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Origin of electric-field gradients in high-temperature superconductors: YBa2Cu307
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The origin of the electric-field gradients (EFG) at nuclear sites in the high-T, superconductor
YBa2Cu307 is investigated theoretically by means of highly precise local-density full-potential
linearized-augmented-plane-wave calculations. In all cases considered (i.e., at Cu, O, Ba, and Y nu-

clei}, the theoretical predictions for the principal axis V„and the anisotropy parameter q of the
EFG tensor agree well with available experiments and the results of Ambrosch-Draxl et al. The
principal axis at 0 sites are found to lie in the direction of the C.u-O dpo. bonding axis, and the oxy-
gen g values are largely determined by the internal anisotropy inside the oxygen spheres. This is
consistent with the finding that the main contribution to the EFG at the Cu sites comes from the in-

trinsic quadrupole field provided by the nonspherical (internal) charge distributions surrounding
each Cu atom arising from the strong anisotropic hybridization between Cu d and 0 p electrons.
Surprisingly, the (Sternheimer antishielding) contribution from the core electrons —mainly from the
Cu 3p "semicore" electrons —is found to be very small. Overall, the agreement of the oxygen EFG
components themselves with experiment is good. The calculated V„values are within 20% of the
experiment, except for Cu(2), which is only half of the observed value and results in a reversal of the
relative magnitude of the EFG at Cu(1) and Cu(2) sites. This error may result from the inexact
treatment of the 3p semicore states when they are allowed to relax and are described as band states.
This is seen from the extreme sensitivity of the EFG to the calculated anisotropic charge distribu-
tions of the core electrons. Thus, a transfer of only 0.0014 electrons from Cu(2) 3p and 3p~ to 3p,
would enhance the EFG value and produce perfect agreement with experiment.

I. INTRODUCTION

Both experiment and theory have emphasized one of
the most interesting characteristics of the high-T, super-
conductor YBa2Cu3O7 to be the major role played by the
Cu02 planes and CuO chains for the superconducting
state. Our early electronic structure calculations'
showed the distinct two-dimensional and one-dimensional
features of the electronic structure arising from the Cu02
planes and CuO chains, respectively, and a possible inter-
play between the electrons in the planes and chains was
suggested. Recent nuclear magnetic resonance (NMR)
and nuclear quadrupole resonance (NQR) experimental
studies of YBazCu3O7 have provided important insights
into the microscopic properties of this superconductor.
Two NQR resonance lines were observed at 22 and 31.5
MHz, which appear to match the two distinct (plane and
chain) Cu sites in YBa2Cu3O7. Warren et al. found
strikingly di6'erent relaxation behavior for these two reso-
nance lines in the superconducting state, implying the ex-
istence of two very di6'erent superconducting energy-gap
structures for the plane and chain Cu sites. At that time,
some groups, ' in disagreement with other experimental
work, assigned the 31.5-MHz resonance to arise from
the chain Cu(l) site and the 22-MHz resonance from the

Cu(2) plane site. This assignment was later reversed:
while yielding similar relaxation behavior, recent NMR
and NQR studies of single crystals, oriented powders,
and relaxation measurements on (R)BazCu307 lead to the
convincing assignment that the 22-MHz resonance arises
from the Cu(1) chain site and the 31.5-MHz resonance
arises from the Cu(2) plane site.

In view of the importance of the relaxation measure-
ments and site assignments we have attempted to provide
theoretical information on the electric field gradients at
each Cu site in YBazCu307. As the NQR spectra arise
from the nuclear (electronic) quadrupole interaction
which is determined by the distribution of the electronic
charge surrounding the nuclei, the NQR resonance lines
reAect the static electronic structure near each nuclear
site embodied in the electric field gradient (EFG). In this
paper we calculate the EFG's by means of the self-
consistent full-potential linearized augmented-plane-wave
method (FLAPW) which makes no shape approximation
to the electronic potential and, furthermore, takes all
electrons, core as well as valence states, into account for
the construction of the potential. From the angular
dependence of the potential at the nuclear sites, the EFG
for the corresponding nuclei is directly derived (cf. Sec.
II). As shown by Refs. 9 and 10, a FLAPW based ap-
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proach is able to yield reliable results for the EFG, at
least for bulk systems with high-symmetry local environ-
rnents, which, however, is not the case for YBazCu307.
For this compound we face the difficulty that the ortho-
rhombic unit cell contains 8 nonequivalent atomic posi-
tions. Hence, to obtain convergence and the necessary
precision for such a system by the FLAPW approach,
one has to perform demanding numerical calculations.
Fortunately, this can be done today treating all the
electrons —core and conduction —thanks to the power of
modern computers. The results obtained are very close
to those obtained by Ambrosch-Draxl et al. " using the
FLAPW method. Thus these results serve to confirm the
validity and consistency nowadays of highly precise elec-
tronic structure calculations.

