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Phonons and rotons in commensurate p-H2 and o-Dz monolayers on graphite
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For the commensurate (&3X&3)R30' phase of p-H& and 0-D& on graphite, we have calculated
the phonon and roton band structures by the time-dependent Hartree method. A basis of three-
dimensional harmonic-oscillator functions (up to n=8 inclusive) is used for the translational vibra-
tions and a basis of spherical harmonics for the weakly hindered rotations. The anisotropic poten-
tial between the molecules in the adsorbed layer is taken from ab initio calculations. An anisotropic
molecule-substrate potential is modeled semiempirically. Both potentials are explicitly expanded
with respect to the molecular displacements, with the inclusion of high anharmonic terms, and with
respect to their anisotropy. Moreover, the molecule-substrate potential is Fourier expanded to ex-

pose the effects of the surface corrugation. The structure of the in-plane phonon band agrees well

with the data available from inelastic neutron scattering. For the peak that has been ascribed previ-
ously to the out-of-plane phonon band, we suggest an alternative assignment. For the rotons we

have derived, both numerically and analytically, the dependence of the band structure on the (un-

known) anisotropy of the molecule-substrate potential.

I. INTRODUCTION

A subject that has aroused interest recently is the
structure and dynamics of H2 and D2 layers physisorbed
on the basal plane of graphite. A variety of adsorbed
phases and transitions between these phases have been
identified by means of low-energy electron diffraction
(LEED), neutron-diffraction, and specific-heat measure-
ments. ' For the commensurate (&3XV3)R30' phase,
which occurs up to 1.08 monolayer coverage for H2 and

up to 1.05 monolayer coverage for D2 at temperatures
below 20 K, the dynamics also has been investigated by
inelastic neutron scattering (INS). ' ' Although it was
not possible to study single crystals and thus to measure
directly the full two-dimensional phonon dispersion
curves, an elegant experimental setup and interpretation
allowed the determination of phonon frequencies for
different points in the two-dimensional Brillouin zone.

The motions and stability of these H2 and Dz over-
layers on graphite are determined by an interplay be-
tween the intermolecular interactions in the adsorbed lay-
ers and the interactions of the adsorbed molecules with
the periodic substrate. The (&3X&3)R30 phase can be
considered as a two-dimensional molecular crystal with a

0
nearest-neighbor distance of 4.26 A (which is substantial-
ly larger than the nearest-neighbor distances of 3.79
and 3.61 A in bulk hydrogen and deuterium). Because of
this large lattice spacing and the small masses of H2 and
Dz, the molecules exert large, and probably strongly
anharmonic, zero-point motions. The quantum nature of
these systems is most evident from the molecular rota-
tions, however. One expects to find nearly free rotations
of the molecules in the layers, characterized by quantum
numbers j and m. Even values of j occur for p-H2 and o-

Dz, odd-j values for o-H2 and p-D2. Due to the large ro-
tational energy splittings between different j states, the

molecular rotations are just weakly perturbed by the an-
isotropic environment and weakly coupled by anisotropic
intermolecular interactions. So the ground state of p-H2
and o-D2 is orientationally disordered with nearly spheri-
cal (j =0) molecules and collective rotational excitations
to a j =2 roton band. Also o-Hz and p-Dz are orienta-
tionally disordered, except at very low temperatures' '
where the j =1 ground state is split into states with
m =0 and +1. Most experimental studies' ' concern
these orientationally disordered phases of para-, ortho-, or
mixed (normal) hydrogen and deuterium layers.

It will be obvious from these considerations that the
standard (harmonic) lattice-dynamics method and the
classical molecular-dynamics (MD) method which are
usually applied to the ordered and disordered phases of
molecular crystals and, more recently, also to adsorbed
layers, cannot be applied here. Gotlieb and Bruch' ''
have calculated the vibrational ground state of Hz and Dz
layers adsorbed on graphite by a variational quantum
Monte Carlo method. Their vibrational wave function
was a product of single-molecule functions for the
center-of-mass vibrations, multiplied by a Jastrow func-
tion to account for the correlation between these vibra-
tions. The molecules were assumed to be effectively
spherical and, thus, to interact via an isotropic pair po-
tential. The center-of-mass vibrations were restricted to
be planar, i.e., parallel to the graphite surface. Novaco
has shown that it is essential to also include the displace-
ments of the molecules perpendicular to the surface, even
if one is primarily interested in their vibrations in the
parallel directions. He has calculated the dispersion rela-
tions for the in-plane phonons in commensurate H2 and
D2 layers on graphite by means of the self-consistent pho-
non (SCP) method and found the results to be in good
agreement with the available INS data. ' ' In this cal-
culation it was also assumed that the Hz and D2 mole-
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cules are effectively spherical and interact via isotropic
potentials. This assumption was verified by Novaco and
Wroblewski ' who calculated the single-molecule rota-
tional states in Hz, HD, and D2 layers on graphite in the
anisotropic field originating from the substrate. The an-
isotropic interactions between the adsorbed molecules
were neglected, however.

