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Gap function and density of states in the strong-coupling limit for an electron-boson system
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We have calculated the frequency-dependent gap function for a superconductor in the strong-

coupling limit k))1, where A, is the electron-boson mass-renormalization parameter. We find a

multipeaked function which leads to a spectral function with quasiparticle-like resonances on an en-

ergy scale determined by the gap. This is in contrast to the moderate-coupling regime, X=1, where

structure occurs on an energy scale determined by the boson frequency.

I. INTRODUCTION Z(ico„)

The observation of superconductivity at elevated tem-
peratures' has led to intense theoretical activity in this
field. There is certainly no concensus as to the mecha-
nism responsible, although there is now substantial evi-
dence that an s-wave BCS-like ground state is appropri-
ate.

One possibility that has received some attention is
the asymptotic limit of Eliashberg theory with the arbi-

trary kernel applicable to any boson exchange mecha-
nism, with phonons only one of the possibilities. In pre-
vious work the asymptotic behavior of T, has been con-
sidered, ' as well as the gap ratio, 2b, o/kll T„and the
thermodynamics, critical magnetic fields, and penetration
depths. ' ' In this paper we calculate the frequency
dependence of the gap function A(co) and renormaliza-
tion function Z(co), from which the spectral function and

quasiparticle density of states follow. We utilize the
imaginary-axis formulation, " ' along with the exact an-

alytic continuation equations derived in Ref. 14. In Sec.
II we review the formalism. In Sec. III we show some re-
sults for large A, , and in Sec. IV we present results in the
asymptotic limit (A,~~). A brief summary is given in

Sec. V.

II. FORMALISM

In order to simplify our results we use a boson spectral
function represented by a single Einstein harmonic oscil-
lator, with weight 3 at frequency UE. The limit A, ~~
can be achieved in several ways; here, we keep the area A

fixed and allow uz~0 (A, =22/uz). The Eliashberg
equations on the imaginary axis are as follows

Z (i'„)b,(i co„)
oo b(i co )

=77T g A, (leo leo )
co~ +6 l co~

(la)

&T ~m=1+ g A(i co ,
—ico„)

[co +b, (ico )]'

(lb)

where ico„—=i~T(2n —1), n =0,+1,+2. . . are the fer-
mion Matsubara frequencies and Z(i co„) and h(i co„) are
the renormalization and gap functions, respectively. The
weighted boson propagator A,(z) is given by

2Avg
A, (z) =

VF Z
(2)

6(i co„)

~m-
d, (i co ) — Z(i co„)

CO~1

~„[2trT(m —n)] [co +6 (ico )]'

where we have used a F(u)—= A5(u —uz). Equations (1)
are easily solved for any set of parameters, A, UE, and
temperature, T. It is worthwhile noting that at T=O,
Eqs. (1) become integral equations. In practice, one can
solve these equations at some low reduced temperature,
t = T/T, =0. 1 which for all practical purposes gives the
"zero-temperature" solution. This is possible due to the
existence of a gap at zero temperature in the excitation
spectrum. However, one should note that depending on
the values of 3 and UE, the "zero-temperature" solution
sometimes occurs only for much lower values of reduced
temperature, for example, t =0.01, as we shall see below.

In Eqs. (1), k(0) cancels. Because of this, one can scale
the gap function and temperature, to obtain the asymp-
totic gap equation, when uz ~0 (k~ ~ ):
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where Q—:Q/Au@, for any Q in Eq. (3). Equation (3) is

universal, and independent of material parameters. The
tacit assumption in the derivation of Eq. (3) is that
2irT &)vz or &A, t &) 1, which can always be satisfied for
finite t (since uz~0). What is not obvious, and has only
been verified numerically, is that "zero-temperature" be-
havior can be achieved with nonzero t, so that the condi-
tions are satisfied. Once the gap and renormalization
functions have been computed on the imaginary axis, an

analytic continuation to the real axis is required. Previ-
ously, one either solved the real-axis equations them-
selves, ' or used Pade approximates. ' The former
method is time consuming and formidable in the regime
we wish to investigate, and the latter is untested in the
very-strong-coupling regime (X~ ~ ). We have used the
equations recently derived in Ref. 14, which can be easily
solved numerically. These are

CO 4(i co ) b.(z —uz )Z(z)b(z)=~T g A(z ico—),+i' A [N(vz)+f (uz —z)] z[co +b (ico )]' [(z —u~ ) —b. (z —u~ ) ]
'~

b(z+uz)+ [N(u )+f (v +z)]
[(z+uz) —b, (z+uz)]'

i&T ~m
Z (z) = 1+ g A, (z i co )—

z [co +b, (ico )]'

imA Z VE Z +VE+ [N(UF )+f (UF —z)] z, + [N(uz )+f (uz+z) ]-
z [(z —uE) —6 (z —uE)]' [(z+vz) —5 (z+uz)]'

(4b)

Here, z=co+i5, and N(uz) and f (x) are the Bose and Fermi functions, respectively. Note that Eqs. (4) give the
correct analytic continuation in the upper half plane [there are obviously correction terms beyond just replacing the
"ico„"in Eqs. (1) by "z"].

