point 2 in Fig. 2) at a particular current
value y* ( y" =0.6 for the case shown in Fig. 2). For
y )y*, there are no more branches satisfying the given
boundary conditions, indicating that static phase
configurations are not possible.

In this case the combined action of the bias current y
and of the magnetic field g is such that Aux quanta enter
the junction from the x =0 edge and are driven toward
the other edge (x =+ ac) by the bias current, leading to a
situation similar to the Aux Aow configuration often ob-
served in long junctions.

The value of the phase at the point A is readily com-
puted from Eq. (8), obtaining P ~

=P~ =~—arcsiny *.
Inserting p„ for p and i) for p„ into Eq. (8), the i) versus
y* relation, describing the boundary of existence of static
solutions, is obtained as

i)(y*)=2[(1—y* )' +y"arcsiny* —y*m/2]' (9)

For i) (0 and for any value of y (0 (y ( 1), there is al-
ways an intersection between the separatrix and the

= il line (e.g., point F in Fig. 1) thus giving y* = 1.
Figure 3 shows the magnetic-field pattern y*(q) [Eq.

(9)], for a semi-infinite junction. The "plateau" effect in
Fig. 3 is a peculiarity of a semi-infinite junction; indeed,
for g &0, there is a balance between the magnetic field,
which tends to inject antifiuxons (fiux quanta with oppo-
site sign) into the junction, and the bias current, which
tends to drive them out. An equilibrium situation is
reached when a number (which depends on y) of
antiAuxons is trapped in the junction. Hence, there will
always be a static configuration for y & 1.

From an experimental point of view, a semi-infinite
junction can be simulated by a long but finite overlap
junction with a magnetic field localized at one edge only.
This situation well approximates the boundary conditions
(5). A similar phenomenon has been reported in an ex-
periment by Nagatsuma et al. In their case, there was
the same magnetic field on both junction ends but no
current bias on one end. This implies that, on the un-
biased end, a Aux quantum penetrates the junction only
when the external field reaches the critical value
rl, (0)=2, thus generating a plateau in the magnetic-field
di8'raction pattern for 0 & g & 2.

It is worth noting that the pattern in Fig. 3 (continuous
line) for negative fields is different from the one obtained
by Kupriyanov et al. ' (dashed curve in Fig. 3). In fact,
in the latter case, the authors considered a very long but
finite junction. The appropriate boundary conditions are,
in this case, given by Eq. (3b) rather than Eq. (5). As a
consequence, the magnetic-field pattern is given by Eq.
(9) for both positive and negative fields.

FINITE-LENGTH JUNCTIONS

In the finite-length case, a complete analytical treat-
ment is not possible, and numerical methods are needed.
The phase configuration inside the junction is described
by Eq. (4), provided that the boundary conditions (3b) are
satisfied. Such solutions are shown in Fig. 4 as branches
ending with the same P, value (e.g., curve EB).

The length I. of the junction is given implicitly by the
integral

L=I P 'dP. (10)
p(p)

Here, P(0) and P(L) are the phases at the branch end
points, and the integral is computed along the selected
branch. From Eq. (10) it is clear that a finite-length junc-
tion cannot be described by curves containing the fixed
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FIG. 3. Theoretical magnetic-field dependence of the Joseph-

son critical current for a semi-infinite junction lying along the
negative x axis (continuous line) and for a very long but finite
(dashed line) overlap junction. A plateau is obtained in the
semi-infinite case.

FIG. 4. Phase-space diagrams for y=0. 3. K;„,K,„,K',. „,
and K* identifying, respectively, the curves tangent to P =i) at
the first maximum to the right of Ao (point D), at the point M,
at the first minimum on the left of the Ao (point E), and the
separatrix.
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the point A, between the line P„=g and the curve de-
scribed by Eq. (4). Hence, all the possible solutions lie on
branches with E;„(K(K

An expression for L,„and L,„can be written (refer-

ring to Fig. 4 for m = 1) as

L,„(y,rl) =I P„'(K;„,y, P)dP

L',„(y,g)= I P '(K',„,y, P)dP .
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and Ps are determined by numerically solving the
equations P (K;„,y, P)=g and P (K',„,y, g)=rI, re-
spectively, while Pz =P„=arcsiny —2m. It is impor-

tant to note that, unlike the m =0 case, L;„is now, in

general, different from zero.
In Fig. 6, the dependence of L „and L;„on y for

g =2. 2 and m = 1 is shown. The allowed junction
lengths are in the dashed region of the figure.

Numerically solving the equations L,„(y,„,rl)=L
and L;„(y,„,rI) =L is now possible to compute y,„(rj)
for any lobe m, obtaining the complete dependence of the
Josephson critical current on the magnetic field.

In Fig. 7, the magnetic patterns for three junction
lengths (L =2,4, 7) are shown. These lengths are
representative of the three different regimes typically ob-
served, i.e., small, intermediate, and long junction. It is
interesting to note that the pattern in the finite length
case is very close to the asymptotic limit already for
L =7. On the other hand, the pattern for L =2 closely
follows the Fraunhofer-type behavior (L ~0), showing
that the intermediate length region, where the junction
response deviates significantly from the known limit
cases, is confined to 2 (L (7.

A critical situation occurs when K;„=K „. This
condition implies the existence of a critical value y, (see
Fig. 6):

2m +1
(1—y, )' +y, arcsiny, = ~y, .

0.8

KL
2

The solutions of this equation correspond to the max-
imum current values for each lobe m in the magnetic
diffraction pattern of a very small junction. This result is
valid also for the junction length considered and is due to
the assumption of an uniform bias current.

It is also worthwhile to note that y, corresponds to the
crossover length L, from the L;„(y ) and the L,„(y )

curve (Fig. 6).

0.6
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FIG. 7. Theoretical dependences of the Josephson critical
current on the external magnetic field for different junction
lengths: (a) L =2, (b) L =4, and (c) L =7.

CONCLUSIONS

The method developed enables one to compute the
magnetic field dependence of the critical current in
Josephson junctions of any length with uniform bias
current for an overlap geometry. This method is based
on a general approach, which, however, has some limita-
tions. Indeed, as it is evident in Fig. 4, for m =1, there
are several possible choices for a branch satisfying the
constraints on the phase variation Eq. (11), (e.g. , the
branches GD and HD for K =K;„and EB and EC for
K =K,„). Only the branches spanning over stable equi-
librium points 2 have been considered, assuming such
solutions to be more stable than the others. A detailed
stability analysis of all the possible solutions should, how-
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ever, be performed in order to determine the
configurations that can be experimentally observed.

This approach can be extended to treat junctions of
in-line geometry, for which analytical results are already
available, and to junctions with a mixed in-line and over-
lap bias configuration. " Work is in progress in this
direction both on the analytical and the experimental
side.
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