As a point of departure, consider the origin of the EFG
at nuclei in solids which has been studied for many years,
following the work of Steinheimer, '

employing either
asymmetric internal charge distributions in nonoverlap-
ping atoms or ions or quadrupolar external crystalline
fields (arising from a lattice of point charge) on a closed
shell atom or ion. ' In both cases, the quadrupole polar-
ization of the closed shells of the core electrons is found
to play an important role (so-called Steinheimer an-
tishielding). Thus, in this simple approach, there are ba-
sically two contributions to the EFG at a nuclear site.
One, q;„„ is from internal charge distributions and the
other, q,„„from external charge distributions. If one in-
cludes their respective Sternheimer antishielding factors,
the total EFG (i.e., V„) is usually written as

q =q;„,(1—R )+q,„„(1—y ),

nonspherical charge distributions are mostly due to
strong anisotropic hybridization between Cud and 0p
states in YBa2Cu307. The contribution from the core
electrons (Steinheimer antishielding) is found to be
surprisingly small. Nevertheless, a transfer of only
0.0014 electrons from the (so-called "semicore") Cu 3p„
and 3p states to the 3p, state would easily enhance the
(otherwise low) value of the EFG at Cu(2) and so would
reproduce the experimental result.

In Sec. II, equations for the EFG are given together
with some details about the FLAPW calculations. In
Sec. III, the calculated EFG values at the Cu sites as well
as at the other site (i.e., 0, Ba, and Y) are given and com-
pared with experiment. An analysis of the charge density
decomposition and its contribution to the EFG is made
in order to study the origin of the EFG at the Cu sites in
YBa2Cu307. It is found that the main contribution to the
EFG at the Cu sites comes from the intrinsic quadrupole
(internal) charge distributions inside the Cu atoms. Later
in Sec. IV, a detailed analysis is presented of the charge
anisotropy and its relation to the EFG. It is also shown
that the anisotropy of the charge distribution is due to
the covalent nature of the Cud-Op hybridization. From
the relation between the charge anisotropy and its contri-
bution to the EFG, the EFG results for Cu(2) are found
to be extremely sensitive to the charge anisotropy of the
Cu3p semicore electrons. Finally, concluding remarks
are made in Sec. V which focuses on the importance of a
proper treatment of core electrons by energy band
methods. In Appendix A, we present details of our
"two-window" FLAPW approach which is employed to
describe the semicore electrons as band states. '

where R is an internal shielding factor (usually less than
one) and y „ is an external antishielding factor ( ~y„~ can
be as large as 20 for 3d ions).

In a real many-electron many-(overlapping) atom sys-
tems like YBa2Cu307, the physics is of course more com-
plicated. While the calculation of the EFG arising from
aspherical valence electrons is straightforward in an
FLAPW band calculation, one also needs to determine
the role of the core electrons (Steinheimer antishielding)
on the EFG. This proves to be a somewhat difficult task
in that a proper description of anisotropic core electron
charge distributions is not easily achievable within the
FLAPW approach.

It turns out that much of the theoretical-
computational work in this paper is addressed to this
problem. Early on, we carried out standard FLAPW
calculations in which the Cu 3p electrons were treated as
(spherical shell) core electrons. We found overall agree-
ment of our calculated EFG values with experiment—
except for a reversal in the relative ordering [Cu(1) vs
Cu(2)] between theory and experiment. In order to calcu-
late the contribution of the core electrons —particularly
the Cu 3p "semicore" electrons —we relaxed the spheri-
cal restraint by treating the 3p levels as band states. We
find that the main contribution to the EFG at Cu sites in
YBa2Cu307 is not the external field but the "intrinsic"
quadrupole field provided by the nonspherical (internal)
charge distribution inside each Cu atom. These large

II. CALCULATIONAL DETAILS

A. electric field gradient

The all-electron Coulomb potential V(r) is obtained by
solving Poisson's equation for a self-consistent electron
charge density p(r) and nuclear charge Z, at r, :

V(r)=I, dr'+gp(r')
r —r', . r —r,

(2)

8 V
J (3)

where the x, denotes the x, y, and z axes for i =1,2, 3.
Since there is no nuclear quadrupole interaction with a
spherical potential, the EFG tensor is often defined as a
traceless tensor

In the case of YBa2Cu307 with an orthorhombic lattice,
the off-diagonal components @,. (iWj) are zero due to

where the index i runs a11 over the nuclear positions in
the lattice. From the potential V(r), the components of
the electric field gradient (EFG) tensor at the nuclear
sites are derived' from
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I v, , I

&
I v, , I

~ v, . I
.

From the condition that

(5)

symmetry. Then the Cartesian coordinate axes x, y, and
z become the principal axes. If we rename the com-
ponents 4;, by V;; and order them according to their
magnitudes, we obtain a new set of orthogonal x', y', and
z' axes, such that

The EFG's determined by the FLAPW method have
been verified by the multipole lattice sum method' for a
given self-consistent charge density. Using the multipole
lattice sum method, we can make a decomposition of
EFG s into contributions arising from the muffin-tin re-
gion of a given atom, from other atoms' muffin-tin re-
gions and from the interstitial region. This decomposi-
tion will be employed to analyze the results.

0 Veq=V, ., = z' i)=( V„...—Vy,y, )/V, ,

The range of g is O~g~ 1.

