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We study numerically the quantized voltage plateaus in an N XN array of resistively shunted
Josephson junctions subjected to a combined dc and ac applied current Iy, +1,.sin(27vt), and a
transverse magnetic field equal to p /g =f flux quanta per plaquette (p and g relatively prime in-
tegers). With periodic transverse boundary conditions, we find plateaus at all voltages satisfying
{(V)=nNhv/(2eq), where n is an integer, and the angular brackets { - - - ) denote a time average.
With free transverse boundary conditions, additional steps at { V') = Nhv/(4eq) sometimes appear.
For f =§ and %, we study the motion of the vortex lattice on the steps. At both fields, on every
step, the lattice moves an integer number of array lattice constants per cycle of the ac field. For
both zero and finite applied transverse magnetic field, the width of the steps varies sinusoidally with
I,., in a manner reminiscent of that seen in single Josephson junctions. At a given field and current,
the steps “melt” at a temperature no higher than the transition temperature of the underlying array
at the same field and zero current. On the steps, the time-dependent voltage across the array has
strong harmonics at multiples of the fundamental frequency. Off the steps, the power spectrum of
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the voltage has an apparently broad band with possible subharmonic structure.

I. INTRODUCTION

Superconducting arrays have been intensively studied
in recent years and exhibit much complex behavior.!
Such arrays can be artificially prepared by photolitho-
graphic techniques.! When one applies a transverse mag-
netic field B, which is a rational fraction of a flux quan-
tum per plaquette, the vortices form a lattice at low tem-
perature, which is commensurate with the array.> This
lattice manifests itself experimentally in a strongly field-
dependent superconducting transition temperature of the
array T,(B). Weakly coupled Josephson systems have
also been proposed as models for polycrystalline high-7'.
superconductors.’

When a combined dc and ac external current
14 +1,.sin(27vt) is applied, the current-voltage (I-V)
characteristics of ordered two-dimensional arrays exhibit
quantized voltage plateaus. In a square array of N XN
plaquettes, with an applied transverse magnetic field of
magnitude f =p/q flux quanta per plaquette, where p
and g are relatively prime integers, these plateaus occur
at voltages nNhv/(2eq), where n is an integer.* These
plateaus are generalizations of similar phenomena, called
Shapiro steps, long familiar in single resistively shunted
Josephson junctions.” In the arrays at finite fields, the
plateaus in a field are called fractional giant Shapiro
steps;* at zero field, they are known as integer giant
steps.®

Several theoretical studies of fractional giant Shapiro
steps have appeared in the literature. Benz et al., in their
original experimental paper, propose that the steps
occur when the vortex lattice is able to lock onto the un-
derlying periodic two-dimensional vortex potential
formed by the Josephson-junction lattice. Lee et al.’
showed numerically that the fractional steps emerged
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naturally from a model of coupled resistively shunted
Josephson junctions (RSJ’s). They also found (in a calcu-
lation with free transverse boundary conditions) addition-
al steps beyond those reported experimentally by Benz
et al. Free et al.® used a model of coupled RSJ’s and, for
the first time, periodic boundary conditions. They also
found fractional giant steps, and by studying voltage
drops across individual junctions, provided evidence that
the steps arise from coherent motion of the entire vortex
lattice. Halsey® considered special values of transverse
magnetic field, at which his so-called staircase phase
configuration'® might be the ground state, and proposed
that, for certain directions, amplitudes, and frequencies
of the applied currents, there might be subharmonic steps
beyond those reported in Ref. 4.

