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Arrays of tunnel junctions can be fabricated with small nearest-neighbor capacitances between
the islands and with even smaller self-capacitances of the islands. It has been suggested by Mooij
et a1. that electric charges on the islands of such an array interact logarithmically over large dis-
tances, and as a consequence, a Kosterlitz-Thouless-Berezinskii transition can occur where charge-
anticharge pairs dissociate. Furthermore, in superconducting junction arrays the more familiar
vortex-unbinding transition can occur. %'e investigate the effect of single-electron and Cooper-pair
tunneling on these transitions and discuss the competition between the charge and the vortex un-
binding.

I. INTRODUCTION

In recent years much attention has been devoted to the
study of tunnel-junction arrays. ' Even if at low tempera-
tures the individual islands of the array are supercon-
ducting, it may require still lower temperatures for global
phase coherence to establish across the whole array. In
classical, two-dimensional (2D) arrays this transition is of
the Kosterlitz-Thouless-Berezinskii (KTB) type. It
separates a superconducting low-temperature phase,
where vortices and antivortices are bound in pairs, from a
resistive high-temperature phase with free vortices. The
transition temperature T, is of the order of the Josephson
coupling energy EJ of the junctions.

When the dimensions of the islands and the capaci-
tances involved are small, the charging energy with
characteristic scale Ec is large, and quantum fiuctuations
of the phase gain importance. They suppress the vortex-
unbinding transition temperature; and for small values
of EJ/E~ ~ 1 even at T=O only a disordered phase ex-
ists. The tunneling of quasiparticles or Ohmic shunts in-
troduces dissipation. The most striking consequence,
observed in experiments involving granular films and in
regular 2D networks, is the existence of a critical value
of the normal state conductance ct,:—h /(4e R„)= l
above which the superconductivity is recovered even for
small values of EJ /Ec.

Recently Mooij et al. pointed out a different collective
efFect involving the charge on the islands of a 2D array.
If the junctions are of high quality the charges of the is-
lands can change only due to tunneling, and the total
charge on each island is an integer multiple of the ele-
mentary charge e. Furthermore, it is possible to fabricate
junction arrays where the capacitance C between the is-
lands, i.e., the one associated with the junctions, is
significantly larger than the capacitance Co of the islands
to the ground. In this case the electrostatic interaction of
two charges +e separated by r is characterized by the po-
tential energy U(r )=(2E&/m)lnr, up to distances of the
order A=QC/Co. The unit of the length is the lattice
spacing, the charging-energy scale is defined as

Ec——e /2C. In the ideal situation where Co =0 the loga-
rithmic interaction extends to infinity. The system is thus
a physical realization of a two-dimensional Coulomb gas.
This implies that a KTB transition can occur at a tem-
perature T, of the order Ec where charge-anticharge
pairs dissociate. This charge-unbinding KTB transition
differs from the mentioned vortex-unbinding KTB transi-
tion: If the charges are bound in pairs, the array is insu-
lating; if the charges are free, the array has a finite con-
ductance. In contrast, the vortex-unbinding transition
separates a superconducting from a resistive phase.

In superconducting arrays the charge-unbinding transi-
tion can involve either single electrons (charge e) or
Cooper pairs (charge 2e). Since the charging energy
differs by a factor of 4 in these two cases, we expect a cor-
responding difference in the transition temperature.
Furthermore, in superconducting arrays both the charge-
and the vortex-unbinding transition can occur, depending
on the ratio between the energies EJ and Ec. The experi-
ments reported in Ref. 7 show a transition of normal
junction arrays from insulating to conducting, consistent
with the picture of the charge-KTB transition. Further-
more, in superconducting arrays a similar transition, but
at a higher temperature, is observed. Also, arrays with
larger Ez/Ec show the vortex-unbinding transition be-
tween a superconducting and a resistive state. It is clear
that in a real experiment the charge-unbinding transition
is washed out due to the finite range of the logarithmic
interaction (for Co&0), but if Co/C is small enough a
fairly sharp crossover remains observable. The finite size
of the array has a similar effect.

The junction array is equivalent to a classical 2D
Coulomb gas as long as the single-electron and Cooper-
pair tunneling is weak. The tunneling allows the relaxa-
tion to thermal equilibrium and determines the response
of the system. We will discuss the weak-tunneling limit
in Sec. II. If the tunneling is strong, the quantum Auc-
tuations associated with it further affect the charge dy-
namics and the charge-unbinding transition. In Secs. II
and IV we will discuss this inhuence for normal and su-
perconducting arrays, extending our previous work. '
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The superconducting case is even more interesting due to
the properties of the vortices. In Sec. V we study the dy-
namics of vortices and their interaction with the charges.
We derive a "coupled-Coulomb-gas" description for the
two types "charges, " i.e., the electric charges and the
vortices. In the appropriate range of parameters either
one can behave as a particle, characterized by a mass.
There exists a near duality between charges and vor-
tices. ' We will describe the competition between the
charge- and vortex-unbinding transitions in Sec. VI and
establish the phase diagram for all values of EJ/Ec. Fi-
nally, the complete phase diagram in the superconducting
case, which depends on EJ/Ec and the normal-state tun-
nel conductance, is presented in Sec. VII.

II. COULOMB ENERGY AND WEAK TUNNELING
IN NORMAL ARRAYS

Consider a square 2D array, as shown in Fig. 1, of
small tunnel junctions with capacitance C connecting the
islands j=(x,y. ) with their nearest neighbors. (All
lengths are discrete and measured in units of the lattice
spacing. ) In addition, each island has a capacitance Co to
the ground; other capacitances are ignored. Let us as-
sume that on the island j there is the total charge Q,
which is an integer multiple of the single-electron charge
e. Depending on the ratio between the two capacitances,
this charge polarizes the islands such that charge density
accumulates on the junction capacitances. Notice that
the integrated density on each junction electrode can take
any continuous value. The charge distribution for the
case of two charged islands in the limit where C dom-
inates C))CO is indicated schematically in Fig. 1. The
resulting electrical potential of the islands is denoted as

VJ
= V(x,y~). It is fixed by the charges by the discrete,

two-dimensional form of Poisson's equation

CO V(x,y)+C[4V(x, y) —V(x —l,y) —V(x+ l,y)
—V(x,y —1)—V(x,y+1)]=Q(x,y) .

