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Under extreme pressure, hydrogen is predicted to transform from a. low-pressure molecular
solid into an atomic solid. Several candidate structures for the atomic solid are studied as
candidates for superconductivity. In particular, the 9A (n —Sm) structure is found to be stable
with a predicted transition temperature T = 140—170 E4. Results for hexagonal phases are also
discussed.

I. INTRODUCTION

At low pressures and temperatures, hydrogen occurs
in an insulating molecular phase. Over 60 years ago
it was predicted that the application of extreme pres-
sure could break the molecular bond and cause hydrogen
to form a monatomic solid that would then be metal-
lic. Many theorists have at tempted to predict the
metallization pressure of hydrogen. Early eAorts fo-
cused on the molecular-to-atomic transition, but more
recent work predicts that metallization should occur
via band overlap within the molecular phase at a pres-
sure of 1.5 —2.5 Mbar. Under still higher pressure, the
molecular bond will break and hydrogen is predicted
to transform into an atomic metal. This transition is
estimated to occur at pressures in the neighborhood of
4 Mbar, with further transitions between atomic phases
possible at even higher pressures.

It was also predicted ' that metallic hydrogen
could be a superconductor in the atomic phase, but
predictions of the transition temperature varied
widely. Ab initio total-energy calculations predict that a
simple hexagonal phase of hydrogen is particularly stable
relative to the cubic phases most often considereds s

previously. Recently, we predicted 2 that hydrogen in a
distorted simple hexagonal structure would have a high
transition temperature. In this paper, we present further
results for this structure and also for the simple hexago-
nal structure and for the 9R (n-Sm) structure.

Our previous total-energy studys of hydrogen pre-
dicted that the molecular-to-atomic transition should oc-
cur at a pressure slightly below 4 Mbar, and that hydro-
gen should assume an anisotropic simple hexagonal (sh)
structure with a cja ratio of 0.6 at a density correspond-
ing to a Wigner-Seitz radius r, = 1.3 atomic units. The
charge density for hydrogen in the sh structure is shown
in Fig. 1. The electrons are concentrated in filaments

along the hexagonal axis, and the bonding is anisotropic
and covalent. It was previously noted that such bond-
ing is favorable for the occurrence of superconductivity;
therefore, we studied the superconducting properties of
atomic metallic hydrogen.

In Sec. II, we present the formalism within the frame-
work of standard BCS-Eliashberg 4 theory for our cal-
culations of the electron-phonon coupling A and the su-
perconducting transition temperature T, . The results
for several candidate structures suggested by total-energy
studies are then presented and discussed, beginning with
the simple hexagonal (sh) and distorted simple hexag-
onal (dsh) structures. These are found to be unstable,
so we have considered a third structure, namely, the 9R
(n-Sm), which our calculations predict to be stable. The

FIG. 1. Charge density p(r) for hydrogen in the simple
hexagonal structure discussed in the text in a plane contain-
ing the hexagonal axis c. The electrons are concentrated in
filamentary structures along the hexagonal axis, resulting in
a.nisotropic and covalent bonding. The charge density is given
in units of electrons per primitive cell and the spa.cing between
adjacent contours is 0.5 electrons per primitive cell.
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results for this structure are shown. In Sec. III, our re-
sults are summarized and the conclusions are presented.

equation can be expressed as a Brillouin-zone average of
the wave-vector-dependent coupling A (q) by

II. CALCULATIONS AND RESULTS A=)
V

dq A, (q),

The superconducting transition temperature can be
calculated from the McMillan equation if the electron-
phonon coupling A is not too strong (A ( 1.25). In ad-
dition to A, the McMillan equation requires an estimate
of the average phonon frequency (u) and the Coulomb
pseudopotential p*. In our previous work, an esti-
mate of p* = 0.10 was derived, and this value will be
assumed here. The average phonon frequency (~) is de-
fined as

Q„A, (q)cuq

P, A, (q)

The electron-phonon coupling A used in the McMillan
I

where Qgz is the volume of the Brillouin zone and v labels
the different phonon modes. A first-principles method 8

is used to calculate A (q) as the double Fermi surface
average of the electron-phonon matrix element:

((~g(nk, n'k', qv) ~'))
A, q =2K Eg

hCuq,

where uq is the phonon frequency for the mode v with
wave-vector q, X(Ef) is the electronic density of states
at the Fermi level per atom per spin, and g the electron-
phonon matrix element defined by