In the present calculations for commensurate
(&3 X &3)R 30 layers of H2 and Dz on the basal plane of
graphite, we compute both the in-plane and the out-of-
plane phonon states, as well as the collective rotational
(roton) states and their coupling to the phonon states
(which appears to be small indeed). We use the full aniso-
tropic intermolecular potential for hydrogen from ab ini-
tio calculations. ' For the molecule-substrate interac-
tion we construct an anisotropic model potential which
generalizes the isotropic H2-graphite potential obtained
from selective adsorption measurements ' (in the same
way as Novaco and Wroclewski did. '). Phonon, roton,
and possibly mixed, states are calculated by means of the
time-dependent Hartree (TDH) method. Basis functions
at the first (mean-field) level of this calculation are the
free rotor functions of Hz or Dz (spherical harmonics)
and three-dimensional harmonic-oscillator functions for
the center-of-mass vibrations of the molecules. This
TDH method with the same ab initio Hz-Hz potential has
been applied previously to Hz and D2 solids. It was
found, even for the smaller nearest-neighbor separations
that occur in these bulk solids, that the use of Jastrow
functions for the correlation between the center-of-mass
vibrations could be avoided if the full anharmonicity of
the intermolecular potential was included and the
harmonic-oscillator basis for these center-of-mass vibra-
tions was sufficiently large, so that the wave functions at
the mean-field level could adapt to this anharmonicity.
Results are presented for commensurate p-Hz and 0-Dz
layers on graphite; in a forthcoming paper we will discuss
results for o-Hz and p-D2 overlayers.

H =Q T ( u~ ) +QL ( co ) +Q V~ ( u~, co~ )

'"'~p) .
P &P

H (ro )=L(r0„)+(V (u, ro )) '

+ g (&0 .(u, ro, u, ro )) ~ ~ a, (2b)
P +P

E
where (X) ' means the thermodynamic average of an
operator X over the eigenstates of H with K = T or I .
From these equations it follows that the translational and
rotational Hamiltonians are coupled and we have to solve
the problem in an iterative way. The translational Ham-
iltonian is diagonalized in a basis of three-dimensional
spherical harmonic-oscillator functions. The basis for
the rotational Hamiltonian consists of tesseral harmonics
(real combinations of spherical harmonics).

The single-molecule eigenstates for the translations and
rotations can then be used to calculate the collective exci-
tations of the adsorbed layer. For this purpose we use
the time-dependent Hartree method, ' which, at zero
temperature, is equivalent to the random-phase approxi-
mation (RPA). In the TDH method the excitation ener-
gies are the eigenvalues of the matrix

y —P@(q) —P@(q)
PN(q) —y+P4(q) (3)

It contains the kinetic-energy terms for the translational
center-of-mass motions T and the rotational motions I of
the molecules, the molecule-substrate potential, and the
intermolecular potential.

In the mean-field formalism the translational and rota-
tional Hamiltonians are given by

H (u )=T(u )+( V (u, a)„)) '

+ g (4~~.(u„,co~, u~, co~ )) ~ ' ', (2a)

II. THEORY

A. The Hamiltonian

The center-of-mass positions of the molecules in the
adsorbed layer are denoted by r =R +u, where R are
the equilibrium positions and u are the displacements of
the molecules p. The orientations of the molecules are
described by a set of polar angles co . We assume that the
motions of the molecules in the adsorbed layer are separ-
able from the graphite lattice vibrations which have
much higher frequencies and small amplitudes. We use a
rigid graphite substrate so that the molecule-substrate
potential V for a given molecule p depends only on the
coordinates u and co of that molecule. The pair poten-
tial between the molecules within the adsorbed layer is
denoted by W . Many-body interactions, as well as
substrate-mediated interactions between the adsorbed
molecules are neglected. Then, the Hamiltonian for the
adsorbed layer is given by

The diagonal matrixes g and P contain the mean-field ex-
citation energies and the mean-field population
differences