In the asymptotic limit, Eqs. (4) become

COm CO b (ico )
Z (co)b, (co) =2vrT

(co +co ) [co +6 (ico )]'~

+ lim
17T

'E-
h(co —uz )

[N(uE )+f (u~ —co)]
[ (co Vz ) ——Z ( co —uE ) ]

'

6(co+ u~ )
+[N(u )+f(u +co)]

[(ci+uz ) —b (co+ uz ) ]'i~
(Sa)

1 ~m
—2

Z (co) = 1+4nT
(co +co ) [co +6 (ico )]'

+ lim [N(v~)+f (vF —co)]
U&~0 U~co, [co vg ) 6 (co Ug )]

CO+ VE+ [N(vF )+f (u~+co)]
[(co+uE ) 6(co+ u~ )]'~— (Sb)
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Fquations (5) do not obey straightforward scaling rela-
tions. Furthermore, the limiting behavior Uz~0 occurs
in a quite different manner depending on whether we take
T=O or T)0. For T)0, N(vz)-T/uz and

f (v +co)-f(+co). Singular terms cancel when Eqs. (5a)Ug CO

and (Sb) are combined. The result is a second-order
differential equation in the scaled variables with no
material-dependent parameters present. Then, the gap
edge scales according to 60/QAvz-c, where c is some
number. Coupled with the Allen-Dynes result, that
T =0.2584+ Avz, we find 2ho/kz T, =const, in the lim-e

it A.~ ~, as proven in Ref. 2 (the claim that
2b. /kz T, ~ &X given in Ref. 4 is, in our0 B c
opinion, incorrect). For T =0, X (Vz )

=—0, and

f (vz+co)=O(+co —vz), the unit step function. Again,
combining Eqs. (5a) and (5b) eliminates the singular-
it and the resulting first-order differential equationiy, an T:—0scales exactly, thus showing that even at T:—

b,o/Q 3vz =const, and 2b, o/kz T, =const. Numerically,
we have found that the T & 0 result extrapolates smooth-
ly to the T =0 result, verifying our analytic analysis.

III. VERY-STRONG-COUPLING RESULTS
A. Zero temperature

In Fig. 1 we show results for (a) the real and imaginary
components of the gap function A(co), (b) the real and
imaginary components of the renormalization function
Z (co ), (c) the spectral function at the Fermi level

Z(co)[co —4 (co)]

and (d) the quasiparticle density of states,

X(~)
X(0) /[~~ g~(~)]'~2
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FICi. 1. Results for an Einstein boson spectral function with A, = 1.0 and U~ =1.0 rneV at T =0. In this and all subsequent figures
the solid line refers to the real part and the dashed line (if present) refers to the imaginary part. All energy units in the figures are
meV. We plot (a) the gap function A(co), (b) the renormalization function Z(~), (c) the spectral function at the Fermi level, A {kF,co),
and (d) the quasiparticle density of states normalized to the normal state, n (co) =X(co)/ ((co)/X(0). In all fi ures the gap and/or structureg
at frequencies co= Ao+ nUF, n = 1,2, 3, . . . are present. See text for detailed explanation.
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as a function of frequency, for the case A. =1, vE=1.0
meV, at zero temperature (actually, T/T, =0.1, as dis-
cussed earlier). In all four figures there is structure
occurring at energies cu =Ap+ nvE, n =0, 1,2, . . . due to
multiple boson emissions. Here, Ap is the gap edge,
determined (for any temperature) by the condition

b,o=Reb, (co=ho),

which when fulfilled, gives rise to the singularity in the
density of states. The spectral function shows a quasipar-
ticle peak at the gap edge, followed by a "gap" equal to
the boson frequency vz, followed by the continuum. In
Fig. 1(a) "resonances" occur in the real part of the gap
function at both hp+vE and Ap+2vE before the real part
changes sign at M =Ap+2vE. The main resonance in the
imaginary part of the gap also occurs at cvo+2vz. [For a
Lorentzian shaped boson spectral function the change of
sign of Reh(co) and the main resonance in Imb, (rv) both
occur closer to co=ho+vz. '

] The important thing to
note is that the structure occurs on the scale of the ex-
change boson, displaced from the Fermi level by the gap

15
hp, as was appreciated many years ago.