B. FLAP& method for KI G calculations

In the FLAPW method, a self-consistent charge densi-
ty p(r) is represented by

g pLM ( r ) YLM ( r ) inside MT spheres,
L, M

g p(G)exp(i'm r) in the interstitial region.r =' 8

G

Using the method by Weinert' we solve Possion's equa-
tion for the anisotropic charge density and have a full-
potential V(r) which is represented by

g VLM(r) YL~(v ) inside MT spheres,
L, M

Vr ='
Qv(A)exp(i'. r) in the interstitial region.
G

Since the full potential takes an asymptotic expression for
r~ —+0 such that '

1/2

V(r~0)=g r 4i 4m

2l +1 Yi (r) (10)

at each nucleus, the tensor component @I of the EFG
(i.e. , l =2) can be determined by

1/2
Vq (r)

@2m = 11m (1 1)
r 0 4a r2

at the nucleus. These tensor components +2 can be
rewritten as Cartesian components of N, ; for example,
for diagonal components,

1/2 ' 1/2

= 3 3
+22 —~'20+ — +'2 —22 2

1/2 't 1/2
3 3

2 22 20 2 —2 7 (12)

2+20

V' V= V „+V„. .+ V...=O,

we specify the principal components of the EFG tensor
with the two parameters q, the quadrupole moment, and

g, the anisotropy parameter, as defined by

C. Band structure calculations

The self-consistent local density band-structure calcu-
lations were carried out for the Pmmm structure' using
the FLAPW method with the Hedin-Lundqvist approach
for the local density approximation to the exchange-
correlation potential. Detailed results for the band struc-
ture of YBa2Cu307 were presented previously. Since the
EFG requires the second derivative of the potential, the
results obtained are extremely sensitive to its convergence
(self-consistency); hence, much more precise convergence
is requires for the nonspherical components of the charge
density than was previously obtained. Specifically, this
means that one has to improve the convergence by a
careful consideration of controlled numerical parameters
such as number of plane waves, spherical harmonics, and
k points —as well as running more iterations to reduce
the diA'erence between input and output charge density
(which is usually taken for defining the quality of the
self-consistency).

In order to check the sensitivity of the EFG calcula-
tions to the parameters chosen for the expansion of the
wave functions, charge density, and potential, we h.".ve
tested all possible variations of the parameters so as to as-
sess computational limitations. The angular momentum
expansion of the wave function inside the muffin-tin
spheres was first limited to 1=8 and then increased to
l =10. The convergence of the EFG as a function of the
number of basis functions was checked by choosing the
basis set for ~k+Cx~ ~ 3.5 a.u. , resulting in 850 basis func-
tions, and for

~
k+ Cx

~

~ 3.65 a.u. , which led to 950
augmented-plane waves. For the charge density and po-
tential, the lattice harmonics expansion was done for
both l „=6 and I „=8 limits inside the muffin-tin
spheres whereas the Fourier representations in the inter-
stitial region required over 8000 reciprocal lattice vec-
tors. For the Brillouin zone integrations, 16 sampling k
points and a Gaussian smearing technique were used dur-
ing the self-consistent iterations. In addition, 36 sam-
pling k points were used in order to check convergence;
we found that the 16 k point results were sufficiently
close to the 36 k points results. Finally, the number of
iterations was increased until the EFG for the corre-
sponding input and output densities varied only within
0.5% from one iteration to the next.

A variety of model calculations were carried out.
First, as described above, a "standard" FLAPW calcula-
tion was performed in which the Cu 3p electrons (and
other closed shell core electrons) are treated as core
states —and labeled in what follows as "3p„„." This
means that their charge density is spherically symmetric
and so gives no contribution to the EFG. In a second set
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of calculations, the Cu 3p electrons were treated as band
states in the same window as in the standard calculation
and hence allowed to have aspherical charge densities
which contribute to the EFG (i.e., Steinheimer antishield-
ing). It turned out that the contribution of these aspheri-
cal charge densities to the EFG's are so sensitive to their
treatment as band states, that this so-called standard
"single-window" calculation (in which a single energy pa-
rameter was employed in the linearization of the APW)
yielded unphysical results. ' For this reason we per-
formed a "two-window" calculation which included the
Cu 3p, Y 4s, and Ba 5s states into the second window (i.e.,
their energies fall in the range covered by the second en-
ergy parameter). In this case the calculations are referred
to as "Cu 3p„&" and these results are quoted below. De-
tails of the two-window method of calculation are de-
scribed in Appendix A.