XabiK;a'b'i'K' ~aa ~bb'~ii'~KK'(eiK EiK ) ~

(a) (b) (4)

abiK; a'b'i 'K' ~aa'~bb'~ii '~KK'( iK iK
(a) (b)

p(a) exP( —13EIK')

yexp( —PeIKb )

with P= (kT)
The matrix @(q) describes the coupling between the

mean-field excitations on different molecules, as well as
translation-rotation coupling

c',z' is the mean-field energy of excitation level a of a mol-
ecule of sublattice i and K = T or I.. The population of
this excitation level is given by
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b & ''b''K'(q) =g exp(& O'R ) & Q'x 4'~'I & +(0; I (. ; )

&' " '
I
0''j(0''+' &

(7)

where g';g-' is the mean-field wave function corresponding with EIgI, q is the wave vector of the collective excitation, n
and n" label the unit cells, and K, is the complement of K. The TDH matrix contains elements with K%K'. These ele-
ments mix the translations and rotations so that the translation-rotation coupling which was neglected in the mean-field
treatment is restored by the TDH method.

B. The intermolecular potential

The intermolecular potential is written in the form of a spherical expansion

l, l2 l3

&@&("Is
')& I i fpl2

C ' (r0~)C '
(&0~ )C '

(r~~ ) .(I& ) (l2 ) (l3) ~

The intermolecular vector is given by

r~~. = ( R~.+ u~ ) (R +—u )

and r ~ is the unit vector along r . The Racah spherical
harmonics C'"(c0) that describe the orientational depen-
dence of the potential are coupled to a scalar function by
the summation over m =

I m „m z, m 3 I, with the large
parentheses denoting a 3-j symbol. The first summation
runs over I =

I l „lz,I3 I and the factors y&(r . ) are the ex-
pansion of coefticients that reAect the anisotropy of the
potential. They will be specified in Sec. III.

A Taylor expansion of the potential can be made in
both the molecular displacements u and u, so that the
potential becomes explicitly dependent on these displace-
ments. This expansion is amply described in Refs. 26 and
27 and the resulting form of the potential looks as fol-
lows:

4 .(u, co,u, co~ )=g g(u~) 'C„' (u~)
A) A2

XC ' (co .),(1, )

where A stands for the set of indices Ia, k, ,p, l, m I and
the expression for XA ~ (R~ .) is given in Ref. 26. The

1 2

summations over a, and cx2 extends to o.&+a2
where a „is equal to the order of the Taylor expansion
in the displacements. An expansion with a „=2,for in-
stance, yields a potential N ~ which is harmonic in the
center-of-mass displacements uz and uz . In the present
calculations we carry this expansion much further, see
Sec. III. For the summations over A. and p holds:
0 ~ A.; ~ n; and —X, ~ p; (A.;, where A, , has the same pari-
ty as a;. After this expansion we have a potential which
is explicitly dependent on the displacement coordinates of
the molecules and thus easy to use in lattice-dynamics
calculations.

C. The molecule-substrate potential

Following previous calculations, ' ' we consider the
interaction V of a molecule p with the substrate as a sum
of pair interactions between the molecule and the indivi-
dual substrate atoms. The most general form for such
molecule-atom interactions is, of course, a spherical ex-
pansion, i.e., a special case of Eq. (8). From selective ad-
sorption measurements, only the first, isotropic, term in
such an expansion is known. As we wish to also investi-
gate the effects of the anisotropy in the molecule-
substrate interaction, we model this interaction by the
atom-atom model, which contains this anisotropy impli-
citly. So we write,

V, (u„~, )=+I U(IR, +u, +a(ro ) —Rcl)
C

+ U(
I
R +u —a(co ) —Rc I )], (10)

where the vectors R& denote the positions of the carbon
atoms C in the substrate and the orientation dependent
vectors a(ro ) describe the positions of the hydrogen
atoms with respect to the Hz center of mass. Just as No-
vaco and Wroblewski, ' we choose an atom-atom poten-
tial u ( I rI ) of the Lennard-Jones type, which is
parametrized in such a manner that the isotropic com-
ponent of the resulting molecule-atom potential agrees
with the isotropic potential from the selective adsorption
measurements (see Sec. III).