This paper reports detailed numerical studies of quan-
tized voltage plateaus in RSJ arrays. We show that
several “anomalous” steps found previously with free
transverse boundary conditions disappear when periodic
boundary conditions are used. We find that the step
widths exhibit an oscillatory Besself-function-like depen-
dence on ac current amplitude and frequency, similar to
that of single junctions. By including finite-temperature
noise in our simulations, we verify that the steps disap-
pear at a critical temperature, which depends on magnet-
ic field. The current motions on the steps are studied in
detail for several values of the applied field. At both

=1 and %, we find that, on each step, the vortex pattern
is always translated by an integer number of plaquettes
per cycle of the ac field. Finally, we examine the power
spectrum of the voltage on the steps. Not surprisingly,
this voltage is not only periodic but has many higher har-
monics. These could lead, in principle, to coherent radia-
tion from the junction array at appropriate frequencies
or, perhaps, also to coherent detection.!!
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II. MODEL

Our calculations proceed by directly solving the equa-
tions for a network of resistively coupled Josephson junc-
tions in the limit of infinite shunt capacitance and negligi-
ble array self-inductance.!? ™13

I;=V;/R;+1I.;sin(¢;—d,— 4;;) , (1
~fid .,

lj_ze dt(¢1 ¢j)’ ()

EIij Iz,ext (3)

Equation (1) describes the current I;; from grain i to
grain j as the sum of a normal contribution V;; /R;; and a
Josephson current. Equation (2) is the Josephson relation
connecting the voltage difference V;; between grains i and
J and the phase difference ¢, —¢; between the phases of
the order parameters. Finally, Eq. (3) is Kirchhoff’s law,
expressing current conservation at grain i (1., being the
external current injected into grain i). The given form of
the Josephson current is appropriate in a
transverse magnetic field B=V X A. The factor
A,-j=(27r/<1>0)fi{ A-dx, where x; is taken as the center

of grain i. We assume a square array of N XN identical
junctions. A current I =I, +1,.sin(27vt) is fed into
each grain in the top row and extracted from each grain
on the bottom row, with free or periodic boundary condi-
tions on the two transverse boundaries. Combining Eqgs.
(1)=(3) yields coupled first-order nonlinear differential
equations for the phases. We include finite temperature
by adding to each junction a parallel Langevin noise
current source I; (t), with a Gaussian distribution whose
ensemble average satisfies

<IL(t)>e:0 5
(I (DI ("), =(2kgT/R)8(t —t')

and noise currents in different junctions assumed uncorre-
lated."®

The combined equations can be solved by a variety of
algorithms.!?”!® We adopt a straightforward iterative
approach described and used by several groups.”®12713
We have carried out this iteration using time steps usual-
ly of 0.05¢, but occasionally as small as 0.01¢, to 0.02¢,
where t;=7/(2eR1,), R being the shunt resistance and I,
the critical current of each junction. We usually consider
intervals of 14, /I, ranging from 0.01 to 0.05. To obtain
average voltages, we perform a time average over an in-
terval from 400¢, to 800¢,. We have tested a variety of
initial phase configurations (phases parallel, random ini-
tial phases, and ground-state phase configuration). Gen-
erally, these have little effect on the resulting current-
voltage characteristics. We have also considered two
different methods of ramping up or down the applied dc
current: rerandomizing after each increase of dc current
and using the final phase configuration of the previous
current as the initial configuration of the new current.
This choice also seems hardly to influence the resulting
I-V characteristics.
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III. RESULTS

Figure 1 shows the calculated current-voltage charac-
teristics of a 10X 10 array at T =0, field f =+, and with
two types of transverse boundary conditions: periodic
and free. In both cases, I,./I,=1.0 and v/v,=0.1,
where I, is the critical current of each individual Joseph-
son junction, and vy=2eRI, /% is the natural unit of fre-
quency. Changing the boundary conditions has a striking
effect. With periodic boundary conditions, there are
clear steps at Nnhv/(2eq), for every integer n =1,
and no other steps. [These steps correspond to
(V) /(NRI,)=(n/q)0.1(2m)=(n/q)0.628 for our choice
of frequency.] By contrast, when free transverse bound-
ary conditions are used, one sees conspicuous ‘‘integer”’
and ‘“half-integer” giant steps at Nhv/(2e) and
(N/2)hv/(2e) but no other clear steps. We have seen
such anomalous half-integer giant steps for most values
of f=p/q with g odd (‘“odd-denominator frustration’)
whenever we use free boundary conditions, but they
disappear with periodic boundary conditions. Our results
are thus consistent with the findings of Ref. 8 that the
anomalous steps are absent at f =1 with periodic bound-
ary conditions. The anomalous half-integer steps are al-
ways characterized by a periodic time-dependent voltage
just as in Ref. 7, and they exist under a variety of initial
conditions (phases parallel, random initial phases, and
ground-state phase configuration).