III. RESULTS

A. FLAPW results for the KFG at the Cu sites

The theoretical and experimental EFG values at the
two distinct Cu-sites in YBa2Cu307 are listed in Table I.
The 6rst line of Table I, referred to as "Cu 3p„„," shows
that the EFG's obtained from the self-consistent charge
density of the "standard" FLAPW band-structure calcu-
lation. As described above, in this "Cu3p„„"calcula-
tion, the Cu 3p states are treated fully relativistically as
core electrons, i.e., the Cu 3p closed shell (and all other
core states) is treated as being spherically symmetric and
hence can give no contribution to the EFG. The second
line of Table I, referred to as "Cu3p„&," shows the
EFG's obtained from the self-consistent charge density
when the Cu 3p semicore states are relaxed (i.e., treated
as band states in a separate window) in the full (nonspher-
ical) potential and thereby allowed to contribute to the
EFG at the Cu sites. (These results —which agree with
those of Ambrosch-Draxl et a/. "—will be discussed
more fully below. ) The anisotropy parameters q predict-
ed in both the "Cu 3p„„"and '*Cu 3p„," calculations
are in good agreement with the experimentally observed

g values; ' the predicted principal axes are also the same
as in the experiments, y for Cu(1) and z for Cu(2). How-
ever, we find a reversal in the relative ordering [Cu(1) vs

Cu(2)] of V„between the theoretical and experimental
values. This result is the same reversal found earlier by
us without inclusion of the Sternheimer antishielding
corrections (discussed below). Indeed, it was this reversal
that was thought to indicate the importance of the
Sternheimer corrections and led us to the lengthy calcula-
tions reported below. Before we discuss the disagreement
and reversal of V„ in detail, let us try to understand the
origin of the EFG for Cu(1) and Cu(2) in YBazCu307.

As described in the previous section, the EFG V,',"can
have two contributions: one, V„, from the anisotropic
charge distribution inside a muffin-tin (MT) sphere and
the other, V,';", from the lattice summation (other
muSn-tin regions and interstitials). Thus,

Vtot VMT+ Vlatt
zz zz zz (13)

where the MT contribution V„ is given by
1/2

4~ ~MT p rdr.2l+1 o r3
VMT

zz (14)

In Table II, we list the contributions to V,'," of the
muffin-tin part and the lattice part at each Cu(1) and
Cu(2) site in the "Cu 3p„,.i" calculation. We can see that
the dominant contributions to V„ for both Cu(1) and
Cu(2) arise from V„. These results indicate that the
most important part of the EFG at the Cu sites in
YBa2Cu307 comes from the anisotropic charge distribu-
tion inside the MT spheres (i.e., local charge anisotropy)
rather than the external (lattice) charge distribution.

B. FLAPW results for the KFG at other sites

A list of theoretical and experimental values of the
EFG at all the atomic sites in YBa&Cu307 is given in
Table III ~ The overall agreement between the results of
the two independent theoretical FLAPW calculations
and experiment for the Cu and 0 sites is seen to be very
good. Note particularly the agreement of the principal
axes and g values, determined by the theoretical calcula-
tions with the observed ones. The principal axes for the
EFG at the 0 sites are in the direction of the Cu—0 dpo.
bonding axis; the EFG anisotropy at the 0 sites is largely
determined by the internal charge anisotropy inside the 0
MT spheres as will be discussed later and shown in Table

TABLE I. Comparison of the calculated and experimental EFG results at the Cu sites. V„refers to
the largest component and q the anisotropy parameter.

FLAPW
Cu 3p„„

p val

Experiment

0.61
0.61

+0.75
+0.74

Cu(1)
7l

0.66
0.79

0.97
0.92

Principal
axis V„

—0.53
—0.57

+1.23
+ 1.23

Cu(2)

(10 Vm )

0.01
0.02

IO. O+0. 241
0.14

Principal
axj.s

'Reference 6.
Reference S.
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TABLE II. Decomposition of V„ for the EFG at Cu(1) and Cu(2) sites obtained by the FLAPW cal-
culations, first into MT and lattice contributions [cf. Eq. (13)] and then into angular components [cf.
Eq. (17)]. (V„ in units of 10 Vm .)

Cu(1)
Cu(2)

Vtot
zz

0.613
—0.573

VMT
zz

0.618
—0.576

Vlatt
zz

—0.005
0.003

Vdd
zz

0.775
—1.506

VPP

—0.166
0.977

Vsd
zz

0.006
—0.002

semicoreVzz

0.003
—0.046

IV. This is also consistent with the fact that dominant
contributions to the EFG at the Cu sites are predorn-
inantly from the charge anisotropy inside the MT re-
gions, which arises from the strong anisotropic covalent
hybridization of the Cud —Op orbitals. In addition to
the agreement of the calculated principal axis and g
values with experiment, both theoretical and experimen-
tal values of the V„agree well (the differences between
them are within 20%) except for the case of Cu(2) where
the calculated V„ is about half of the observed value.
The agreement of these results with a similar independent
FLAPW calculation by Ambrosch-Draxl et al. " is very
good —except for the EFG results at the Y nucleus
which we now discuss.