In Ref. 30 it is shown that the atom-atom interactions
can be summed to an atom-substrate interaction with the
aid of an analytical Fourier transformation. Next, a
spherical expansion of the molecule-substrate interaction
can be made to expose its anisotropy explicitly and, final-
ly, a molecular-displacement expansion of the spherical
expansion is used to make the molecule-substrate poten-
tial explicitly dependent on the displacement coordinates
of the molecule. ' The molecule-substrate potential can
then be written in the following form:

V (u, r0 )=MFA(R~)(u~) C„' '(u )C'"(ro ), (11)

where, again, A indicates the set of indices I a, A.,p, I, m I.
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The coefficients FA(R~) can be written as a two-
dimensional Fourier series

FA(R )=MFA(g~z )exp(ig r ) (12)

with v denoting the projection of R on the graphite
basal plane (the xy plane), so that R =v +z e, . The
vector g is a vector in the two-dimensional reciprocal lat-
tice of a substrate layer.

Analytical expressions for the expansion coefficients
F~(g~z~) are given in Ref. 31. The terms with g=O de-
scribe the fiat (but anisotropic and anharmonic) potential
which depends only on the height z of the molecules
above the graphite surface, the terms with g&0 contain
the eA'ects of the surface corrugation.

little mixing between the rotons and the phonons. The
dependence of the roton band structure on the anisotropy
of the intermolecular potential and of the molecule-
substrate potential may be derived analytically. Since the
latter anisotropy is not known, this will be very useful in
the interpretation of (future) experimental data.

After substitution of Eq. (9) for the intermolecular po-
tential and Eq. (11) for the molecule-substrate potential
into Eq. (2b), we can write the rotational mean-field
Hamiltonian as

H (co )=1.(ro )+DEFI (R~)C'"(co~)
Irn

+g g g Xl .( (R )
p'~p 11 12 mlm2

D. Analytical model for the roton bands

Due to the large rotational constants of Hz and Dz, the
rotational excitation (roton) energies are rather large
(=360 cm ' for p-Hz and = 180 cm ' for o-Dz). Since
the typical excitation energies for the translational vibra-
tions (phonons) are much lower (see Sec. IV), one expects

I

with

(R, )=yF, (R, )&(, ) C„"'(",)& '
aA,p

(13)

(14)

cx
)

A, IP I cx2A 2@2

(15)

H (co~)=BJ (co~)+vzCp '(co~), (16)

For the systems under consideration, one can make
several approximations. The only significant terms in the
intermolecular potential and in the molecule-substrate
potential are the terms with l„lz ~2 and i ~2 (see Sec.
III). The terms that are relevant for the roton frequen-
cies are the anisotropic interactions with I&, lz, or l&0.
Because of the sixfold symmetry at the adsorption sites,
the terms with m WO vanish. In the ground state of p-Hz
and o-Dz, the molecules are very nearly in a pure j =0
state. So, the expectation values (C'"(co~)) ' are practi-
cally zero, except for l =m =0. Using all these
simplifications, we are left with the following rotational
mean-field Hamiltonian:

«oi Y~P~
0 0

g'"= Y' '+5Y(P)
0 0

with the mixing coefficient 6 given by

9&5 vz

245 8
The corresponding mean-field energies are

2
(0~

245 8
2

( i ) 6g + 2 + 9 2

245 8

(19)

(20)

where 8 is the rotational constant of Hz or Dz, J is the
molecular total angular-momentum operator, and vz is
the strength of the anisotropic crystal field at the adsorp-
tion sites

The eigenstates « ', « ', « ', and g' ' with m %0 are the
pure basis functions F' ' with m =+1 and +2 and the
corresponding eigenvalues are

vz =Fz p(R& )+ g Xz p. p p(R&& ) .
p &p

7 2.(4»=6a —," .7UZ

(21)

The first contribution to this crystal field originates from
the molecule-substrate interactions, the second term from
the anisotropic interactions between the molecules in the
adsorbed layer. Diagonalizing this Hamiltonian in a
basis of spherical harmonics Y"'(co„)with j=0 and 2, we
find that only the states with m =0 are mixed

The roton frequencies are the eigenvalues of the TDH
matrix in Eq. (3), restricted to the pure rotational excita-
tions (0)~(1), (2), (3), (4), (5). We take T =0 K so that
the matrix P becomes minus the unit matrix and we
rewrite the eigenvalue problem for the matrix in Eq. (3)
into the following eigenvalue equation:
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y'~ [y+2@(q)]y' x(q)=x(q)Q (q) . (22) (S(a) E(0) ) (23)

The diagonal matrix y is now defined as
and the Fourier-transformed anisotropic coupling matrix
can be written as

2 2 4 I ~ T T
&I)„,(q)=3Q v'70 g (g"~C' ~p' ')(p' ~C '~f' ')g exp(iq R„)(r0„C (r0„))

rn&m2m3 n

(24)