1/2

g(nk, n'k'gr) = ( , (0 k ~q. 0",k, )&(& —k —a)

where M is the atomic mass, zq the unit polarization
vector, bU/bR, the change in the self-consistent crystal
potential induced by the phonon distortion, and
and @,k, are the wave functions of the undistorted crys-n'
tal with wave vectors k and k' and band indices n and
n'. The difference in total energies between the distorted
and undistorted structures is used to calculate ~q . The
change in the self-consistent crystal potential is approxi-
mated by

Vq„—Vo

sn. &qv

a.u, or a pressure of 4 Mbar, slightly above the predicted
molecular-to-atomic transition pressure. The phonon fre-
quencies calculated for hydrogen in the sh structure are
shown in Fig. 2. The center of the Brillouin zone is rep-
resented by I' and the center of its hexagonal faces by A.
The center of the rectangular face is denoted by M, and
the midpoint of its edge by I~ . The transversely polarized
modes with wave vector along the I'-A line are found to
be unstable from total-energy calculations. Since e/a ( 1

where Vo and Vq, are the self-consistent potentials for
the undistorted and distorted crystals, respectively, and

uq is the root-mean-square amplitude of the phonon.
The calculation is carried out within a supercell to

simplify the evaluation of the Fermi-surface average in
Eq. (3). In the supercell method, only wave vectors q
commensurate with the reciprocal lattice (mq=G, m an
integer) can be considered. The main advantage of the
supercell method is that in the supercell, q is a reciprocal
lattice vector, so k and k' in Eq. (3) are the same point
in the Brillouin zone. Even within the supercell method,
it is too expensive computationally to calculate A„(q)
for more than a few wave vectors q within the Brillouin
zone. Thus, the calculation of A using Eq. (2) is limited
in accuracy by the sparse sampling of the Brillouin zone.
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A. Simple hexagonal structure

The sh structure was chosen for a first attempt at cal-
culating T, for metallic hydrogen in an atomic phase.
For this structure, the lattice constant a = 1.38 A and
c/a = 0.6, corresponding to a Wigner-Seitz radius of 1.3

FIG. 2. Phonon dispersion relation u(q) for hydrogen in
the simple hexagonal structure. Only the longitudinal modes
are shown along the I'-A line, since the transverse modes are
unstable. The squares represent longitudinal modes and the
triangles represent transverse modes. The lines are drawn as
guides to the eye.
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in this structure, the nearest neighbors are found along
the c axis, and it is not surprising that the longitudinal
modes along l-A have the highest frequencies of all the
modes calculated in the sh structure. Along the I'-M line
and at Ix, the mode with transverse polarization parallel
to the hexagonal axis is particularly soft, reflecting the
weak bonding between the "filaments" of charge along
the c axis.

The results for A (q) in the sh structure are shown in
Table I. Along the I'-A line, the transverse modes are
unstable and have been omitted from the table. For the
other modes listed, the modes labeled "transverse 1" are
polarized in the plane (perpendicular to c) while those
labeled "transverse 2" are polarized along the hexagonal
axis. Since the contributions of different modes to A vary
widely, particularly along the I'-M line, it is important
to study the cause of the variation. The contributions of
diA'erent modes with widely varying or large A~„can be
studied by separating the Fermi-surface average of the
matrix element ((~g~ )) into the product of a geometric
part ((1)) and an effective matrix element g,fr.

(6)

where ((1)) represents the double Fermi-surface average
of the 6 function in Eq. (4), and the remainder of the
contributions to ((~g~ )) are absorbed into g,ff.

The modes along the I'-M line have a particularly large
contribution from the geometric part ((1)) due to Fermi-
surface nesting, resulting in large Aq„. The difference
between the two transverse modes for these wave vec-
tors results from extremely small matrix elements for the
modes polarized parallel to the hexagonal axis.

The averaging of the A„(q) to obtain A is performed
by first spherically averaging along each symmetry direc-
tion, and then averaging the contributions to A from each
direction to obtain A. The spherical average is defined as

(
Ap avg — ) g A~ (q)

)
where only wave vectors q along a given symmetry direc-
tion are averaged. Averaging along the three symmetry
directions yields A „s(I'-A) = 0.34, A „s(I'-M) = 1.6, and
Aa«(1-I&) = 0.7. Averaging these three numbers results
in A = 0.89. The average phonon frequency (~) is calcu-
lated by using A„(q) as a weighting factor for each ~q„
and then performing the spherical averaging process de-
scribed above in Eq. (1). The average phonon frequency
is (&u) = 333 x 10~~ rad/sec or h(u)/k~ ——2540 I&. To-
gether with p* = 0.10, the McMillan equation predicts
T, = 140 K for hydrogen in the sh structure. This cal-
culation most likely underestimates the value of T, be-
cause the contributions from the transverse modes along
I-A are not included. In a similar structure where these
modes are stable, it is possible that T, would be substan-
tially higher.