The differences of the EFG results at the Y sites be-
tween these two FLAPW calculations are apparently
from the different treatments of the Y4p states in the
two-window calculation. In the calculation of
Arnbrosch-Draxl et al. ,

" the Y 4p semicore states are in-
cluded in a separate second energy window together with

the other Cu 3p, Y4s, and Ba Ss states but treated as ad-
ditional band states (i.e., remaining as nonorthogonal to
the major valence band states). On the other hand, in our
calculation, the Cu 3p, Y 4s, and Ba Ss semicore states are
included in a separate energy window with each energy
eigenstate being orthogonal to the major valence states
which now include the Y4p states. Now, the energy lev-
els of the Y4p as well as Ba 5p states are shallow (lying
1.6 and 0.8 Ry below EF, respectively), and the major en-

ergy bands of the Y 5p states lie high ( = 1 Ry) above EF.
Since the Y atom is highly ionic, it is difticult to describe
the 4p or 5p wave-function character inside the Y MT
sphere by taking a separate window for the Y 4p from the
Y Sp window. In fact, when we tried to use two windows
for the Y4p and YSp states, we had an orthogonality
problem with the Y4p states. Thus, it may be more
reasonable to describe the tails of Cu d and 0p inside the
Y MT spheres by a linearized APW function in the spirit
of the LAPW method. ' '

TABLE III. Comparison of calculated and experimental EFG results ( V„ in 10 V m ).

Principal
axis

CU(1)

CU(2)

O(1)

O(2)

O(3)

O(4)

Ba

FLAP W'
FLAP W'
Expt'
FLAP W'
FLAP W'
Expt'
FLAP W'
FLAP Wb

Expt
FLAP W'
FLAP Wb

Exptd
FLAP W'
FLAP Wb

Expt
FLAP W'
FLAP Wb

Expt'
FLAP Wa

FLAP Wb

FLAP W'
FLAP Wb

—0.549
—0.67
—0.74

0.291
0.30
0.62

—0.678
—0.61
—0.51

1.354
1.18
1.05

—0.828
—0.7
—0.63
—0.540
—0.47
—0.40
—0.057
—0.02
—0.563
—0.67

0.613
0.74
0.75
0.282
0.26
0.62
1.844
1.83
1.73

—0.825
—0.7
—0.63

1.375
1.19
1.02

—0.733
—0.7
—0.76

0.201
—0.32
—0.060
—0.06

—0.064
—0.07
—0.0
—0.573
—0.56
—1.23
—1.166
—1.22
—1.21
—0.529
—0.48
—0.41
—0.548
—0.49
—0.39

1.272
1.17
1 ~ 16

—0.144
0.34
0.622
0.73

0.79
0.8
0.97
0.02
0.1

lo. 0+o.24I
0.26
0.3
0.40
0.22
0.2
0.21
0.20
0.2
0.24
0.15
0.2
0.31
0.43
0.9
0.81
0.8

'Present work.
Reference 11.

'Reference 6.
Reference 21.
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C. Analysis of the charge density contribution to the KFG

O To understand the origin of the nonspherical charge
density inside the MT sphere we decompose the non-
spherical charge density as following:

PLM(&) =XPLM(&»
ll'

where

pLM(&)=Xf(Enk) g c IMI +Im(r Enk)+!' m( r. Enk)

nk mm'

Here, RI (r, e„k) represents a radial wave function of the
state with angular momentum quantum number Im and
energy c,,k, c' L~l, the Clebsch-Gordan coe%cients
and f(e„k), the weighting factor for the k-space integra-
tion. For the L =2 term of piM(r), only few (ll') contri-
butions remain due to the selection rule in c ™LM&~.The
only nonzero contributions to pz'M ( r) are pzM ( r ) for
(1=1, l'=1), p2M(r) for (1=2, l'=2), and p2M(r) for
(1=0, I'=2) or (l=2, I'=0). Hence we can interpret
pz~M(r) as the charge density originating from p wave
functions, pzM(r) from d wave functions, and pzM(r) from
s-d mixtures. By knowing the decomposition of pLM(r)
we can write down each contribution of pz'M to the EFG;
for example,

4m

2l +1

1 /2 IIi
"MT P«

dp'
0 r

QO

O O
ChO

O

'CP
O

QOO
O O

VMT y VII'

/1'

The radial dependence of the nonspherical charge com-
ponents or Cu(1) and Cu(2) is illustrated in Fig. 1, with
the integrand [p„(r)lr ]r for the EFG, i.e., V„, and
the integral V„(R)=fo[p„(r)ir ]r dr As seen .in the

Cu(1) Cu(2)

t
ChO

O
O
O

O Ch

QO

-2-

0.0

0.5-

1.0

0.5-

1 .0 2 0

0.0-

-0.5-

0.0 1.0 2.0

0.0-

-0.5-

0.0 1.0 2.0
QO
QO

O
l. (a.u.}

FIG. 1. Radial dependence of the nonspherical charge densi-
ty components of the integrand of Eq. (17), [p~~(r)lr )r for
Cu(1) and [p„(r)lr ]r for Cu(2), and the integral of Eq. (18),
Vyy ( R ) for Cu( 1 ) and V„(R ) for Cu (2). The arrows indicate
the total EFG's, V,'



538 YU, FREEMAN, PODLOUCKY, HERZIG, AND WEINBERGER 43

-2
0.0 0.5

Cu(1)

1.0

0-

-2--
0.0 0.5

Cu(2)

1.0

tor. The R factor for transition metal ions is usually
smaller' than 0.2.