N) )(0)=—', S,
4&2 2(0)=@3,(0)= ——', S,
C 4 4(0)=N, ,(0)= —,'S,

(25)

where S is the two-dimensional quadrupole-quadrupole
lattice sum

S —@2'(r
—5C(4)(~r ) ) 0 n (26)

For the optical roton frequencies we obtain, from Eq.
(22),

(0)—[ ( &(a) &(0) ) [E(a) E(0) +2@ (0)] ]
) /2 (27)

The crystal-field strength u2 from Eq. (17) and the
quadrupole-quadrupole coupling S are much smaller than
the rotational energy splitting 6B. In very good approxi-
mation we find that the roton frequencies are given by

18 V2
0i (0)=6B+—'S+ —'u + for m =0,

245 B

9 V2
co2 3(0)=6B ——', S+—,'u2+ for m=+1, (28)

9 vz
co4 5(0)=6B +—'S ——'u2+

245 B for m =+2 .

In this approximation the splittings between the roton
frequencies for q=o are additively determined by two
contributions: the quadrupole-quadrupole lattice sum S
and the efFects caused by the crystal field v2. For general
wave vectors, the quadrupole-quadrupole interaction ma-
trix @(q) is no longer diagonal but, essentially, we obtain
the same additivity. The crystal field leads to splittings

Here, we have used the fact that all the adsorbed mole-
cules are equivalent. Moreover, we have observed that
the anisotropic intermolecular interactions with
l, =I2=2 are dominated by the quadrupole-quadrupole
interactions (Q is the molecular quadrupole moment of
H2). The eigenvalue matrix 0 (q) obtained by solving
Eq. (22) contains the squares of the roton frequencies
co, (q) on the diagonal.

It follows from Eq. (24) that, for q=0, the matrix 4(q)
is diagonal. This is related to the sixfold symmetry of the
adsorption sites which causes only the terms with m 3 =0
to survive. This leads to m, = —I2 and, since the
mean-field states 1i)" are characterized by quantum num-
bers m, we find immediately that @(0) is diagonal with
elements

between the roton subbands of difFerent
~
m ~, the

quadrupole-quadrupole coupling leads to dispersion of
these subbands. Degeneracies between the diFerent
branches cause avoided crossings. Roton bands calculat-
ed for diFerent v2 will be discussed in Sec. IV. According
to Eq. (28) we can directly obtain the strength of the an-
isotropic crystal field v2 and, in particular, the unknown
contribution F20(R~) of the molecule-substrate interac-
tion from the splittings between the subbands.

III. COMPUTATIONAL ASPECTS

The intermolecular potential used in our calculations is
an ab initio calculated H2-H2 potential of Schafer and
Meyer improved by Schafer and Kohler through a
multiproperty analysis. This potential is represented by a
spherical expansion, Eq. (8), with all the anisotropic con-
tributions for l„l2 ~2. Each expansion coefficient (Iu&(r)

consists of dispersion contributions ( —r, r, and
r '

) and a short-range contribution which depends ex-
ponentially on r. The quadrupole-quadrupole interaction
( -r ) appears in the l „l2,l3 =2,2, 4 term. This poten-
tial has been used in lattice-dynamics calculations on
solid H2 and D2 (Ref. 26) and has proved to yield satisfac-
tory results.

The modeling of the anisotropic molecule-substrate po-
tential is described in Sec. IIC. Our atom-atom model
parameters are fitted to the empirical isotropic C-H2 po-
tential determined by selective adsorption measure-
ments. The Lennard-Jones parameters that were de-
rived from these measurements are o.cH =2.89 A and

2

c.c H =0.3753 kJ/mol. We choose the Lennard-Jones pa-

rameters for the atom-atom C-H potential so that the iso-
tropic term of the expansion in Eq. (11) (when restricted
to only one carbon atom) matches the empirical isotropic
C-H2 potential. Thus, the anisotropic part of the
molecule-substrate potential is determined by the separa-
tion of the two hydrogen atoms. If we use the experimen-
tal bond length of the hydrogen molecule (0.7417 A), the
Lennard-Jones parameters for the C-H interaction are
o.c H=2. 76 A and Ec H=0. 2184 kJ/mol. By changing
the apparent bond length, we can scale the anisotropy,
just as done in Ref. 21. With these parameters we find
that the isotropic term of the molecule-substrate poten-
tial has a minimum above the centers of the carbon rings
at z =2.785 A.