B. Distorted hexagonal structure

Since the sh structure is found to be unstable, we
searched for a distorted structure similar to sh that would
be stable. Along the I'-A line in the sh structure, the
mode corresponding to a q = (0, 0, 2x/(3c)) was sub-
stantially more unstable than the other modes studied.
This phonon corresponds to a distortion tripling the unit
cell along the c axis. The structure found with this
distortion "frozen in" is shown in Fig. 3. The lay-
ers labeled "A" and "C" have moved to the left and
right, respectively, while layers "B" remain stationary.
An earlier calculation predicted that hydrogen in this
structure would superconduct with a critical temperature
T, = 230+ 85 I4. A more thorough study including more
points in the Brillouin zone and better estimates of the

TABLE I. Phonon frequencies uq and electron-phonon coupling Aq for hydrogen in the simple
hexagonal structure at 4 Mbar (a = 1.38 A, c/a = 0.60) along the I'-A and I'-M symmetry directions
and at K. The frequencies u are reported in units of 10 rad/sec. The transverse modes along the
I'-A line are omitted, since they are unstable. For the other symmetry directions, the modes labeled
"transverse 1" are polarized perpendicular to the hexagonal axis, awhile those labeled "transverse
2" are polarized parallel to the hexagonal axis.

A
2/3 I'-A
1/2 1"-A

1/3 I'-A

Longitudinal
Aq„

0.35
0.38
0.21
0.43

&qv

777
654
651
482

Transverse 1

Aq„ Cuqv

Transverse 2

Aq„ &qv

0.40
0.44
0.51
0.76

455
414
377
283

1.1
1.2
1.2
1.3

186
172
153
122

0.01
0.01
0.02
0.02

44
40
32
31

0.40 368 0.33 0.01
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A

assuming that the optical modes do not vary substan-
tially across the zone. In this study, the polarizations of
the modes at I' were calculated by diagonalizing the 9x9
dynamical matrix for q = 0. Of the six optical modes,
two were found to be of imaginary frequency; therefore,
the dsh structure is also unstable. The transition tem-
perature T, has been estimated for dsh by including the
new points but neglecting the contribution of the unsta-
ble modes at the zone center.

Table II shows the results for the dsh structure. Due
to poor convergence for the transverse modes with q
along the I'-A line, only an upper bound for Aq, is given
for these modes. The wave-vector-dependent electron-
phonon coupling Aq„ is spherically averaged along each
symmetry direction and summed over the three po-
larizations to yield an average A for each direction
(A, I, I, I~). The Brillouin zone average in Eq. (2) is
defined by

FIG. 3. The distorted simple hexagonal structure (dsh)
described in the text. Layers with the same label lie directly
a.bove one another and the spacing between the layers is exag-
gerated for the purpose of clarity. The structure is obtained
from the simple hexagonal structure by moving layer A to the
left and t to the right while holding layer B fixed.

zone-center (optical) modes reveals that T, was overesti-
mated due to overcounting of the contribution of modes
near the edge of the Brillouin zone and undercounting of
the optical modes. The contribution of the optical modes
is estimated by calculating A„at the zone center and by

A = Ar + [A~ + Al. + (AM + A~)/2]/3

and is found to be A = 0.97 if only the four stable
modes at the zone center are included and A = 1.16
if the contribution of the modes at I is multiplied by
1.5 to compensate for the "missing" modes. The aver-
age phonon frequency (w) is calculated to be 326 and
355 x 10r2 rad/sec, respectively. The McMillan equation
then gives T, = 165 or 233 K, respectively. As with the
sh structure, the contributions to A from diA'erent modes
vary widely. The phonons with wave vector two-thirds
of the way from I' to M provide the strongest single con-
tribution to A due to Fermi surface nesting. If they are
omitted from the average, A drops by 0.08 and T, falls to