The reasons for these anomalous steps are not under-
stood. Most likely, they arise from an irregular motion of
the vortex lattice near the free boundaries. This compli-
cated vortex motion near the boundaries seems to be re-

(V)/NRIc

l4c/lc

FIG. 1. Time-averaged voltage drop { V') across a 10X 10 ar-
ray, as a function of dc current I, in the presence of a trans-
verse magnetic field of strength f :% flux quantum per pla-
quette, with both periodic (PBC) and free (FBC) boundary con-
ditions in the transverse direction, at temperature 7=0. In
both cases, current is uniformly injected into nodes at the top of
the array and removed from the bottom of the array. Ampli-
tude of the ac current is I,./I.=1, and its frequency is
v=0.1v,, where vy=2eRI_ /%, R being the shunt resistance and
I, the critical current of a single junction. (¥) is shown in
units of NRI., where N =10. The plot for free boundary condi-
tions is displaced horizontally to the right by one unit (indicated
by a vertical mark).
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lated to the relatively lower periodic two-dimensional po-
tential in which the vortices move near the boundaries.
In an array with periodic boundary conditions, this po-
tential is more nearly periodic, and the extra steps are ab-
sent.

Experiments are generally done in large arrays with
free transverse boundary conditions. Because of the size
of the experimental arrays (typically 300X 300 or larger),
it seems reasonable to model experiment with periodic
rather than free boundary conditions. This would imply
that the extra steps should be absent in experimental ar-
rays, as they appear to be in the data so far published.*
Further experimental studies may shed more light on this
point.

To visualize the coherent vortex motion that produces
the Shapiro steps, we have carried out detailed calcula-
tions for two fields: f =1 and %. These calculations
(and all subsequent ones, unless otherwise stated) are car-
ried out on a 10X 10 array with periodic boundary condi-
tions in the lateral directions and uniform current injec-
tion in the vertical direction. The case f =% represents a
particularly interesting test case: it is the simplest non-
trivial fraction that cannot be reduced to the from 1/gq.
(Because of the symmetry of the square lattice, the frac-
tions f and 1— f are equivalent, so that one need not con-
sider values of f > %.) 1t is, therefore, of interest whether
or not all predicted voltage steps of the form
(V)=nNhv/(2eq) actually appear in this case. Figure 2
shows that all such steps definitely do appear, at least up
to n =5. The n =1 step is very weak at some (not all)
values of I,., but every predicted step certainly occurs
over some range of ac amplitudes.

The time-dependent variation of the phases of the
Josephson junctions can be concisely represented in terms
of *“vortex motion,” as is shown in Fig. 3(a) for f =1. A
square marked with a plus sign holds a vortex (i.e., a pla-
quette of positive, or counterclockwise, “vorticity”’). An
open square contains an antivortex. The vorticity, in
turn, is defined at the center of each plaquette as the sum
of the supercurrents through the four junctions bounding

f=2/5

(V)/NRIc

lgc/1c

FIG. 2. Current-voltage characteristics of a 10X 10 array
(N =10) with f=—§, periodic boundary conditions, v/v,=0.1,
and several values of I,. /I, ranging from 0.7 to 1.2. Graphs are
horizontally displaced as in Fig. 1.
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FIG. 3. A schematic diagram showing the motion of the vor-
tex pattern at (a) f =1 and (b) f=2. A square containing a
plus sign contains a vortex (i.e., a region of positive vorticity);
an open square holds an antivortex. Each diagram of connected
plaquettes represents a snapshot of the vorticity configuration at
a particular time. The arrows represent the extent of motion of
the vortex lattice during one cycle of the ac field, when the dc
voltage corresponds to step n. In both pictures, we have tagged
several vortices by enclosing them with circles or triangles.

the plaquette, the sum being taken in the counterclock-
wise direction. Each rectangle of plaquettes represents a
“snapshot” of part of the array at the time shown. Time
increases in the downward direction. In order to make
the motion clearer, we have “‘tagged” one of the vortices
with a circle. From examining many vorticity snapshots,
we infer that the tagged vortex moves as shown. In gen-
eral, on the nth step at f =1/g, the vortex pattern moves
n times faster than for » =1. This is shown schematically
in the diagrams of Fig. 3(a) for f =1, but we have ob-
tained similar results for f = 1.