In previous lattice-dynamics calculations on bulk hy-
drogen, it was shown that, due to the large zero-point
motions of the hydrogen molecules, the displacement ex-
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pansion of the potential should not be truncated before
the sixth-order terms. Both for the intermolecular and
for the molecule-substrate potential we have therefore ex-
tended the displacement expansion to a,„=6. The
spherical expansion of the molecule-substrate potential is
only extended to l,„=2because of the weak anisotropy
of the hydrogen molecules.

The two-dimensional character of the adsorbed layer
causes the translational motions of the molecules to be
strongly anisotropic. The amplitude of the in-plane vi-
brations turns out to be very different from that of the
out-of-plane vibration. Therefore, a large basis of spheri-
cal harmonic-oscillator functions is needed for the
translational motions. With harmonic-oscillator func-
tions up to n „=8, which results in a basis of 165 func-
tions, the results are well converged. In these spherical
harmonic-oscillator functions occurs a scaling parameter
A which is used to optimized the basis. For a three-
dimensional isotropic oscillator A =(Mco/A')'~, where
M is the molecular mass and co the harmonic-oscillator
frequency. In the case of an adsorbed layer, with the in-
plane frequencies very difFerent from the out-of-plane fre-
quency, we average over the three fundamental excita-
tions

[(&(() E(0))+ (&(2) &(0))+ ( E(3) E(0) ) ]M
3A

(29)

which yields better convergence with the same number of
basis functions. Because of the weakly anisotropic in-
teractions, a small basis of tesseral harmonics up toj,„=2 is sufficient for the calculation of the rotational
mean-field states.

0

In all calculations we use 1.42 A as the nearest-
neighbor distance between the carbon atoms within a

O

graphite layer and 3.37 A as the distance between the
graphite layers. The nearest-neighbor spacing between
the adsorbed molecules in the (&3X &3)R 30' overlayer
then equals 4.26 A. The range of the two-dimensional
lattice summation over the intermolecular potential is set
at 8.0 A. From Ref. 31 it is clear that, only for the in-
teraction of an adsorbed molecule with the top layer of
the graphite substrate, the corrugation has to be con-
sidered. This is achieved by summation over the

0
molecule-atom pair potentials within a range of 30 A.
The rest of the graphite crystal is taken into account by
including in Eqs. (11) and (12) the first Fourier term
(g=0) of the interaction with the next ten layers. For the
rotational constant of hydrogen we take B =59.06 cm
and for deuterium B =29.83 cm '. All calculations are
performed at zero temperature.

IV. RESULTS AND DISCUSSION

From the single-particle states of the molecules calcu-
lated at the mean-field level, one can derive various quan-
tities, such as the total Helmholtz free energy, the
translational and rotational energy, and the expectation
values of the displacements of the molecules. These are
listed in Table I. Our first observation is that the vibra-
tionally averaged height (z ) of the molecules above the

graphite surface is substantially greater than the height
zo=2. 785 A of the equilibrium positions of the mole-
cules. These equilibrium positions are calculated from
the isotropic term in the molecule-substrate potential and
they lie above the centers of the sixfold carbon rings. For
p-H2 and 0-D2 we find that (u, ) = (z ) —zo equals 0.178
and 0.122 A, respectively. This refiects the strong anhar-
monicity of the out-of-plane vibrations. Although the
choice of origin should be irrelevant for a complete basis,
we have located the basis functions for the translational
vibrations at height (z) since this appears to yield the
best converged results for a fixed number of basis func-
tions.

We observe further a strong anisotropy in the transla-
tional vibrations. The root-mean-square amplitude of the
in-plane vibrations is almost twice as large as the ampli-
tude of the out-of-plane vibrations, both for p-H2 and for
0-D2. We find good agreement with the amplitude of the
in-plane vibrations in o-D2 which has been determined
from neutron-difFraction intensities.