For large distances r=(x +y )' ))1 we can use the
continuous version COV —CV' V=Q(x, y). The potential

due to one test charge at the origin then is

V(r) =(e/27rC)KO(r/A), A=(C/Co)'~

The ratio of the capacitances determines the screening
length A. For r /A )) 1 the modified Bessel function
Eo(r/A) falls off exponentially. For shorter distances
r/A((1 it varies logarithmically, and V(r)
= —(e/2mC)ln(r/A).

In the following we will study the charging energy of
the array. Expressed in terms of the voltages of the is-
lands it is

II.h(IQ I)= X 2Q CJ '&J . (2b)

The inverse capacitance matrix C,. is long range, with
the distance dependence as that of the potential V(r)
given in (1). In the limit Co ((C it varies logarithmically
with the distance.

The long-range interaction of the charges in the limit

Co ((C is the same as the Coulomb interaction in a two-
dimensional world. Furthermore, the charges are
discrete, e.g. , in a normal junction array
Q, =0, +e, +2e, . . . . This means that the junction array
is a physical realization of the so-called 2D Coulomb gas
and should show the Kosterlitz- Thouless-Berezinskii
phase transition. There are several detailed predictions
of the KTB theory: The transition temperature is

2

4~@,
' 2C

(The dielectric constant e, depends on details on short
length scales. For the lattice considered here it is only
slightly larger than 1, and we will ignore it in most of the
following. ) Above T„ free charges are present; their den-
sity near T, is given by the square-root cusp expression

H,„=g V;+ g —(V; —VJ) =g —,'V;C; V, , (2a)
&i j & ij

where the capacitance matrix contains a diagonal part
and one connecting nearest neighbors C;.
=(Co+4C)5;~ —C5; ~+&. It is merely a matrix inversion
problem to rewrite this energy in terms of the charges Q;
on the islands

n, =%exp[ —2b(T/T, —1) '~ ], (4)
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where E and b are constants of order 1. The conductance
in this regime scales with this dependence. Below T, the
charges are bound in dipoles and the system is insulating.
By applying a voltage across the array the dipoles can be
broken, which leads to a nonlinear conductance

FIG. 1. A two-dimensional array of tunnel junction is shown.
The capacitance is a nearest-neighbor capacitance located at the
junction interfaces C and a capacitance to the ground Co. Also
shown is the polarization produced by discrete charges on two
islands for Cp ((C.

The exponent a(T) depends on the temperature. It is
proportional to 1/T for low temperatures and shows a
universal jump at T, from the value a(T=T, ) =3 to the
value a(t )T, ) =1.

Several of the predictions of the response of the
Coulomb gas are based on model assumptions about the
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dynamics of the system. " In the present case the dynam-
ics of the single-electron tunneling is known from the mi-
croscopic theory. It has been studied extensively in the
recent years (see, e.g. , Refs. 12 and 13), and many of the
predictions derived from it, such as the Coulomb
blockade, the Coulomb gap in the current-voltage charac-
teristics, and the single-electron-tunneling (SET) oscilla-
tions of the voltage have been confirmed by experiments.
The rate of tunneling of an electron (one out of many
electrons on the mesoscopic island) from an island to a
neighboring one, changing the charge configuration from
t Q; ] to [Q ], depends on the energy difference b,E and
hence on the configuration of charges before and after the
tunneling process

AE
exp —1

k~T

the numerical work including extensions to disordered
systems will be published in a separate paper.

We would like to conclude this section with a com-
ment: In equilibrium the state of the junction array is
characterized by the number of (total) charges Q,. on the
islands. Each charge produces a (in general long-range)
voltage profile. Due to the linearity of Poisson's equation
the voltages add. In good quality junctions the charges
change only by tunneling; hence they are conserved ex-
cept that they can be created or annihilated in pairs.
This picture resembles very much the concept of "soli-
tons. " Ben-Jacob, Mullen, and Amman' and Averin and
Likharev' drew this picture of their analysis of linear
chains. It is clear, however, that in the junction arrays
the properties of the solitons are merely a consequence of
the discreteness of the charges on the islands.

The question whether the relevant energy change is that
of the junction only where the tunneling occurs (local
rule) or whether it refers to a larger system, possibly the
whole array (global rule), has been discussed. ' Only the
part of the array within a "relativistic horizon" Ar =chw,
where A~ is one of the "tunneling times, " can inAuence
the tunneling. ' The work of Nazarov' demonstrated
that the longest time, the inverse of the energy difference
A~=A/5E, is the relevant time scale. The energy change
is of order Ec or smaller. Hence typically the whole ar-
ray is probed, and it is the change in the equilibrium en-
ergy EE=H,h( [Q, ])—H,h([Q ]) given by Eq. (2), that
enters into the tunneling rate (6).

It is straightforward to simulate the stochastic charge
dynamics of a junction array based on the rate (6).' The
dc I-V characteristic of an array with X, junctions in
series shows a "Coulomb gap" V -N, e /C, below which
the current vanishes (Coulomb blockade). Beyond, the
current sets in reaching a differential conductance given
by the single junction value 1/R, . At finite temperature
the Coulomb blockade is not perfect, a current Aows al-
ready at small voltages, although for T &(Ec it is still
much smaller than the classical value. These features
have been known for some time and have been confirmed
in experiments. We recently extended our simulations to
large systems' and find that the low-voltage part of the
I- V characteristic shows a nonlinear conductance as
given by Eq. (5), the exponent a(T) shows the tempera-
ture dependence predicted for a KTB transition (with
finite-size smearing), the transition temperature is given
by Eq. (3), and also the conductance above T, fits to the
prediction (4). At larger voltages the I Vcharacteristic-
shows the Coulomb gap. The analysis shows that the
single-electron tunneling governed by the rate (6), which
had been derived from the microscopic theory, yield both
features, the KTB properties and the Coulomb gap. Both
are fully consistent with one another. Further results of

I

III. ARRAYS OF NORMAL JUNCTIONS
WITH ARBITRARY STRENGTH

OF THE TUNNELING

The KTB transition described above is based on elec-
trostatic energy considerations. We assumed that the
tunneling of single electrons is weak. The tunneling is
needed to establish an equilibrium distribution of the
charges Q;; moreover, it determines the response of the
system. On the other hand, if the tunneling is strong, it
may itself inhuence the KTB transition. In order to
study this question we have to go beyond the simple sto-
chastic tunneling picture based on the rate (6). Indeed,
we will find modifications if the dimensionless tunneling
conductance

a, :—h /(4e R, ) =6.45kII/R, ,

is of order 1 or larger.
In order to analyze the problem for general strength of

the tunneling we start from a microscopic Hamiltonian
which contains the charging energies but also accounts
for the tunneling of electrons across the tunnel barriers.
We have shown' —for a single junction, but the ex-
tensions to arrays is straightforward —that the partition
function of an array of normal tunnel junctions can be ex-
pressed as a path integral over a macroscopic field P, ,
defined as the integral of the voltage

P, =j dt'2eV, (t') (&)

on the island i (The factor .2 is introduced for a unified
description of the normal and superconducting case. )
The partition function reads (for ih= 1)

Z=& jD&,exp( —S„[P]).