However, as shown in Table I, the EFG at the Cu sites
in YBa2Cu3O„has a very small antishielding contribution
from the Cu 3p semicore states; the largest contribution
to the EFG originates from the anisotropic valence elec-
tron charge distribution. Comparing the V„results with
and without the Cu 3p "semicore" relaxation (see Table
I), we obtain the antishielding factors for Cu(1) and Cu(2)
to be

FICx. 2. Partial contributions of p ~ and p"" to the EFG for
Cu(1) and Cu(2). Detailed definitions for p,", and p~~ are given in
the text.

R(Cu(1)) =0.005,

R (Cu(2) ) =0.08,
(20)

(21)

which are much smaller than expected. A surprising re-
sult is the large difFerence (a factor of 16) in the R values
for Cu(2) and Cu(1).

figure, the I/r factor enhances the contribution of p„(r)
near the origin (nucleus) and thus most of the contribu-
tions to the EFG arise from the region where r & 1 a.u.

As shown in Table II, the s-d contributions to V„(the
so-called "angular excitations"' ' ) are negligible, while
the p-p and d-d contributions (the so-called "radical exci-
tations"' '

) are large. Note that the dominant contribu-
tions to V„are from the d-d terms, p,",". From Fig. 2 it
is also clear that the d-d contributions dominate over the
p-p contributions. (Since the p'„contributions to the
EFG are so small, only p„~ and p„are shown in Fig. 2.)

(Note that this result is different from the case of hcp
metals studied by Blaha et al. where the p-p contribu-
tions dominate over the d-d contributions. ) In the cu-
prate, there are strong anisotropic hybridizations be-
tween Cud and Op states within the Cu(2) planes and
Cu(1) chains. The covalent nature of the Cud —Op hy-
bridization leads to the anisotropic radial deformation of
the Cu 3d wave functions. The resulting anisotropic
charge distribution is demonstrated in Table IV, which
lists partial charge decompositions inside the Cu(1) and
Cu(2) MT spheres. This anisotropic radial deformation
gives rise to the huge nonspherical d-d charge density
shown in Fig. 1. Since there is a large 'intrinsic' quadru-
pole field provided by the nonspherical (internal) d-d
charge distribution, the other atomic electrons (s,p elec-
trons) are polarized in response to the anisotropic d-d
charge distributions.

Let us now return to the role of the core e1ectrons on
the EFG (Sternheimer antishielding) as determined from
the "Cu3p„,&" calculations. As discussed above, it is
clear that the contribution of the internal charge distribu-
tion to the EFG is more significant than that of the exter-
nal (lattice) charge distribution. The Cu 3d shell is open
and deformed so that there is a strong valence charge
contribution to the EFG, denoted as V . Hence, the
shielding or antishielding eA'ects due to the closed shell
(semi-)core charges are expected to be large. These 3d
open shell electrons interact with the inner 3p shell and
give rise to an effective (core polarization) field, V;,

V' = —RV'ij ij

where R represents the Sternheimer (anti-) shielding fac-

IV. CHARGE ANISOTROPY VS KFG

The partial charge decomposition listed in Table IV
represents a symmetry-decomposed (based upon the sym-
metrized harmonics) contribution to the total number of
electrons inside each MT sphere. %'e can obtain this
number by integrating Eq. (15) over r for I. =M =0;

MT
n =f p,o(r)r'dr =y n, (22)

lm

where

MT
ni = f po™o(r)rdr

MT=y f(E„i,) R/* (r;Fi,)R/ (r;ei, )r dr .
0

k

(23)

Since the integration for nI is done up to r =RMT, the
electron number nI depends on the choice of the MT
sphere radius. Although the n& values have no absolute
meaning, some information can be obtained by compar-
ing their relative values.

From Table IV it is clear that the anisotropy of the
charge distribution is due to the covalent nature of the
Cu d —0p hybridization. As discussed in our earlier
band-structure results for YBazCu307, there are four
bands —each consisting of Cu(2) d —O(2) p —O(3) p orbit-
als and Cu(1) d —O(1)p —O(4)p orbitals —that cross EF.
Two strongly dispersed bands consist of
Cu(2) d 2 2 —O(2) p„—O(3)p combinations and are
about half-filled; the Cu(1)d, —O(1)p, -O(4) p, anti-

bonding band is almost entirely unoccupied; the dp~ an-
tibonding band of Cu(1) d, —O(l) p, —O(4) p orbitals is
almost entirely occupied. As demonstrated in Table IV,
due to the strong hybridization of Cu-0dpo. orbitals, the
number of electrons in the Cu and 0 orbitals forming the
dpo. states is much smaller than the others. Thus, the oc-
cupation number for the Cu(2) d 2, state is much

smaller than that of the Cu(2) d, d „d, states. Similar-

ly, the O(2) p and O(3)p states have a much smaller oc-
cupation that do the other O(2)p, and O(3)p, „states.