The TDH calculations yield the phonon and roton
band structure, as well as possible mixing between these
bands. Since the roton frequencies in p-Hz and o-D2 are
considerably higher than the phonon frequencies, there is
very little mixing, ho~ever, and we discuss the phonons
and the rotons separately. In the calculations of the pho-
non bands we have included five excited center-of-mass
vibrations of each molecule: the two fundamental in-
plane vibrations, the fundamental out-of-plane vibration,
and the two lowest in-plane overtones. The latter were
taken into account because they appear to be nearly de-
generate with the fundamental out-of-plane mode. Thus,
one might expect Fermi resonances between these modes
which will afFect the phonon band structure, except in
those points of the two-dimensional Brillouin zone where
such resonances are forbidden by symmetry (e.g., the I
point). The following characteristics of the in-plane pho-
non band structure have been determined by INS
the lowest phonon frequency at the 1 point (coo), the total
width of the in-plane phonon band (hen), the frequency of
the transverse phonon at the M point (coT), and the fre-
quency of the longitudinal phonon near the K point (coL).
The mode with frequency ~o is an acoustical phonon
mode (an overall translation of the entire adsorbed layer).
The value of coo (often called the phonon gap) is a direct
measure for the corrugation in the substrate-adsorbed
layer potential. The results which we have obtained for
these quantities are shown in Table II, together with the
experimental data and the results available from calcula-
tions by Novaco et al. ' ' and by Gottlieb et ah. ' '
Phonon dispersion curves are displayed in Figs. 1 and 2.

The results from our TDH calculations lie very close to
the in-plane phonon frequencies from the SCP calcula-
tions by Novaco. Apparently these phonon frequencies
are determined mainly by the isotropic potential. The
isotropic term in the molecu1e-substrate potential is de-
rived from selective adsorption measurments, both in
our calculations and in those of Novaco. For the H2-H&
interactions he applies a semiempirical isotropic potential
of Silvera and Goldman, whereas we use an anisotropic
ab initio potential. ' Moreover, we include the out-of-
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TABLE I. Helmholtz free energy (F), translational kinetic energy (ET), and average displacements
(at T =0 K) for commensurate p-H2 and o-D2 layers on graphite.

This work Ref. 20 Ref. 21
p-Hz

Ref. 19 Experimental 9

F (kJ/mol)
E (kJ/mol)
(z ) (A)
&u,'& —&u, &'(A')
(u'+u') (A')

—3.963
0.776
2.963
0.053
0.345

—4.247

3.0
0.04

2.92
0.042
0.353 0.436

F (kJ/mol)
ET (kJ/mol)
(z ) (A)
(u') —&u &' (A')
(u+u )(A)

—4.438
0.531
2.907
0.037
0.270

—4.717

2.9
0.04

o-Dz

2.88
0.029
0.268 0.328 0.25

plane phonons and the rotons, which we find to be well
separated from the in-plane phonons, however. Our re-
sults are in good agreement with the experimental data;"
the dispersion of the in-plane phonons is just slightly
overestimated. We have also modeled the H2-graphite in-
teractions with empirical atom-atom potentials derived
from solid hydrocarbons, but the results appeared to be
substantially worse.

From Figs. 1 and 2 it is obvious that the out-of-plane
phonons mix with in-plane two-phonon states. The fre-
quencies of the out-of-plane phonons are close to the
out-of-plane vibrational frequency (122.4 cm ') of a sin-
gle Hz molecule obtained from selective adsorption mea-
surements. The frequency for the out-of-plane mode

which was deduced from the INS spectrum of p-Hz on
graphite' is substantially higher, however (157 cm ').
An alternative assignment of the INS spectrum' might
be suggested. This spectrum contains a strong peak at
118 cm which is due to the j =0~1 rotational transi-
tion. This transition is optically forbidden, but it is in-
duced by neutron scattering. We think that the out-of-
plane phonons (calculated at 115.3 cm ' for q=O) might
be hidden under this peak. (Actually a side peak is ob-
served at 114 cm '.) The broad peak around 157 cm
should then be assigned, probably, to a combination band
of the j =0~1 rotational transitions or the out-of-plane
phonons with the in-plane phonon modes. Such a com-

TABLE II. Phonon frequencies (in cm '). coo(El ) is the pho-
non gap, i.e., the frequency of the E, mode at the I point (space
group p6mm). Am is the bandwidth of the in-plane phonon
band. coT is the frequency of the transversal phonon mode at
the M point. mL is the frequency of the longitudinal phonon
mode near the K point. co(E, ) is the frequency of the in-plane
two-phonon excitation at the I point. co( 3, ) is the frequency of
the out-of-plane mode at the I point.