TABLE II. Phonon frequencies uq and electron-phonon coupling Aq for hydrogen in the
distorted simple hexagonal (dsh) structure described in the text. The frequencies cu are reported
in units of 1D rad/sec. The four stable optical modes at I' a.re shown. For the modes along
l -A, the transverse 1 and 2 modes are polarized parallel to and perpendicular to the distortion,
respectively. For the modes at K and along I'-M, the transverse 1 mode is polarized perpendicular
to the hexagonal c axis, while the transverse 2 mode is polarized parallel to c. Along 1-I, the three
polarizations are in the three Cartesian directions x,y, z, respectively. Only an upper limit on Aq
could be found for the transverse modes of wavevector 2/3 A; see the text for discussion.

Longitudinal
Aq

0.15
0.16

~qv

589
561

0.02
0.06

198
62

Transverse 1

Aq GJq~

Transverse 2

Aq ~qv

0.13
0.22

443
314

0.17
&0.25

0.05
(0.25

73
28

0.13
0.20

331
400

0.35
1.5

195
97

0.04
0.42

I,
2/3 1 I, -

0.08
0.11

399
398

0.53
0.47

168
167

0.13
0.13

455
301

0.13 372 0.10 0.16
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150 or 220 K, respectively. We therefore estimate that
the uncertainty in our calculated A and (u) is on the order
of 10%; thus, if the dsh structure were stable, it would be
superconducting with T, between 150 and 230 K, rather
than between 150 and 300 K as predicted earlier.

C. OR, and n-Te structures

Since the dsh structure is also unstable, we have once
again searched for a stable structure. Preliminary calcu-
lations indicate that within the constraint of a three-atom
primitive cell, a structure very similar to that of a-Te is
stable. The Q,-Te structure consists of hexagonal planes
with a threefold screw axis perpendicular to the planes,
and the space group is 043.

A more promising candidate for the structure of atomic
metallic hydrogen is the 9R or n —Srn structure, which is
the low-temperature structure of lithium. The 9R struc-
ture is a rhombohedral structure with a basis containing
three atoms. It can be described as a stacking of hexag-

onal planes in the sequence [ ABACACBCB ] re-

peating every nine layers —hence the name 9R. Figure
4 shows both the stacking of the hexagonal layers and the
rhombohedral unit cell. Since hydrogen under pressure
is predicted to be a monovalent metal, the structures of
the alkali metals may be good candidate structures for
atomic metallic hydrogen. Total-energy calculations in-
dicate that for pressures near 4 Mbar, the 9R structure
is energetically competitive with the simple hexagonal
structure found earlier. The energy diA'erence between
the two structures is within the uncertainty imposed
by the calculation; therefore, we cannot authoritatively
state whether 9R or sh is more stable. For r, = 1.3 a.u. ,

we find that the most favorable c/a ratio for this struc-
ture is 1.41 times the ideal ratio c/a = 6 i .

Table III shows the results for the wave- vector-
dependent electron-phonon coupling A„(q) and phonon
frequencies u~~ for three symmetry points in the Bril-
louin zone. The point 1" is at the center of the zone, I
is at the center of a face of the zone and corresponds to
one-half of a primitive reciprocal lattice vector, and T is

the point along the c axis that corresponds to A in the
hexagonal Brillouin zone. Adding the contribution from
the modes at each g together yields Ap ——0.37, AL, ——2.37,

A TAB LE III. Phonon frequencies ug and electron-phonon
coupling Aq„at the symmetry points I', L, and T for hydrogen
in the 9R phase described in the text. The modes are labeled
by the irreducible representation to which they belong. At
the T point, the modes labeled (D) are doubly degenerate
and enter into the averaging process twice. The frequencies
u are reported in units of 10 rad/sec.

I'3„
1"3„
I'2„
I'3g
I'3g

0.02
0.02
0.16
0.01
0.01
0.15

40
40

456
42
41

455

(a)

I"IG. 4. The 9A structure described in the text. The
structure can be viewed as either rhombohedral with a ba-
sis of three atoms or as hexagonal layers with the stacking
sequence [. ~ ABACACBCB . . j. The hexagonal layers are
shown in (a). For the layers in the A position, seven atoms
are shown. The B and C layers have only three atoms, and
the t layers are distinguished by larger atoms. The rhombo-
hedral unit cell is shown in (b). The basis consists of three
atoms at (0, 0, 0) and +(-„,—,-).