It involves the action S„[P]=S,h[$]+S,[P],

S,„[P]=
2

1 n dP,
16EO,. jo d r + 1

16EC

2

(10)

S,[P]= g j d~j dr'a(r r') 1 —cos-
(,y)
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The two terms in S,h represent the charging energy due
to the self-capacitance E0 =e /2C0 and the nearest-
neighbor capacitance Ec=e /2C, respectively. The ac-
tion S, describes the dissipation due to the single-electron
tunneling. The subscripts i label the islands on the lat-
tice, and P;J. =P; —

P~ refers to nearest neighbors. The
dissipative kernel for normal junctions is

a(r) =a, (1/P)'
'

sin (mrlp)
(12)

Accordingly, the charging part of the action is decom-
posed into two terms, one S,„[8]depending on P,.(r), the
other depending on the winding numbers

2 2

S,„[n]= gn; + g (n; n, ) . —(14)

This action (14) coincides with the "discrete Gaussian
model" (DGM), which has been studied in connection
with the roughening transition of solid-solid interfaces.
For 1/E0 =0 it is known to be analog to the Coulomb gas

where the dimensionless tunneling conductance has been
defined in (7).

We have not yet specified the limits of the path in-
tegrals over the fields P; in (9). They depend on the al-
lowed charge states of the system. ' ' ' ' We consider
junction arrays without Ohmic shunts. This allows us to
assume that the total charges Q, in the islands are integer
multiples of e. (Actually, in a real experiment, trapped
charged impurities can polarize the islands. This makes
Q; effectively noninteger, but the changes of Q; are in-
teger. The disorder washes out the transition here we
ignore the effect of disorder. ) The discreteness of the
charge implies that the conjugate phases P; have to be
defined on a unit circle. Values that differ by 4m. are
equivalent. (The 4~, rather than 2~, is again a conse-
quence of the factor 2 in the definition of P;.) As a conse-
quence, the integral in Eq. (9) includes a summation over
winding numbers P;(P) =P,.(0)+4nn;.

For the present problem it is convenient to formulate
the problem in terms of the winding numbers. For this
purpose we decompose the phases as

4m.n;
P, (r) =P;()+ r+8;(r), 8;(0)=8;(P)=0 . (13)

problem and to have a KTB transition at a critical tern-
perature, which, of course, coincides with the result (3).

Next we study the effect of the dissipative tunneling.
As long as it is weak, i.e., a, is small, we can treat it per-
turbatively. To first order in a, the system is described

Z=Z, „~g exp( —S, [n]) .
n

The winding-number part of the effective action is

si [n ]=s,h[n ]

I dr I dr'a(r r')g,"—(r—r')P

(,- ) 0 0

X cos[2irn;~(r —r')//3],

with n; = n; —n, and the correlation function is

g,,(r) =exp[ —
—,
' ( [8;,(r) —8;,(0)]'),h g[

=exp[ 2ECIrI(1 ——IrI//3)] . (16)

The average in ( . . ),h s and the partition function
Z,h s are taken with the charging action S,h [8].

The correlation function g, (r) decays exponentially in
time, which allows us to expand the second term of Eq.
(15) in n,, As a result we recover the model (14), but
with a renormalized nearest-neighbor capacitance C.
This implies that in the limit of vanishing C0 the transi-
tion is again of the KTB type, but with a renormalized
transition temperature

T,„/T,'„'=1—0. 11o.„ for a, ((1 . (17)

For weak tunneling the picture of charges on the island is
still meaningful, but the tunneling leads to a "dynamic
screening. " This screening effectively decreases the
strength of the Coulomb interaction and lowers the KTB
transition temperature.

For stronger dissipation the fIuctuations of 0;- are
suppressed, and we can expand in these fields. In this
limit our parametrization (13) can be viewed as a descrip-
tion in terms of instantons plus fluctuations. It is related
to the description presented by Korshunov, simplified
for the normal junction and generalized to an array. In
second order the dissipative term of the action reduces to

S,[8,n]=2a, $ In, I+ —,
' $ f "drI dr'a(r r')[8; (r) —8; (r—')] cos[2vrn, "(r r')/P] . —

j) ( j)
(18)

2 2

S[n]= gn + g (n, n)—Eo; ' Ec &;,, &

+2a, g In; —n, I
.

(i,j )
(19)

The combination a, I n, Iarises from "Fourier-
transforming a(r) For very stro.ng dissipation it is even
sufficient to consider only the first term in (18), and we
arrive at

(20)

The first two parts have been already recognized as the
DGM, the third term is known as the "absolute solid on
solid" (ASOS) model, which has also been studied in con-
nection with the roughening transition of at interfaces.
As the temperature approaches zero only this third term
survives. Monte Carlo simulations show that the ASOS
model also undergoes a transition of the KTB type at the
critical value of coupling constant

a, , =0.45 at T=O .
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es

ly, the boundary condition for the phases in the partition
function (9) are P;(P)=P;{0)+2vrn;.

Since the unit of the charge is increased by a factor of 2
and the scale of the charging energy by a factor of 4, it is
immediately clear that in the limit Co =0 the KTB transi-
tion temperature is increased by the factor of 4 compared
to the normal-state result '

0.45

FIG. 2. Phase diagram for the charge-unbinding transition of
normal junction array is plotted as a function of the tunneling
conductance o., =h /4e R, .

a, , =0.45(1 rrT/4T, '„')—. (21)

The phase diagram for an array of normal junctions is
shown in Fig. 2. In the region below the transition tem-
perature the charges are bound in dipoles so that the ar-
ray is insulating. Above, the free charges form a plasma
phase and give a finite conductance.