We show the same four functions in Figs. 2(a) —2(d),
now for the rather extreme case, k=100, vE =0.02 meV.
Structure on the scale of vE is readily observable in all
four figures, again due to multiple boson emission pro-
cesses. However, structure has also clearly developed on
a completely diff'erent energy scale. In Fig. 2(c), for ex-
ample, the quasiparticle peak occurs at the gap edge,
b p=0. 19 meV. The second pronounced resonance occurs
at ~=0.57, that is, at approximately ~=3hp. %'e have
verified that this is not accidental by checking A, =50 and
1=200. In all three cases the second resonance occurs at
approximately m =36p. Multiple peaks occur at higher
energies, with frequencies of order 6p apart. Some results
concerning A, =1, 50, 100, and 200 are summarized in
Table I. T, clearly obeys the behavior T, ~&A.vz for the
last three rows in Table I whereas Ap does not quite.
(Claims that boo-A, are, however, clearly incorrect. ) The
gap ratio, 2hp/kz T„ therefore, has not saturated, but in
any event appears to be following the behavior,
26o/ksT, -co —g(k), where co is the A~ ~ value for
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FIG. 2. Same legend as for Fig. 1 but for the very-strong-couphng regime. Here, —,E =~ ~

A, = 100 U =0.02 meV. The same type of struc-
ture as observed In ig. is presen ere. n ab d F' . 1 t here In addition there are prominent oscillations on the scale of the gap edge 4o presumably
due to excitations involving additional broken Cooper pairs.
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TABLE I. Summary of results for A. = 1, 50, 100, and 200. The quantity co2 gives the frequency of the
second peak apparent in, for example, Fig. 2(c) or Fig. 2(d).

1

50
100
200

UE (meV)

1.0
0.04
0.02
0.01

T, (meV)

0.1146
0.0513
0.0364
0.0258

ho (meV)

0.242
0.254
0.192
0.142

26O

I,T;

4.23
9.92

10.54
11.04

co2 (meV)

0.81
0.57
0.41

the ratio and g (A, ) ~0 in that limit. We will return to the
value of co in Sec. IV.

Although we are apparently well outside the assumed
validity of Eliashberg theory, ' it is tempting to interpret
our results in terms of tightly bound pairs. ' Then, the
spectral function has a resonance at co=3bo correspond-
ing to the process whereby an injected electron (ener-
gy=ho) breaks up a single Cooper pair (energy = 2b, o)
for a total energy of the required amount. The higher-
order peaks apparent in Fig. 2 are presumably due to
higher-order effects contained in the nonlinearity of the

equations. The resonance need not occur at precisely 350
since there is an intrinsic imaginary component in the
self-energy. This is apparent in the gap function [Fig.
2(a)] and the renormalization function, Z(co) [Fig. 2(b)].
There is a substantially increased amplitude for this pro-
cess to occur in this limit because now the Cooper pairs
are tightly bound and not spread over many other pairs
as in the conventiona1 regime. If this interpretation is
correct it is indeed remarkable that Eliashberg theory
gives a qualitative description at T=O in the strong-
coupling regime.
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FIG. 3. Same as Fig. 1 except at t:—T/T, =0.9. See text for detailed explanation of structure.
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B. Finite temperature

It is interesting to consider the case of finite tempera-
ture in this regime as well. Let us first review the conven-
tional regime. ' In Figs. 3(a)—3(d) we lot 4( ) Z( ),

~, co ), and % (co ) /X (0), respectively, for A, = 1.0,
uE =1.0, and t —= T/T, =0.9. Note that the structure
remains sharp even at temperatures near T, . A well-

efined albeit reduced gap exists. This is simply due to
the fact that T, /vE-O. 1, so that the Fermi and Bose
functions are stilli l very sharp. Structure again occurs at
frequencies bo(T=0. 9T, )+nvF, n =0, 1,2, . . . where
now the displacement from the Fermi enermi energy is given by
the reduced finite-temperature gap edge. In addition,

—b (T=0.
new resonances have appeared at fa requencies

=0.9T, )+nvz, n =1,2, 3, . . . . These are under-
stood' to arise f'se from new decay channels available at
finite temperature. Excited quasiparticles exist, particu-
ar y at co=ho(t). There is an increased probability that

an injected electron will recombine with this excited
quasiparticle, through the emission of a phonon, resulting
in a resonance occurring at the frequency Uz