In addition to the anisotropy in the 3d electron charge
distribution of Cu, the anisotropy of the Cu4p partial
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bn = ,'(n —+n ) n-
&x ~y Z

and =(ng +nd ) —,'(nd —+nd ) nd—
(25)

(26)

This decomposition of charge anisotropy is to be com-
pared with the decomposition of the nonspherical charge
contribution to the EFG, as shown in Eq. (18) and Table
II. In order to show the relation between the char~e an-
isotropy An& and its contribution to the EFG V„', the
charge anisotropy number An& for each I component and
its contribution to V,", are listed in Table V, together with
the ratio y&

= V,", /b, nl, which represents an effective
quadrupole (( 1!r )) I value per each partial valence elec-
tron charge. That is,

4m

2I + 1

R ll
MT Pzz

1/2 r rdr
r

RMT

(27)

As seen in Table V, the yl demonstrate the sensitivity
of each partial charge component to the EFG. For exam-
ple, if one assumes that there is one hole localized at the
Cu(2) site with d» symmetry (this is often the case of
several model Hamiltonians taken in high-T, theories),
then the EFG V„(in V m ) is determined by

TABLE V. Charge anisotropy count hn I, its corresponding
EFG contribution and the ratio y~ =4 V,", /Ani for Cu(2).

3p
semicore

An(
g ylI

Xl

0.049
0.977

20.

—0.282
—1.506

S.3

—0.0003
—0.046
15.3

valence charge distribution is also significant. Although
the number of occupied Cu 4p components is small, their
anisotropy (i.e., directional dependence) is very large be-
cause the origin of their occupation arises from the tails
of neighboring Op wave functions. Hence, the anisotro-
py character of each 4p component (i.e., p„, p~, and p, ) at
Cu(1) and Cu(2) is well correlated with the distance to the
near neighbor oxygen in each direction.

Now, let us look in detail into the relation between the
charge anisotropy and the EFG. For the case of Cu(2),
the g value is nearly equal to zero. That is, the N2 com-
ponents in Eq. (11) are nearly zero for m&0; alternative-
ly, the C&2M=+4m/5 j(p2Mr fr )dr is nearly zero for
MAO. Hence, @&~ and pro can be the only major parame-
ters in determining the EFG for Cu(2). (Note that
@2o~ V„.) From Eqs. (16) and (17) we can define a
charge anisotropy number

An„=En +And

with

V„= nd =5.3 X 10 (28)

with And=i and (( 1lr ))d=5.3X10 Vm . Howev-
er, this value of EFG for Cu(2) is about five times larger
than that experimentally observed, which makes it
dificult to believe that there is a localized hole with a
definite symmetry like d» at the Cu(2) site.x —y

With these results before us, let us now return to the
earlier mentioned disagreement of the FLAPW results
with experiment. It is, at first sight, surprising that even
a highly precise FLAPW calculation gives an EFG value
for Cu(2) which is about half of the observed value. Ex-
amination of the results shows, however, that this is a
very delicate problem because assuming a very small
change of the anisotropic charge distribution can pro-
duce perfect agreement with experiment. For example,
as suggested by Ambrosch-Draxl et al. ,

" a charge
transfer of 0.06 electrons from the d 2 2 state to the d 2x —y Z

state can reproduce experiment. We find an even more
remarkable result: a transfer of only 0.0014 electrons
from the 3@x and 3py states to the 3p, state can produce
the same result, namely, perfect agreement with experi-
ment. Such a small transfer is easily achievable even in
semicore states like the 3p in Cu.

V. CONCLUDING REMARKS

We found that the main contribution to the EFG at the
Cu sites in YBa2Cu307 comes from the intrinsic quadru-
pole field provided by the nonspherical (internal) charge
distribution which is due to the covalent nature of the
Cud —Op hybridization. Similarly, the EFG anisotropy
at the 0 sites is also largely determined by the internal
charge anisotropy inside the 0 atoms, where the princi-
pal axes for the EFG at the 0 sites are in the direction of
the Cu —Odpo. bonding axis. As shown in Table III, '

the agreement between the theoretical FLAPW results
and experiment for the principal axis and g values at the
Cu and 0 sites are excellent. Further, both theoretical
and experimental V„values agree well except for the case
of Cu(2). The difference in the V„values at Cu(2) be-
tween theory and experiment may arise from the theoreti-
cal mistreatment of the semicore 3p states of Cu since the
resulting V„ is highly sensitive to the anisotropy of the
3p occupation.

This sensitivity of the EFG results to 3p occupation
highlights the importance of these semicore states as well
as their proper theoretical treatment. Thus, it is impor-
tant to emphasize that there are still problems left in the
theoretical description of the Cu 3p semicore states.
Now, even though we have carried out "two-window"
calculations to treat the Cu 3p state separately from the
valence 4p state, problems still remain arising when the
3p semicore states are included as band states. First,
treating localized 3p semicore electrons as band states is a
somewhat unnatural description; it is done in order to al-
low them to assume a nonspherical distribution and
hence to obtain an angular dependent potential (arising
from the 3p semicore states) at the nuclear site. In prac-
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tice, this treatment increases considerably the numerical
difhculties of the calculation because the APW basis and
the corresponding expansion of the potential (as well as
charge density) must be enlarged considerably in order to
obtain a proper description of these rather localized sem-
icore states. Second, in the FLAPW method, the wave
functions in the band state are calculated in a semirela-
tivistic way, the ones in the core states are treated fully
relativistically. In fact, when they are treated as core
electrons, the Cu3p semicore levels lie at —71.65 eV
(j=

—,
'

) and —69.03 eV (j =
—,') below E~ for Cu(1) and at

—71.48 eV (j =
—,') and —68. 86 eV (j =—', ) below E~ for

Cu(2). For both cases, the spin-orbit coupling gives an
energy difference DE =2.62 eV between the j=

—,
' and —,

'
states. However, when we treat the 3p semicore states as
semirelativistic band states, these spin-orbit effects are to-
tally neglected. These approximations, made to the 3p
semicore states in the band states, can have a large im-
pact on the EFG result due to their high sensitivity to the
EFG at the Cu sites.