IV. THE CHARGE-UNBINDING TRANSITION
IN JOSEPHSON JUNCTION ARRAYS

In the case of superconducting arrays the action con-
tains the Josephson term proportional to the coupling en-
ergy EJ,

S, [P]=S,„[P]+S,[P] EJ g f dr cos—P; (r) .
(~',j)

(22)

The charging part and the dissipative part S,h+S, are
the same as in Eqs. (10) and (11); however, the kernel
a(r) is modified by the superconducting gap. ' We will
specify this further below. For the moment, we disregard
the quasiparticle tunneling (a, =0). In this case only
Cooper pairs with charge 2e can tunnel. Corresponding-

A comment is appropriate concerning the validity of
the result (20). The effective action (19) was obtained un-
der the assumption of strong dissipation. This implies,
strictly speaking, that we can use it only to discuss the
plasma phase of the system. However, all the considered
step models belong to the same universality class, hence
the transition, if it exists, is of the KTB type. From the
fact that at T=O in the two limits, weak or strong dissi-
pation, we are in the ordered or disordered phase demon-
strates the existence of a KTB transition at a critical
value of a, . We therefore expect that the expansion {19),
even when applied to small values of a„only leads to
quantitative errors, e.g. , the numerical value of a, , may
change, but the existence of the phase transition and its
properties are not affected.

The effect of the temperature is to decrease the critical
value of the dissipation. We can evaluate the phase
boundary by mapping (19) into a generalized XY model.
The details of this calculation are presented in Appendix
A. The models are dual in the sense that the weak-
coupling region is mapped into the strong coupling re-
gion of the XY action. We learn from it that at low tem-
peratures the shift of the critical value of dissipation is

T,', '=Ec/(rreg ) . (23)

This result may be surprising. There is a temperature
range where the normal array is in the plasma phase, i.e.,
conducting, whereas the Josephson array is still in the
charge ordered phase, i.e., insulating. The experiments
reported in Ref. 7 are consistent with this picture.

The effect of weak Cooper-pair tunneling can be treat-
ed in the winding-number representation, similar to the
weak single-electron tunneling analysis presented in Sec.
III. The charging action is still given by (14), except that
the coupling constants differ by factors of 4. If we ex-
pand in the Josephson coupling energy we again repro-
duce a theory with charging energy only, but with renor-
malized nearest-neighbor capacitance. This shifts the
transition temperature as

T„/T,' '=1 —0.98(E~/Ec) (24)

This reduction of T„can be viewed again as the result of
a dynamic screening, in the present case due to the tun-
neling of Cooper pairs.

V. DYNAMICS OF CHARGES AND VORTICES
IN JOSEPHSON JUNCTION ARRAYS

It is well known that the properties of classical, 2D
Josephson arrays (with EJ ))Ec) are described by vor-
tices, which are topological excitations in the
configuration of phases, and by the spin waves, which are
the small-amplitude oscillations of the phases. The vor-
tices have attracted further interest since they undergo a
KTB phase transition, where vortex-antivortex pairs dis-
sociate. The transition separates a superconducting low-
temperature phase from a resistive high-temperature
phase. Charging effects lower the vortex-unbinding tran-
sition temperature. (This has been studied extensively for
the case where the self-capacitance dominates. ' ' A
smaller number of papers dealt with the nearest-neighbor
capacitance model, ' but missed the charge-unbinding
transition. ) Gn the other hand, in Josephson junction ar-
rays with small capacitances (Ec ))EJ ) the charges are
the important degrees of freedom, and, as described
above, in the limit Co (&C the charges unbind at a criti-
cal temperature T„. Thus the question arises as to which
type of order is present in a Josephson array for general
parameters. In particular, does the system undergo a
charge-KTB transition between an insulating and a con-
ducting state or a vortex-KTB transition between a su-
perconducting and resistive state? Below we will derive
from the action (22) in the phase representation an action
for two coupled Coulomb gases (CCG), namely the elec-
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tric charges and the vortices. This allows us to answer
the question raised. At the same time we learn more
about the physical properties of the charges and the vor-
tices and their interaction. There exists a near-duality re-
lation between both. Later, in Sec. VI we will draw con-
clusions about the phase diagram for general ratios of
E /E

A. Coupled Coulomb gas

We consider an array of Josephson junctions without
quasiparticle tunneling and other sources of dissipation.
Its partition function can be rewritten in a representation
involving charge trajectories Q,.(r) instead of the veloci-
ties P;(r) (Ref. 30),

QJP p+ 277n& l 4 2

Z=g f ' DQ. g Q f Dp, exp — f dr g Q, (r)C; 'Q (v')+i g Q;(r)p;(r)+ g E cosp; (&)
In I i l,J i (i j&

(25)

The summation over the winding numbers n; fixes the
charges to be integer Q;=0, +1,+2, . . . . (The dimen-
sions 2e are written explicitly in the prefactor. ) Vortex
degrees of freedom can be introduced by means of the
Villain transformation. ' It allows us to integrate out the
phases at the expense of introducing at each (dual)
space-time lattice point an integer-valued two-
dimensional vector field m;(r)=(m;' ', m,.'~'). (For this
purpose we introduce a lattice, with spacing e, also in the
time direction, but we keep denoting it by ~.) In the Vil-
lain approximation one replaces

exp e g EJcosg;, ,
(i,j ),~

~const g exp
I m, .

eEJ
g I Vy, ,—2~m, ,I'
l, 1

(26)

The right-hand side of (26) can be rewritten in terms of
another integer 2D vector field J; as

g' exp —e2e g Q, ,c, 'Q.
IQ; IIJ; I ij w

(27)

where the summations are constrained by the "continui-
ty" equations at each lattice point

V J;,—B,Q;,=0 . (28)

Here B,Q;,=Q, ,+,—Q;,. This constraint can be solved
by32

Z)I~' =n'~'(n V ) 'a,Q,-,+e'~'V. ~, , (29)

The operator (n. V) ' is the line integral on the lattice,
e'" ' is the antisymmetric tensor, and 3, , is a discrete
scalar field to be summed over without further con-
straints. There are other ways to solve the constraint,
but the form (29), which corresponds to the axial gauge,
allows us to express the partition function in terms of the
real charges and the vortices.

After employing the Poisson resummation identity,
which replaces 3 by the integer V, we can write the par-
tition function (details of the derivation are discussed in
Appendix B) as

const g exp IJ;,.I' —iJ, , vy, ,2eEJ X X exp[ —Scca(IQ,. ,I, IVJ I)] (30)

After integration over the phase variables the partition
function becomes

Here Q;, and v;, are integer-valued fields representing
the charge and vorticity in space-time lattice. The action
of the coupled Coulomb gas is

Scco( I R,~) Q, „G, Q ,+meE V, ,G. ,. V, +. iQ, ,B,,B,V. ,+ B,Q, ,G,,B,Q,
7T J

(31)

6;.=arctan
X; XJ

with kernels

G;~ = —ln
I r, —rj I

—m/2, (32)

(33)

It should be noted that the vortices and the charges are
defined on dual lattices.