—b,o(t), as is

seen in the spectral function [Fig. 3(c)], for example. We
should stress that both types of these resonances arise
from phonon emission, that is, the terms involving z —vE
in Eqs. (4) rather than those involving z+Uz. (Note that

[1+N(v~)][1 f (c—o vE )—]
[1—f (~)]

X(uz )+f (Uz+co) = V(vz )[1 f (U~—+co)]/[I f (m—)]

Ref. 19).) In fact, for the model displayed i F' 1 din igs. an

E s.
, uE=1) we can leave out the co+ t

qs. (4), and the results do not change. A conspicuous
feature in Fig. 3(c) is a "gap" existing centered around
co= v&. This "gap" is a natural extension of the " a "

[ ig. c)]. There is no contribution above
co=v& —Ao because the recombination processes men-
tioned above are greatly suppressed due to a lack of excit-
e quasiparticles with which to recombine. S l

g occurs again at co=vE+Ao, as at T=O, so that a
"gap" =26,o(t) occurs centered around U =1.0.E
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In Figs. 4(a) —4(d) we plot the corresponding results in
the very-strong-coupling regime (A.=100, v@ =0.02 meV,
t=0.9). Thermal smearing is now dominant, since T, (as
determined within Eliashberg theory ) is greater than
the boson frequency, vz (Table I). Nonetheless, oscilla-
tions on the scale of the zero-temperature value of the
gap, b.o(T=O), remain, even close to T, . This is some-
what expected since the temperature at T =0.9T, is still
much lower than the gap energy, bo(T=O), which pro-
vided the energy scale for structure at T=O. Other
minor differences occur. In Fig. 4(a), for example, the
real part of the gap function goes to zero at the Fermi
level, Red, (co) ~ co, and the imaginary part is nonzero im-
mediately off the Fermi level, with behavior
Imb(co) ~co. ' Similarly, ImZ(co) is very large at co=0
at finite temperature, whereas it is zero at T=0. (This
was also the case in Fig. 2 though at extremely small fre-
quency scales. ) Also note that, according to Eq. (6), a gap
is present at t=0.9, although the spectral function or
density of states shows no true gap at t=0.9 (in contrast
to the case for A, = 1, u& =1.0 at t=0.9).

The full temperature dependence of the gap edge is
displayed in Fig. 5, for the weak-coupling BCS case, and
for A, = 100, UE =0.02 me V. The moderately-strong-
coupling case, A, =1.0, UE =1.0 (not shown) deviates only
slightly from the weak-coupling BCS result (larger
values). The result in very strong coupling is first of all
multivalued, a fact noted by Leavens. This behavior is
an artifact of the definition of the gap edge given by Eq.
(6). The true order parameter does indeed approach zero
and is single valued as T~T, . The other noteworthy
difference between the two cases illustrated in Fig. 5 is
the temperature dependence as T—+0. The BCS result
shows a constant gap edge out to t=0.3, whereas in the

very-strong-coupling case deviations are visible already at
t=0.1. In this latter case it almost looks as if the gap
edge does not have exponential behavior, as T~0,
though we have found that it always does, at sufficiently
low temperature.

The results shown in Fig. 5 are somewhat misleading,
however. In a tunneling measurement, for example,
essentially the density of states is extracted, which is the
quantity illustrated in part (d) of Figs. 1 —4. The gap edge
is roughly associated with the frequency at which the
peak in the density of states occurs. Figures 2(d) and 4(d)
show that for very strong coupling this peak occurs at the
same energy, independent of temperature, so one would
conclude that a temperature-independent gap edge has
been observed, which does not go to zero at T„ in contrast
to the case in moderate coupling [Figs. 1(d) and 3(d)] or
the behavior suggested by Fig. 5. In all cases, of course,
the order parameter does go smoothly to zero at T= T, .