Our interpretation of the f =21 steps is shown in Fig.
3(b). As in Fig. 3(a), time advances downwards. Once
again, our simulations suggest that the motion of the vor-
tex lattice on the nth step is roughly n times faster than
on the n =1 step. On each of the steps, the vorticity pat-
tern is identical at the beginning and end of an ac cycle,
except for a uniform displacement to the right. This dis-
placement is (i) by three array lattaice constants to the
right on the n =1 step, (ii) by one lattice constant on the
n =2 step, (iii) by four lattice constants at n =3, and (iv)
by two lattice constants at n =4. On the n =35 step, the
vorticity pattern is identical at the beginning and end of
each ac cycle. The tagged vortices are meant to suggest
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how the various parts of the pattern move during a cycle.

We turn next to a discussion of the step widths in these
Josephson arrays. In a single Josephson junction, it is
well known that some of the Shapiro steps disappear at
A similar
effect occurs in arrays. Figures 4(a) and 4(b) show the
step widths and critical current as functions of I,. for

certain amplitudes of the ac driving currents.?’

two different fields and a frequency v=0.1(2eRI, /#), ob-

tained numerically. At f =0, the oscillating behavior of

the step widths and the critical current is identical to that
of a single junction, as calculated by Russer?® (note that
the variable & defined by Russer is related to our variable
v by £=2mv/v,). The minima of the critical current
occur roughly at the maxima in the widths of the first
step. All step widths are zero at I,.=0. A similar oscil-
latory behavior is also found at other frequencies, as
shown in Figs. 4(c) and 4(d). At f =1, the oscillatory
patterns of step widths are compressed relative to f =0.
The critical current is about 0.341, at I,.=0. At small
values of I,., the step widths seem to increase quadrati-
cally with I, for n =2 rather than varying linearly with
I,. as they do for n =1. Note that the plots shown are
interpolations of our calculated points, which are spaced
about 0.251, apart.
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Figures 5(a) and 5(b) show the current-voltage charac-
teristics of a 10X 10 array with periodic boundary condi-
tions as a function of temperature at f =0 and 1. On
both sets of curves, the Shapiro steps “melt” with in-
creasing temperature, beginning with the higher-order
steps and proceeding to the lowest steps. At f =0, the
last step has disappeared by a temperature of

0.4#4I, /(kpe)=0.8J /kyp ,

where J =#I, /(2e) is the Josephson coupling energy. At
f =1, the corresponding temperature is

0.2#1, /(kpe)=0.4J /ky .

These temperatures are near or slightly lower than the
melting temperatures at zero applied current (as dis-
cussed, e.g., by Teitel and Jayaprakash?), which are
~0.95J /kp and =0.4J /kp. Since we are, in effect, cal-
culating the melting temperatures in the presence of finite
ac and dc currents, these finite-current melting tempera-
tures cannot be higher than the zero-current values. Ex-
trapolating from these numerical results, we anticipate

0.4
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FIG. 4. Critical currents (I5') and step widths A, computed as a function of I,. at v=0.1(2eRI, /%) and (a) f =0 and (b) f =
(c) and (d) are the same as (a) and (b) but with v=0.2(2eRI.)/#.
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FIG. 5. Variation of step width with temperature in a 10X 10
array at two different magnetic fields: (a) f =0 (no magnetic
field) and (b) £ =1 (one-half flux quantum per plaquette). All
graphs are obtained using periodic boundary conditions in the
lateral direction, uniform current injection at the top, uniform
current removal at the bottom, and the ground-state phase
configuration as the initial state. The ac driving current has am-
plitude I,. /I, =1 and frequency v=0.1(2eRI, /%). The various
plots of (V') are all displaced horizontally; the vertical marks
on the horizontal axis denote the positions of zero current for
the corresponding curve. Temperature in units of Al /(kge).

that the fractional giant Shapiro steps at other values of
the applied field will disappear at temperatures no higher
than the corresponding vortex lattice melting tempera-
ture (i.e., the superconducting-normal transition tempera-
ture) in zero applied current.