Obviously for EJ=0 or EC=0 the fields must be con-
stant in time ~, and the classical Coulomb gases of
charges or vortices are recovered, respectively. In gen-
eral, the two "charges" interact as described by the ker-
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nel 6; . The action (31) shows a high degree of symmetry
between the vortex and the charge degrees of freedom.
However, the duality is broken by the last term
B,Q, ,G,"B,Q,. This nonlocal kinetic contribution for
the charge is not an artifact. It arises as the spin-wave
contribution to the charge correlation function, and can
be easily obtained by combining the term exp(iQ;P;) in

Eq. (25) and the m=0 term in (26). The corresponding
excitations in the charge gas are absent in the model
defined by (22), so that an equivalent term B,V, G, .B,VJ
does not arise.

B. Vortex dynamics

S,~[V]= g f dr V, ,G;~ V~,
C 1)J

+~EJQ f dr V, G V, ,
l, J

(34)

The sum over the configurations in the partition function

The representation (31) displays the coupling between
the charges and the vortices. In the extreme limits,
E&=0 or Ec=0, only one or the other persists. In this
subsection we focus on the limit Ec «EJ, where we ob-
tain an effective action for the vortices, but they are
influenced by the charging effects. In the considered lim-
it the charges are Auctuating strongly and can be treated
as continuous variable. Hence they can be integrated out
from the partition function, which produces a kinetic-
energy term for the vortices. Due to the spin-wave con-
tribution B,Q, ,G,"B,Q, the kinetic term is actually non-
local in time, however, it remains short range. Here we
can ignore this modification. After the Gaussian integra-
tion we get

y f'dr V, .e,„G„-,'e„V, .
C ij, k, l

+ E, y f'd V, ,G,)V,
17J

The convolution in the kinetic term can be simplified to
the property (Ve) =(VG) . After an integration (sum-
mation) by parts (the steps are discussed in the appendix
of Ref. 34) the result is

Substituting this expression into (34) we obtain the
effective action

S,s.= g v„v f dr g r '„'M„'f'r ~g'
8Ec

+~EJG(r„(r)—r (r) ) (35)

which contains the "vortex mass" tensor

(~p]
Mnm =

{~) (13}
G(rn rm )Br„c3r (36)

This expression for the vortex mass has been obtained be-
fore by Eckern and Schmid within a semiclassical
description. The action (34) is valid more generally, the
only requirement is that the charges are in the disordered
phase.

C. Charge dynamics

A similar analysis can be performed to obtain the
effective quantum action for the charges. In the limit
EJ «E& the vortices are integrated out, with the result

+ ' g f drQ, ,GQ„.
E7 J

(37)

Notice that the "charge-mass" in (37) is actually com-
posed of two terms, one from the integration of the vor-
tex field, the other from the duality-breaking term expli-
cit in (31). Both are equal in magnitude. Now the
"mass" of the charge is the band mass of a particle mov-
ing in a lattice with the matrix element of strength EJ.

is constrained by a "charge neutrality" condition
g, V, =0, which also implies g,. V; =0.

The result (34) has further interesting consequences for
the quantum dynamics of the vortices in the limit where
the charges are strongly Auctuating. In general, all vor-
tex trajectories shown in Fig. 3 are allowed; those labeled
(b) and (c) become relevant as the temperature is lowered.
In the semiclassical region, however, we can limit our-
selves to the trajectories of the type (a), which thread all
time slices. If we label the vortices by their center coor-
dinate r„(r) and their sign v„=+1, the vortex density
can be represented as

V(r, r)= g U„6(r—r„(r)) .

VI. COMPETITION BETWEEN THE CHARGE-
AND THE VORTEX-UNBINDING TRANSITION

A. Corrections to the classical results

FICs. 3. Examples of vortex configurations considered at
finite temperatures.

For EJ=0 or Ec=0 the charge and vortex fields are
constant in time ~, and the classical Coulomb gases of
charges or vortices are recovered, respectively. Both
show a KTB transition where dipoles unbind. The transi-
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tion temperatures are given by (23) for the charge-
unbinding transition and by

(Eg/E ) yg &=2/7T (39)

CU
(38)

free charges and v
resistive

/
2e charge dipoles

insulating

a 2/z

vortex dipoles

superconducting

EJ /Ec

for the vortex-unbinding transition. The dielectric con-
stant e, in general differs from that of the charge transi-
tion, but it is again of order 1.

In Sec. V we had seen that the charges, if they are
treated in a continuum approximation and are integrated
out, provide a kinetic energy in the action for the vortici-
ty (34). This approach is justified if Ec ((EJ. Following,
e.g. , the arguments of Feynman and Hibbs, we can im-
mediately conclude that the transition temperature of the
vortex-unbinding KTB transition is lowered below the
classical value (38). Similarly we had seen that the vor-
tices, which in the limit Ez &(Ec can be treated in a con-
tinuum approximation, provide a kinetic energy for the
charges (37). Hence the charge-unbinding transition tem-
perature is reduced by effect of the vortices, consistent
with the result (24) (which had been obtained within a
different approach). These results, the classical limits and
the corrections for small and large ratios of EJ/E„are
shown qualitatively in Fig. 4. We denote the disordered
phase, where free charges and free vortices exist, as con-
ducting or resistive, although such a state requires a dissi-
pation mechanism, which we have not included in the
present section. What we mean is that as soon as a weak
dissipation mechanism is turned on, e.g. , the quasiparti-
cle tunneling to be discussed in Sec. VII, the state is resis-
tive, whereas it remains insulating or superconducting in
the other two phases.

The question remains as to what happens for EJ =Ec.
If the duality between charges and vortices would be per-
fect, i.e., if the duality breaking last term in (31) would be
absent, the transition temperatures would be symmetric
around the self-dual point

Assuming that, e.g. , at T=O there exists only one transi-
tion (below we will demonstrate this), we could immedi-
ately conclude that the critical value of EJ/Ec, separat-
ing the charge- from the vortex-ordered phase, at T=0 is
given by (39). van Wees' conjectured that (39) is the
critical value. But the duality-breaking term, even if it
becomes irrelevant at the fixed point, can lead to a shift
of the critical value away from (39). This shift can be in-
terpreted as the inhuence of the dielectric constants of
the two transitions, which may differ since the short
length scale properties of the two subsystems differ.