Lgg
Lg„
L2g
L2g
L2„
L2„
L2„
L2„

T1g

Tss(D)
T2 tc

T2 t4

Ts„(D)
Ts-(D)

0.10
0.23
0.34
0.35
0.02
0.25
0.16
0.27
0.67

0.33
0.04
0.17
0.33
0.02
0.04

423
237
160
159
153
432
210
162
147

258
23

440
257
49
20
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and A~ ——0.93. Averaging these three together with
equal weights yields A = 1.22. If Ap is averaged with
both of Al. and A~, Ap L, ——1.37 and Az ~ ——0.65 are
obtained. Averaging these yields A = 1.01. These values
for A are taken as bounds on the actual value of A for
the 9R structure. The average phonon frequency (u) is
calculated as described above and varies from 240x10
to 254 x 10 rad/sec, or from 1830 to 1940 K. Using the
estimate of p.

* = 0.10, the McMillan equation predicts
that T, should be between 135 and 170 K.

I I I

I

I I I

I

l I I

I

I I I

I

I I I

I

I I I

I

I I I

I

I

200—

100—

III. CONCLUSIONS

The hexagonal structures studied here are candidates
for the most stable structure of atomic metallic hydro-
gen at 4 Mbar. The simple hexagonal structure and a
distorted simple hexagonal structure discussed earlier are
found to be unstable. More detailed calculations of the
electron-phonon coupling in the dsh structure show that
the earlier calculation overestimated the transition tem-
perature T„and a better estimate is that T, for hydro-
gen in this structure lies between 150 and 230 K. The
9R structure has also been examined as a candidate for
the atomic structure of hydrogen, and the critical tem-
perature for hydrogen in this structure is predicted to lie
between 135 and 170 K.

A summary of the results is presented in Table IV and
Fig. 5. For all the structures considered, we find that T,
falls between 120 and 230 K, with the electron-phonon
coupling A lying between 0.80 and 1.22. The value of A

for the free-electron model (jellium) is much smaller than
those for the structures considered because of local field
effects due to covalent bonding, while the high (u) found
for jellium originates in the use of a Debye model for
the phonon spectrum. Figure 5 shows T, as a function
of A for several values of the average phonon frequency
(~) using the McMillan equation and p* = 0.10. In all
three structures, the electron-phonon coupling A is in the
neighborhood of 1.0. For the characteristic phonon fre-
quencies (u) found for hydrogen in the three structures

0 I l I I I

0.0 0.2 0.4 0.6 0.8 1.4

FIG. 5. Transition temperature T, as a function of cou-
pling strength A for several values of (~) corresponding to
those found for the three structures considered. The McMil-
lan equation is used to calculate T, . Results for the simple
hexagonal (solid line), dsh (dotted line), and 9R structures
(dashed line) are shown. Also shown are the calculated upper
and lower values of T, for the sh structure (circles), dsh struc-
ture (squares), and the 9R structure (triangles) based on the
uncertainty in A. The T, values calculated for all structures
considered lie between 130 and 230 K.

considered here, T, is then found to be in the range of
130-170 K.

If the actual structure of metallic hydrogen should dif-
fer greatly, the value of T, could be substantially difer-
ent. However, in all three candidate structures presented
here, we find that hydrogen is a high-temperature super-
conductor, so it is likely that atomic metallic hydrogen
will superconduct at temperatures in the range of 120—
230 I4.

TABLE IV. Summary of predicted T values for hydrogen in the structures discussed in the text.
The upper and lower bounds for T, are shown for each structure along with the electron-phonon
coupling A and the average phonon frequency (u). For comparison, the value of A for a free-electron
model (FEM) using Thomas-Fermi screening is also given. For the FEM, (~) is estimated using a
Debye model for the phonon spectrum. The McMillan equation is used together with an estimate
of the Coulomb pseudopotential p' = 0.10 to calculate T, . For all the structures considered, T, lies
between 120 and 230 K.

Structure

sh(low)
sh(high)
dsh(low)
dsh(high)
9R(low)
9R(high)

FEM

0.80
0.98
0.97
1.16
1.01
1.22
0.60

(u) (10 rad/sec)

333
333
326
355
240
254
825

T (K)
120
170
165
230
135
170
144
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Future studies will examine the electron-phonon cou-
pling for the 0;-Te structure mentioned above, as well
as the possibility of superconductivity in the molecular
metallic (band-overlap) phase of hydrogen.
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