This work Ref. 20 Ref. 19 Experimental 11 and 15
p-Hz

140

120 -A

100
E
O

80—
O
C
(D

CT 60-

out of plane
+

two phonon
I

coo(E i )

AQ)

COT

COL

co(E2)
CO( A l)

coo(E1)
AQ)

COT

COL

co(E2)
co( 2, )

34.1

25.5
45.7
56.0

107.6
115.3

25.3
10.5
30.8
34.4
67.7
71.3

32.4
29.3
45. 1

58.2

25.6
10.3
30.7
35.0

27.2

o-Dz

21.7

32.9
19.1
40.2
49.6

(157)

27.8
6.6

30.8
33.4

C0
C0 40
CL

20—

0
r

4n/3a 2~/gsa

FICr. 1. Phonon dispersion curves for a p-H~ monolayer on
graphite, from TDH calculations at T =0 K, compared with the
experimental values of coo, coL, and ~T (H) from Refs. 11 and 12

0
(a =4.26 A is the nearest-neighbor distance in the adsorbed
layer).
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FIG. 2. Phonon dispersion curves for an o-D& monolayer on
graphite, compared with the experimental values of coo, coL, and
uT ( ) from Refs. 11 and 12.

FIG. 4. Roton dispersion curves for an o-D& rnonolayer on
graphite. Solid curves: with v2 from Eq. (17). Dashed curves:
with u, —0.

bination band may range from 151 to 170 cm
(4.53—5.08 THz) which is consistent with the broad peak
in the experimental spectrum. If this alternative assign-
ment is not correct, then we would have to conclude that
the shift in the out-of-plane vibrational frequency from
122 cm ' for a single Hz molecule to 157 cm ' for a full

H2 monolayer is caused by substrate-mediated interac-
tions between the molecules in the adsorbed layer. In our

390

A,
380

370—

360 A

E E

350 -E
1

340
O

TABLE III. Optical (q=O) roton frequencies (in cm '), ob-
tained from the full TDH calculations including phonons, and
obtained from Eq. (28) with u2 calculated from Eq. (17) and S
from Eq. (26), see text.

330—

p6mm
symmetry

p-H2
Eq. (28)

o-D2
Eq. (28)TDH TDH

a~/gsa4n/3u

E,
339.0
363.7
382.1

165.4
190.1
210.6

339.5
362.3
381.2

165.7
192.5
214.9

FIG. 3. Roton dispersion curves for a p-H2 monolayer on
graphite, from TDH calculations at T=O K. Solid curves:
with u2 from Eq. (17). Dashed curves: with u2 =0.

calculations these interactions have been ignored. It
would be surprising, however, if they afFect so strongly
the out-of-plane vibrations, while the in-plane modes are
in good agreement with experiment. Therefore, we prefer
the first explanation.

The structure of the roton bands for p-Hz and o-D2 lay-
ers on graphite is shown in Figs. 3 and 4. Since the an-
isotropy of the molecule-substrate potential is entirely
unknown (see Secs. II C and IID), we have varied the
strength of this anisotropy by changing the anisotropy
parameter uz in the crystal field, see Eqs. (16) and (17).
The dashed curves are obtained for U2=0, the solid
curves are calculated with the values of u2 (65.1 cm ' for
p-H~ and 69.9 cm ' for o-D2) that are obtained from the
anisotropic Hz-H2 potential within the layer, in combina-
tion with the atom-atom model for the H2-substrate in-
teraction (see Sec. II C). The latter values of uz are al-
most certainly overestimated as it is known that the
atom-atom model overrates the asphericity of the H2
molecule and it appears from NMR measurements' for
o-H2 and p-Dz on graphite that U2 is probably rather
small. It is obvious that the value of U2, which is dom-
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inated by the anisotropy F2 o in the molecule-substrate
interaction, see Eq. (17), has an enormous effect on the
roton dispersion curves. This effect can be completely
understood from the derivation in Sec. II D which leads
to Eq. (28). One observes nearly parallel shifts of the ro-
ton subbands when Uz is changed. The shape of these
subbands, which is primarily determined by the
quadrupole-quadrupole interactions within the adsorbed
layer, is practically not altered, except for avoided cross-
ings. From Table III it appears that the simple formula
given by Eq. (28) is indeed capable of yielding rather ac-
curate roton frequencies. This will be very valuable when
these frequencies will be measured, because Eq. (28) al-
lows the direct calculation of U2 from the splittings be-
tween the (optical) roton frequencies. Experimental data
for p-H2 on graphite are available from electron-
energy-loss spectroscopy (EELS). A peak has been ob-

served at 379 16 cm ', which agrees, in particular, with
the frequency of the calculated optical roton with polar-
ization perpendicular to the surface (symmetry A, ). The
resolution of these measurements was too low to observe
any splittings. Moreover, the selection rules effective in
EELS might prevent the observation of rotons polarized
parallel to the surface.
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