Coupled Coulomb gas models similar to (31) were dis-
cussed in Refs. 34 and 37—39. They refer to classical
problems, which means they do not contain a time depen-
dence. The coupling between difFerent time slices in (31)
is somewhat similar to the coupling of different replicas
which arise in connection with the study of transitions in
frustrated XY systems. However, there the coupling is
the same between all the replicas, whereas in our problem
the interaction has a finite range. This means we cannot
take over the results obtained there.

B. T=o limit

Above we showed how to obtain the effective action for
the vortices and charges, respectively. This approach is
useful at finite temperatures where the system undergoes
two different transitions of the KTB type in the charge
and the vortex system, respectively. At T=O the system
is effectively three dimensional and the character of the
phase transitions may change. In this subsection we will
study the transition in the T=O limit in more detail.

It is known that in the self-charging limit (Co ))C) the
system described by the action (22) (without dissipation)
is isomorphic to an isotropic 3D XI'model (see, e.g. , Ref.
3), which, in contrast to the 2D case, has a "ferromagnet-
ic" phase transition to true long-range order. In the limit
where the nearest-neighbor capacitance dominates
( C ))Co ), the long-range Coulomb interaction intro-
duces a strong anisotropy between the space and time
directions. This limit was discussed so far by means of
mean-field and variational approaches. In the follow-
ing we want to consider the problem in terms of the
relevant topological excitations. At T=O it turns out
that these are vortex loops. '

We start from the Villain approximation (26) for the
Josephson term. In contrast to (25) we do not introduce
charge trajectories, but use the fact at T=O only the con-
tributions with winding numbers n, =0 survive. The
phases can again be integrated out with the result

FIG. 4. Phase diagram for the charge-unbinding transition
and of the vortex-unbinding transition of a superconducting
junction array is shown. Quasiparticle tunneling is ignored.
The two transitions meet at T=0 at a critical value of
EJ/Ec=a2/~ . The numerical coe%cient a is larger but close
to 1.

Zi, = g exp( —S,s [m, ,]),
I m, -

I

(40)

where m is a 2D vector in the 3D space-time lattice
r = ( i„,i, )rand
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Sdr[m;, ]=2m. EJ g
k, co p, v=x, y

5„—EJ
k„k
CO+ k'+E, k'

8Eo 8Ec

m'"'(k, co)m' '( —k, —co) . (41)

It is convenient to view m as a 3D vector in a gauge
where m" =0. Then we can rewrite (41) as

S,tr[m]= —,
' g g [VXm(r)]„G„(r—r')

r, r' p=x, y, v.

loops oriented parallel to the space-plane becomes

S,fr[p]= —,
' g p(k, co) W(k, co)p*(k, co),

k, co

where the interaction is given by

(45)

X [V Xm(r') ] (42)

The integer-valued "current" J=V X m describes the to-
pological excitations of the original P field. It is an alter-
native to the representation by charges and (phase) vor-
tices. The present current field is divergence free, i.e., it
forms closed loops. (Frequently these loops are called
"vortex loops. " However, they are not the "physical"
phase vortices introduced in Sec. V.) The general expres-
sion for the kernel G„, when both self-capacitance and
mutual capacitance are present, is given in Appendix C;
here we quote the two limiting cases. Introducing
k =2(1—cosk„)+2(1—cosk ) and the notation G~~ for
the x and y components and G, for the ~ component of
the interaction, we find the following.

In the self-charging limit (C =0)

G„(k,co) =G,(k, co) =4~'J 1

k +co
(43)

After a further transformation B,n —+p the action of the

where JO=QE~/%ED and the frequencies are rescaled as

n)/QSEqEO ~co
In the nearest-neighbor capacitance limit (Co=0)

G„(k,~)=4~'J 1

1+co
(44)

G,(k, co)=4m Jc 1 1

1+co k

where JCC=QEJ/SEc and the frequencies are rescaled

as co/+SEJEC ~co
From Eq. (43) we see that in the self-charging limit the

interaction is isotropic and coincides with the Green's
function appearing in the dual representation of the 3D
XY model. Therefore the T=O transition leads to
long-range order, whereas at finite T it belongs to the
KTB universality class.

In the nearest-neighbor capacitance limit the propaga-
tors are strongly anisotropic and lead to a qualitatively
different behavior. The problem strongly resembles the
3D layered superconductors studied in Refs. 43 and 44 as
a model for high-T, materials. In this work it was shown
that the subsystem formed by the vortex loops oriented
parallel to the x-y plane show critical behavior. For these
loops [V Xm(r)], =0, they can be parametrized by a sca-
lar integer n(r) chosen such that

m(r)=Vn(r) .

k
W(k, co)=4' Jc

1+co

The action (45) represents a roughening model defined in
space-time. From this one can proceed in the standard
way to a Coulomb gas representation with interaction
potential W(k, co) =4' /W(k, co). This means the 2D
Coulomb gas interacts logarithmically within the same
and the nearest-neighbor layers. Korshunov studied
this problem and found in the limit of vanishing fugacity
a phase transition of the KTB type at a critical value of
the coupling constant, which translates to

(EJ/Ec), =a2/m. (46)

VII. INFLUENCE OF QUASIPARTICLE
TUNNELING ON THE CHARGE-

AND VORTEX-UNBINDING TRANSITIONS

We turn now to the question of how the quasiparticle
tunneling influences the properties of the charge and vor-
tex gases and their phase transitions. A superconducting

Korshunov obtained the value of the coeKcient a =
—,', .

However, the duality arguments described above led to a
numerically slightly larger value, namely a =1, and com-
paring the kinetic terms in (34) and (37) we expect that
the duality-breaking term shifts the critical value of
EJ /Ec to even larger values. At least in the semiclassical
regime it increases the "mass" of the charges and reduces
the effect of their fluctuations as compared to the situa-
tion for the vortices. These modifications appear not to
be properly accounted for in the present approach. On
the other hand, we learn here that in the nearest-neighbor
capacitance model the transition belongs to the KTB
universality class even at T=O, so that the dimensional
crossover which occurs in the self-charging model as T
approaches zero is not present. The critical value of
EJ /Ec (46) also differs from those obtained in mean-field
approximations in Refs. 27 —29 for Co =0. Actually
different results have been published for this limit. This
may be related to subtleties, whether or not a dimensional
crossover occurs in these calculations in the T=O limit.
The combination of (46) and the expansions about the
classical limits (the charge- and vortex-unbinding transi-
tions) leads to the qualitative phase diagram of a Joseph-
son array (without single-electron tunneling) shown in
Fig. 4.
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array is described by the action (22); the quasiparticle
tunneling is accounted for by S, in Eq. (11). But the ker-
nel a(r) depends on the superconducting gap and is
modified as compared to the form (12). General expres-
sions are given in Refs. 13 and 19. For a qualitative un-
derstanding of its inhuence it is here suScient to consider
three limits.