We turn, finally, to a brief discussion of the power
spectrum of the voltage on and off the Shapiro steps. As
noted earlier and in previous papers, the voltage drop
V() across the array is periodic on the Shapiro steps,
and aperiodic at other values of the current. This period-
icity is reflected in the power spectrum Sy () of the volt-
age, which is defined by the relation

1
7o do

Figures 6 and 7 show the power spectrum Sy (@) for steps
n =0, 1,2, and 3 at f =0 and for n =2-5 at a represen-
tative finite field, f =2/5. We have studied a variety of
initial conditions on the phases (phases parallel, phases in

+T, 2
lim 4)

T0—>oo

SV(CO):

V(t)e"“”dt]
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FIG. 6. Voltage power Sy(w) in a 10X 10 array at f =0 and
several different values of I4. In all cases, I,./I.=1.0,
v/vo=0.1, and temperature 7' =0. Shown are [, =0, I, =1,
(n =1 step), I4.=1.5I, (n =2 step), I;.=2.151, (n =3 step), and
14.,=2.7321, (n =4 step). The vertical scale is logarithmic but
otherwise in arbitrary units; each large horizontal mark
represents an increase of a factor of 10 from the one below it.
The power spectra for successive values of n are displaced verti-
cally by one decade relate to the previous step. Solid lines are
merely to guide the eye. Only integer multiples of the funda-
mental appear in each case (for n =0, only odd integers appear).
®/(27r) is plotted in units of 2eR1, /.

the ground-state configurations, and random initial
phases), and, for the most part, obtain very similar power
spectra after the initial transients have died out. Since
the voltage is periodic on the steps, the power spectrum
consists of a series of sharp harmonics that fall off rough-
ly exponentially with increasing order m of the harmonic.
At I4,=0, only odd harmonics appear in the power spec-
trum. In Figs. 6 and 7, the points denote S, (mw), and
the lines are merely to guide the eye and have no other

z_ :\I T T T T ﬁf=2; 2
o) -\I\.
RN
g%\\\k. :
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5[ DN N N
~F n=2 8 \\. \s
3t NN

%- ! 1 1 1 I | :\l‘\:;

0 0.9

/27

FIG. 7. Same as in Fig. 6, but for f=% and currents corre-
sponding to n =2 through 5 steps.
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FIG. 8. Power spectrum at f =0 (logarithmic scale), as in
Fig. 6, but for I;, =1.40I, (between n =1 and 2 step). Since this
power spectrum shows subharmonic structure, we give a con-
tinuous plot of Sy (w).

significance. Figure 6 shows that, whereas the harmonics
fall off monotonically with m for the n =1 step, they
show an oscillatory dependence on m on the higher steps.
For example, on the n =2 and 3 steps at f =0, Sy, (mw)
has a secondary maximum at the second and third har-
monic, respectively, with further oscillations at higher
harmonics. This oscillatory behavior seems to be in qual-
itative agreement with the preliminary experimental re-
sults of Hebboul and Garland?! for a 300X 300 array. In
the limit I, /I.>>1, an analytic expression can be de-
rived for the oscillatory dependence of the stepwidth of a
single junction on the parameter I, /v. This expression,
given in the Appendix, gives an excellent fit to our calcu-
lations for arrays at f =0.

At dc currents off the steps, ¥V (¢) is aperiodic and
Sy(w) is a quasicontinuous function that does not have
period 1/v. A representative power spectrum is shown in
Fig. 8. The period tripling shown resembles behavior
often seen in the power spectra of nonlinear dynamical
variables. At other values of the voltage, we have found
other multiples of the period (e.g., period octupling) as
well as spectra that suggest the coexistence of sharp lines
with a continuum.