IV. ASYMPTOTIC LIMIT

For completeness we present results for k —+ ~. Equa-
tion (3) has been solved for progressively lower tempera-
tures, until the gap values were no longer changing but
more Matsubara frequencies were simply being filled in.
A plot of Z(ice„) versus co„ is shown in Fig. 6, for t=0.01
and t=0.02. The two results are practically indistin-
guishable, indicating that we have essentially solved the
T=O case. It was necessary to use such a low reduced
temperature in this case, as was noted with regard to Fig.
5. The analytic continuation was obtained with Eqs. (5a)
and (Sb) using progressively smaller values of Uz until the
results converged. As noted earlier, we imposed T =0 or
T & 0 conditions on the Fermi and Bose functions, and
found a smooth extrapolation from T) 0 to T=0. The
results for T=O and t=0.9 are shown in Figs. 7(a) and
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FIG. 5. Plot of the gap edge normalized to its zero-
temperature value, Ao( T) /ho(0) vs T/T, for a weak-coupling
BCS superconductor (solid line), and a very-strongly-coupled
(k=100, V&=0.02 meV) Eliashberg superconductor (dashed

line). The gap edge is defined through Do=Red(co=ho). For
the latter case the gap edge becomes double valued at higher
temperatures, but loses its physical significance at the same
time.

I r I

4 ~ 6~n 10

FIG. 6. Plot of the scaled gap function h(ice„) as a function
of scaled Matsubara frequency co„(Q=Q/QAUzl at t =0.01
(solid) and t =0.02 (dotted), in the asymptotic limit. The two
curves are barely discernible, indicating that we have solved for
the "zero-temperature" gap function. The result is featureless
except for a broad maximum at the origin.
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7(b) and Figs. 8(a) and 8(b), respectively. As a check we
solved a case with k = 1000 using the un-
scaled equations, and found essentially identical results
except for extra noise due to the nonzero boson frequen-
cy.

~ ~ f theFigure 7(a) shows the real and imagmary parts of t
gap unction wif 'th the oscillatory behavior noted earlier.
All plots are in scaled units, e.g., ~=co/&~ E. Th=—co/~„~WU . The
main resonance

'
resonance in Imb. (co) [along with the change of sign

11in Red. (co)] occurs at 260. Reh(co) and co never actua y
cross; they become tangent at B=ho, with the result that
BZ(co)/Bco~ —= l. In Fig. 7(b) the density of states&=ho

ith theclearly exhibits multiple resonances, starting with t e
main one at co=t =6 . At finite temperature the structure
persists, and Fig. 8(b) shows the first two peaks in the

&(ice„)=f (i co„)sech
CO~

g (i'„)
where f (iso„) and g (ice„) are slowly varying functions of
co„, of energy scale, 60. This form fits the result in Fig. 6
very well. Upon analytic continuation,

density of states at roughly the same frequency as at
T =0.

At zero temperature we obtain an asymptotic value of
the gap ratio, 2A„/k&T, =12.7. The asymptotic scaling,
T, ~ Uz&A, ~+Ave occurs for relatively small A, ( R10).
In contrast, the scaling behavior for the gap edge,

&A, ~QAv only arises for much higher valueso E
of k. Kresin has used an approximate analysis and ar-
rived at an asymptotic value for 26 o/k sT, similar to
ours. However, his form for the gap function does not
appear to be correct. Figures 6 and 7 suggest a form:
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( ) = and finding the intersection with the real part of the

gap function. These curves are actually tangential at u-
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FIG. 8. Same as in Fig. 7, except for t =0.9. The two most
prominent peaks in (b) occur at nearly the same frequency as im

Fig. 7(b).
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so that the oscillations characteristic of secx become
prominent, as is the case in Fig. 7.

The renormalization function and spectral function are
given by simple expressions, at T =0, in the asymptotic
limit. From Eq. (Sb) it readily follows that

—2
—

2 — in[
—2 g 2( —)]in (7)

V. CONCLUSIONS

W'e have calculated the Eliashberg gap and renorma1-
ization functions in the very-strong-coupling (A, ))1) and
asymptotic (A, —+ ~ ) regimes, for a gas of electrons in-
teracting with Einstein bosons of frequency Uz. In the

with the second term of course dominating as Uz~0.
The spectral function at the Fermi level then becomes

A N(ro)
~ X(0)

where 3 = (kuz/2) is the area in the boson spectral func-
tion. Equation (8) is seen to be already obeyed on com-
parison of Figs. 2(c) and 2(d), for example.

conventional regime (I,—1) these functions, along with
the derived spectral function and density of states, exhibit
a gap followed by an incoherent part which contains
structure due to boson emission. By contrast, in the un-
conventional regime investigated in this paper, structure
becomes prominent on the scale of the gap edge energy,
Ao. This added structure appears to be due to excitations
involving broken Cooper pairs, due to the substantially
decreased coherence length in this limit. This implies
that at zero temperature, Eliashberg theory qualitatively
describes the limit of tightly bound Cooper pairs, provid-
ed other instabilities are avoided. This asymptotic behav-
ior persists for much more moderate values of the mass
enhancement A, than considered in this paper, and may be
realizable in physical systems.
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