(i) If the typical frequencies and energy scales are large
compared to the superconducting gap 6, the quasiparti-
cle tunneling is the same as the single-electron tunneling
in the normal state, a(r) is given by Eq. (12), and the con-
ductance entering is the normal-state conductance

a, =h/(4e R„) . (47)

(For definiteness we always denote by a, the normal-state
conductance. )

(ii) If the typical frequencies and energy scales are
small compared to the superconducting gap 5, the tun-
neling is characterized by the subgap conductance. In
good quality junctions this subgap conductance decreases
exponentially,

a, ,tr=a, exp( 6/k~ T—), (48)

as the temperature is lowered and vanishes for T=O.
Nevertheless, unless the voltage is constant everywhere a
mixing of different frequency components occurs and the
normal-state conductance is felt. For example, a moving
vortex is associated with anharmonic effects.

(iii) In ideal BCS tunnel junctions at low temperatures,
if all relevant frequencies and energy scales are small
compared to 6, no real quasiparticle tunneling occurs.
Nevertheless, virtual tunneling does take place. It can be
accounted for by a renormalization of the nearest-
neighbor capacitance, ' ' which changes the associated
charging-energy scale by an amount depending on the
normal-state conductance

Ec'"/E& = [ 1+a, 3Ec /( 8 b, ) ] (49)

The fabricated junction arrays of Ref. 7 have a rather
ideal tunneling I-V characteristic, and the three limits

Ec=26

a 2/z

I

e

o

e

0.45

FIG. 5. T=O phase diagram of a superconducting junction
array with quasiparticle tunneling is shown. In the insulating
phase (I} single electrons and Cooper pairs are bound in di-
poles. In the resistive phase (R } we have no superconducting
order (free vortices}, but the quasiparticles are free. In the
phases S and S' the vortices are bound and the array is super-
conducting. In S the quasiparticles are frozen or bound in di-
poles, in S' they are free.

(i)—(iii) characterize them well. In the simplest case the
bare Josephson coupling energy is given by the
Ambegaokar-Baratoff' relation

EJ=cz,h/2 . (50)

On the other hand. , Ez can be reduced below this value by
the application of a magnetic field. For this reason we
consider EJ, Ec, and a, (i.e., the normal-state conduc-
tance) as independent parameters and study the phase di-
agram in the T/Ec versus EJ/Ec-a, space. It is impor-
tant to notice that the space is divided, as shown for the
T=O plane in Fig. 5, into a regime where Ec )2b (close
to the a, axis) and a regime where Ec (26 (close to the
E~/Ec axis).

A. T=O

We first consider. the zero-temperature limit. We can
obtain a feeling for the emerging phase diagram by com-
bining the information we have obtained so far. We have
seen that at EJ/EC=2/m (setting the coefficient a =1)
there occurs a transition between a state with bound
Cooper pairs and a superconducting ordered state. On
the other hand, at a critical strength of the single-
electron tunneling conductance we found a transition be-
tween a state with bound single electrons and a state with
strong tunneling and free charges. Notice that the typi-
cal energy scale for the single-electron tunneling is E~.
Hence it freezes out when 26 is larger or near Ec.

We thus find four regimes (see Fig. 5).
(i) At small EJ/Ec and a, both Cooper pairs and sin-

gle electrons are frozen. This state is insulating (I ).
(ii) At small EJ/Ec but large a, Cooper pairs remain

frozen (no long-range phase order), but the single elec-
trons are free. The single-electron dynamics is the same
as in the normal state. This corresponds to a resistive
state (R ). Notice that at T=O the resistance may be
infinite (see Ref. 47). However, at any finite temperature
it is finite. In contrast to the "insulating" phase the array
remains insulating up to some finite temperature.

(iii) At large EJ/Ec and small a, we have supercon-
ducting long-range phase order {ofthe KTB type) and the
single electrons are frozen. This is a superconducting
state (S).

(iv) At large EJ/Ec and large a, we have supercon-
ducting long-range phase oder (of the KTB type) and tun-
neling of single electrons. The latter process yields a
parallel dissipative channel, but it is shortened by the su-
perconducting channel. Therefore we denote the phase
as S'. The finite-frequency response in this phase may
differ from the one in S.

The four phases will persist when we include the mutu-
al inAuence of the tunneling of Cooper pairs and single
electrons. However, there will be quantitative
modifications.

(a) Above the line Ec =25 (i.e., close to the EJ/Ec
axis) only virtual tunneling processes occur (the charac-
teristic energy scale is Ec) resulting in the capacitance re-
normalization (49). From this it is immediately clear that
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the critical value of EJ/Ec decreases as

(EJ /Ec ), =2/m. —3a, /16, (51)

B. TAO

If we combine the limits discussed so far, i.e., the nor-
mal junction result (Sec. III), the a, =0 limit (Secs. IV
and VI) and the T=O diagram, we obtain a rather com-
plete phase diagram as shown in Fig. 6. An interesting
question is how the charge-unbinding transition dominat-
ed by single-electron tunneling with a transition tempera-
ture T,„crosses over to the charge-unbinding transition
dominated by Cooper-pair tunneling with a transition
temperature T„=4T,„. Again the transition should
occur at E~ =26. For smaller values of 6 single-electron
tunneling dominates since the activation energy is of or-

until it approaches the line E& =25. Below this line real
dissipative tunneling processes occur. They decrease the
critical value of EJ /E& even stronger, but a quantitative
analysis of this limit has not yet been obtained. We plot
in Fig. 5 the result (51) and our qualitative understanding
of the transition curve beyond.