IV. DISCUSSION

We have presented a numerical study of Shapiro steps
in an array of resistively shunted Josephson junctions.
We have verified that the time-dependent voltage is
periodic on the steps, with many higher harmonics. The
presence or absence of steps is sensitively affected by the
transverse boundary conditions. The step widths are
found to be oscillating functions of the amplitude and fre-
quency of the ac driving currents.

At finite magnetic field of strength p /q flux quanta per
plaquette, we find generally that all steps of the form
Nhv/(2eq) appear in the I -V characteristics. At all fields
investigated, the vortex lattice is translated an integer
number of plaquette lattice constants per cycle of the ac
field. This seems consistent with the model of Benz
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et al., as well as with a recent model of Shapiro steps due
to Kvale and Hebboul,2? which describes these steps in
terms of only two degrees of freedom: a “vortex” and a
“phase.” At each magnetic field, the steps melt and
disappear at temperatures no higher than the correspond-
ing zero-current superconducting transition temperatures
of the array.

Several groups?® have suggested the possibility of
anomalous half-integer steps of the form
(V)=Nhv/(4e) at extremely low magnetic fields. We
have no explanation for these anomalies, except to note
that we see similar half-integer steps at f =+ with free
boundary conditions. We may speculate that such
anomalies may occur whenever the lattice is such that the
vortex-pinning potential is significantly aperiodic. This
will occur with free boundary conditions or with disorder
in plaquette areas or coupling strengths. Another possi-
bility is that even a periodic vortex-pinning potential will
not be purely sinusoidal but will have higher harmonics.
Such harmonics [analogous to terms of the form cos(2¢)
in the coupling energy of a single Josephson junction]
produce subharmonic steps in single junctions. These
speculative possibilities could be further investigated, if
the anomalous half-integer steps are confirmed by further
experiment.
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APPENDIX

The equation of motion for a single resistively shunted

Josephson  junction  subjected to a  current
I =1, +1,sin(wt) can be expressed in the form
g—g=1 +1,sin(z7)—sing , (A1)
1742

dr

where 7=2eRI.t/# is a reduced time variable, and
z=w/(2eRI, /%) is a reduced frequency. I, and I, are
the amplitudes of the applied dc and ac currents normal-
ized to I, the critical current of the junction.

We obtain an approximate solution to Eq. (A1) in the
limit of large I, (I, >>1), following the method of Kvale,
Hebboul, and Garland.?* Details of our derivation will
be given elsewhere.> When I, =0, the power spectrum is
found to reside entirely in the odd harmonics and to take
the form
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— 172 2 1_2_
Sy(me)=1138,, +J2 [ . ] ) (A2)

where J,,(I,/z) is a Bessel function of order m, and
m=1,3,5,.... We have tested this form in our arrays
at f =0 for the mth harmonics and I,.=200I,, and find
J

LI3+(J,—Jy)?] for m =1
L(Jpp+1+Jm—1)* for m even and =2

L +1—Im—1)* for m odd and >3 .

SHmw)=

Likewise, for the second Shapiro step (n =2), we find that
LI34+(J,—J3)?] for m =1
LT —3=Jm +2)* for m even and =2

Y —2+J,4,)? for m odd and 23 .

SPmaw)=

In all cases, the argument of the Bessel functions is I, /z.
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that the power spectrum of the array is very well fitted by
this prediction for a single junction for at least the first 50
odd harmonics.

In the limit I, >>1, Shapiro steps in a single junction
occur at values of the dc current I,=nz, with
n=12,3,.... Asshownin Ref. 25, the power spectrum
on the first step in this limit is

(A3)
(A4)
(AS)

(A6)
(A7)
(A8)

We have compared these predictions for a single junction with the calculated power spectrum on the first and second
step of a 10X 10 array in the limit of large ac current. Agreement with the predictions is once again excellent over a

range of at least 100 harmonics.
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