All these results emphasize that the EFG is an ex-
tremely sensitive quantity that requires highly reliable ac-
curacy in its calculation. It is thus quite remarkable that
the FLAPW band calculations based upon density func-
tional theory with the LDA approximation can provide a
reasonable description for understanding the electronic
structure and EFG values in high-T, YBazCu307 com-
pounds.
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APPENDIX A: TWO-WINDOW FLAPW
CALCULATIONS

In a standard FLAPW band-calculation method, a sin-
gle set of energy parameters is usually taken for the ex-
pansion of the LAPW (linearized-augmented-plane-wave)
basis functions. In the LAPW method, ' ' it is necessary
to choose the values of the energy parameters to lie at the
center of the occupied bands, weighted according to the
angular decomposition inside the MT spheres, in order to
have an optimal description of the radial functions for
the LAPW basis. However, there is a problem of includ-
ing two valence band states with the same I character but
in different energy shells, like 3p and 4p states of Cu or 5p
and 6p states of Cs. In such cases, it is natural to intro-
duce two sets of energy parameters for the proper
description of the radial wave functions within each ener-

gy range (i.e., energy window). This means that there is a
set of the LAPW basis functions {P". I for the correspond-
ing set of energy parameters {E& I:

exp(iK, r) in the interstitial region,
~(k)= ~(K )=.g [aP (KJ)u& (r)+bP (K )u i (r)]Y'& (r) inside the ath MT sphere,

lm

(Al)

with K.=k+ G, where 8' represents a number for each energy window, k is a reduced vector inside the first Bz, and
G is a reciprocal lattice vector. The functions uP (r) =uP(E&, r) and u

&
(r) =u i (E&,r) are the radial solutions to

the semirelativistic Dirac equation and the energy derivative of the radial solutions with energy parameter E& for an

energy window W inside the ath MT sphere. The coefficients aP„(K.) and bP (KJ. ) are determined by matching the
required boundary conditions at the MT-sphere boundary. From now on, for simplicity in the representation, we will

write the LAPW basis function for the energy window 8'as

0 ' exp(iK r) in the interstitial region,
W

g aP (K )uP (r) F& inside the ath MT sphere,
lm

(A2)

with the reduced vector k.
Now, for each energy window 8' we can set up a vari-

ational equation for a trial solution q&„i,
=g, z,„P. with a

Hamiltonian Ho, which includes the full potential in the
interstitial region but neglects all nonspherical terms in-
side the MT spheres. This is called a "first-variational"
calculation. By solving the matrix equation

yaw w wyglv w

J J

where

H„,= & y, ~a, ~y, &, s,, = &y~~y, ),

(A3)

we obtain the eigenvalues and corresponding eigenvec-
tors:
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J

g zj" 0 '~ exp(i K r.),

g AI (pk)uP (r) Y&

lm

(A4)

appears instead of

(A5)

(A6)

where

(pk)=gz, „a, (K ) .
J

The set of (energy) eigenfunctions (y„kJ for all energy
windows, which are obtained as a result of the first varia-
tional calculation, is used as a basis set for a "second-
variational" calculation which includes the nonspherical
potential terms inside MT spheres which were left out in
the first-variational calculation. Since, however, the elec-
tronic states for each energy window are treated and di-
agonalized separately in the first-variational calculation,
there exists a small nonorthogonality between wave func-
tions of different energy windows. Generally, this over-
lap is very small and can be neglected. But, in some cal-
culations, the extended degree of freedom for the valence
states which lie close together (e.g., Ba 5p and 6p states)
can lead to an overcompleteness problem. An inclusion
of the nonorthogonality in the second-variation calcula-
tion is also important for the highly sensitive EFG calcu-
lations. '

In the second variation, the basis of the Hamiltonian
matrix will cover the multiwindow space of
[y„z~ &=1,2, . . . J. Since the basis set of the tnultiwin-
dow wave functions I y„k~ &= 1,2, . . . I are not orthogo-
nal among wave functions of different windows, the over-
lap matrix

H wR"
0

PP
(A7)

(A8)

and

y (H ww'+H ww' )- w'
e y g ww'z w'

(A9)

Solving the matrix equation we finally obtain the eigen-
values and corresponding eigenvectors for the full Hamil-
tonian:

—W W
ink X z pnVp. k

p8'

g z „Q '~ exp(iK r)
J

g A, (nk)u, (r)Y,
1m'

(A10)

where

Hence, the matrix elements and equations are rewritten
by

(p„„~H ~p„„)= —,'[s (k)+e„(k)]S„„(k)
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