(b) Below the line Ec =26, (i.e., small values of EJ /Ec )

there is a regime where the single-electron tunneling pro-
cess dominates and Cooper pair tunneling can be taken
into account perturbatively. The Cooper-pair tunneling
again leads to a dynamic enhancement of screening. It
lowers the critical value of a, , below the normal-state
value 0.45 (see Fig. 5). When we approach the line
Ec =26, the single-electron tunneling begin to freeze out.
Hence we might observe a reentrant-type curve. On the
other hand, the numerical coemcients just happen to be
such that this crossover is close to where also the line (51)
meets and the reentrant features may remain unobserv-
able.

der Ec and hence smaller by a factor of 1/4 than that of
Cooper-pair tunneling. For larger values of 6 the quasi-
particle tunneling rate is suppressed by the exponential
factor exp( —b, /k~T) and the Cooper-pair tunneling be-
comes dominant. As a further quantitative detail we can
mention that the capacitance renormalization due to vir-
tual quasiparticle tunneling (in the region where it is the
relevant description) lowers T„since the charging-energy
scale is reduced. We combine our understanding, which
in part is still qualitative, in the diagram of Fig. 6.

VIII. CONCLUSIONS AND OPEN PROBLEMS

Two-dimensional array of tunnel junctions can under-
go (if the nearest-neighbor capacitance is much larger
than the capacitance to ground) a charge-unbinding KTB
transition. In the ordered phase the charges on different
islands are bound in dipoles and the array is insulating.
Both the dissipation due to single-electron tunneling and
the Josephson tunneling lower the transition tempera-
ture. In the superconducting case the additional possibil-
ity of phase ordering gives rises to a complex phase dia-
gram in which charge unbinding and vortex unbinding
compete.

We have not yet considered all aspects of the single-
electron tunneling in the superconducting state. Even in
situations close to ideal, where its dominant effect is a ca-
pacitance renormalization (49), rare real single-electron
tunneling processes can occur. They lead to trapped sin-
gle charges on the islands, which will also inhuence the
dynamics of Cooper pairs (randomly distributed full frus-
tration). Furthermore, charged impurities, e.g. , in the
substrate of the array, can polarize the islands, leading
effectively to noninteger random trapped charges. Ran-
dom trapped charges will smear out the transition tem-
perature. We will study these properties further.
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APPENDIX A

/Ec

In this appendix we discuss the low-temperature phase
diagram of the DG+ASOS model described in Eq. (19).
A convenient way to explore the equivalence between the
roughening and the XY model. The mapping was dis-
cussed in Ref. 49, but, in order to keep this appendix
self-contained, we recall the main steps. Our starting
point is

FIG. 6. KTB transition temperatures for the charge- and the
vortex-unbinding transitions are plotted (in part qualitatively) as
a function of the normal-state tunneling conductance
a, =h /4e r„and FJ/Ec. They separate an insulating, a super-
conducting, and a resistive region.

Z = g exp( S,ir f n ]), —
n,.

S,s.[n]= g (n, n )+2a, g ~n; n~~ . —— .

&i,f & &i,j )

(A 1)

(A2)
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Because the action depends only on the di6'erences be-
tween nearest neighbors n, . =n; —n. , it is convenient to
consider the bond variables as independent. Accordingly
the sum over configurations can be performed over the
variables n, if"one introduces N (N is the number of lat-
tice sites) constraints which demand that the sum over
each elementary plaquette is zero:

exp[ —W(8r —8J )]
—1/2

4m tanh(2a, )
PEc

PEcx'
x f dx exp

00 4~

g'~ +5 gn;
In,.

I In,. I p

x 1—cos(8r —8r —x )

cosh(2a, )
(A6)

~(2~) ' f d8rexp i 8r X n r0
p

(A3)

The Boltzmann factor (A6) is of a generalized XY'model;
it contains terms proportional to cosk8 (k=1,2, . . . ).
Considering the first harmonic only, we get a contribu-
tion to the pure X1'model (cosine interaction) with a cou-
pling constant given by

Z=(2vr) ' f d8rexp —g W(8r —8r), (A4)
&I,J)

where the interaction energy W(8) is given by

—W(8r —8r ) =ln exp [ S,it [n—j+in (8r —8J ) )
n — oo

(A5)

For the model defined in (A 1) we obtain

We identify each plaquette with the coordinate of its
center (on the dual lattice), which we denote by a capital
letter. The sum over the bond variables factorizes. Rear-
ranging the terms, we obtain the partition function in
terms of the "phase" variables introduced in (A3),

W(8) =const —exp
cosO

PEc cosh(2a, )
(A7)

At T=O we recover the standard result for the ASOS
model; at finite small temperatures the coupling constant
of the XY model is renormalized so that the critical line
bends towards smaller values of the dissipation and to
first order in temperature we obtain (21).

APPENDIX B
We outline here, in some more detail, the derivation of

the coupled Coulomb gas action (31) for the charges and
vortices. We solve the constraint (28) by the parametriz-
ation (29), which introduces the integer field A. We then
use the Poisson resummation formula

g f(A)= g f dA f(A)exp(i2vrVA)
IAI

and perform the Gaussian integrals to obtain

f d A;,exp
2eE~

g Q;,,G;, Q, ,— g [n'"'(n V) 'a,Q, ,~'

eEJ e'" 'V„n'"'(n V) 'B,Q, , G,
J

(82)

Here we consider the limit of vanishing self-capacitance,
but the generalization is obvious. In the form written the
classical action of the charge gas and of the vortex
Coulomb gas, that is, the first two terms in (31), are ap-
parent. This shows that the integer fields V;, introduced
by (81) represent the (physical) vortices in the
configuration of the phases P;,. In the cross terms in
(82) we sum by parts

y V, ,G,,~'~"'V.n'~'(n V ) 'a,Q, , -

I

which introduces the charge-vortex interaction potential

e = ~ ~'~'V n'~'(n V) 'G-
lj V EJ

(84)

APPENDIX C

This expression has been studied in Refs. 32 and 34. It
has been shown to reduce to the form (33). The remain-
ing two terms in (82) produce the symmetry-breaking,
last contribution in Eq. (31).

= —g V, e'"'V n'"'(n. V) 'G, .B,Q, ,
i,j

(83) In this appendix we consider arrays with both self-
capacitance and nearest-neighbor capacitances and gen-
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eralize the expressions (43) and (44) accordingly. In the
present case we rescale the frequencies as

1 1 1

&o &c

1/2

(Cl) G,(k, co)=4m J 1

+ CO

1+A
+

2

k +k1+a-'
(C3)

which reduces to the limits discussed in the text when
one of the capacitances is set equal to zero. The current
kernels are

where A. =C/Co, J="t/ EJ/8Ec+EJ/8EO, and G~~ and
6 refer to the x-y and the ~ components of the interac-
tion.
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