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Transient behavior in the optical bistability mediated by phonon-mode and virtual-exciton cou-
pling is studied for an electron-phonon-coupling system, such as polydiacetylene toluene sulfonate.
Numerical calculations are used to analyze the evolution between bistable states, and switching be-

havior and Rabi oscillations are found.

I. INTRODUCTION

Since its first observation in sodium vapor in 1976, op-
tical bistability has become an important phenomenon in
optics, and there bas been much interest in the promise of
optical bistability as a mean of producing fast all-optical
switching devices. Therefore, good nonlinear optical ma-
terials and more efficient device structures have been
sought for practical applications, and attention is being
paid to reducing sizes and decreasing the switching time
and operating power for such devices.

Optical bistability means that there are two stable out-
put optical states for a given input optical state. In gen-
eral, optical bistability occurs by means of the joint
effects of the nonlinear optical response of the material
and external feedback typically provided by an optical
resonator. However, there are also some systems exhibit-
ing optical bistability without the need for external feed-
back. For example, absorption of light tuned just below
the band gap of some semiconductors can lead to increas-
ing absorption optical bistability;? reflection at an inter-
face between a linear and nonlinear medium? or transmis-
sion through a nonlinear thin film* have been proposed to
exhibit optical bistability; and mutually induced self-
focusing by interacting laser beams’ and light beams in-
teracting through four-wave mixing® have been predicted
and observed, respectively, to display optical bistability.
Very recently, we have found surface-induced optical bi-
stability of polymer chains near a metal surface,’ accom-
panied by reduced vacuum-field fluctuations. In fact, cer-
tain classes of organic molecules have been found to ex-
hibit extremely large optical nonlinearities with fast
response.® Besides, organic materials offer other attrac-
tive advantages for trying to alter the molecular structure
to optimize the nonlinear optical and bulk physical prop-
erties. An example is the second-order hyperpolarizabili-
ty: Here the dipole of the molecular structure of a poly-
mer is created by substituting electron-donating and -ac-
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cepting groups at either end of the conjugated length of
the molecule, where a proper choice of the donor and
thus freezing in the alignment can lead to a large second-
order hyperpolarizability. This flexibility in structure
makes organic materials well suited for fabrication and
device engineering.

Among the polymers, polydiacetylene (PDA) is a good
candidate for future applications because of its giant opti-
cal nonlinearity and small transmission loss. There have
been reports® about the observation of optical bistability
in PDA quasiwaveguides. In the past few years, there
has also been much interest in the nonresonant nonlinear
optical responses of PDA-toluene sulfonate (PTS) excited
by laser fields tuned well below the absorption edge. '°™!°
Phonon-mediated bleaching'' and excitonic Stark shift!?
have been observed, and optical nutation, ! dispersive op-
tical bistability,'* and splitting in pump-probe spectra!’
have been predicted.

In this paper we shall theoretically analyze the tran-
sient dynamics of a PTS material irradiated by a laser
field. Special attention will be paid to optical bistability
and how the system switches form one state to the other.
In contrast to Ref. 14 where external feedback by an opti-
cal cavity was examined, here we shall consider another
kind of bistability without external feedback.” While stud-
ies of optical bistability are usually focused on the behav-
ior of the steady-state output field intensity as a function
of input intensity,? here we shall study the transient be-
havior of the system, through which we can extract
knowledge about how the output intensity grows from
zero and how fast the system evolves from one state to
another, '® and about possible unstable states and optical
nutation. Our work is also close to experimental situa-
tions, where measurements are usually made in the tran-
sient time regime.

In Sec. II we shall describe our model, where we treat
excitons and phonons as damped oscillators and use
Dekker’s quantization procedure for dissipative systems!’
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to obtain the equations of motion for the excitons and
phonons. These equations will be solved numerically for
the scattered field intensity by virtual excitons, and in
Sec. III we shall display the numerical results and pro-
vide a discussion and some physical conclusions.

II. MODEL

It is known that there are elementary excitations of ex-
citons and phonons in PTS (Ref. 18) and only a few pho-
non modes coupled very strongly to the excitons. We
consider a light beam with its frequency near the exciton
resonance falling on a PTS material, and thus the exci-
tons interact with both the light and lattice vibrations.
The light can excite the system to create excitons, and in-
versely, the electrons and holes composing excitons can
recombine to create radiation. However, because of the
much lower frequencies of phonon modes, the number of
excitons remains unchanged in their coupling with pho-
non modes; namely, the phonons can only play the role of
mediation. ! 714

It is known that both the excitons and phonons have
finite lifetimes. We may model them here as damped os-
cillators. For the PTS systems exposed to an external
electric field frequency w and amplitude E, we can write a
non-Hermitian Hamiltonian for this system” !> as

H:—‘(a)x—-iyx)aTa
+ S (w;—iy;)bib;+ 3 Aa'a(b+b;)

—(/,L;‘aTEe—ith-i—,uxaE*eith) , (1)

where a' (@) and b;r (b;) stand for the creation (annihila-
tion) operators for the exciton and ith phonon modes
with corresponding frequencies w, and w;, respectively,
v, and y,; are the damping rates for the exciton and ith
phonon mode, respectively, A; is the coupling constant
for the interaction between the exciton and ith phonon
mode, and u, is the component of the dipole matrix ele-
ment for the exciton in the E-field direction. As in Refs.
11-15, we neglect the momentum dependence of the ex-
citon. With this non-Hermitian Hamiltonian character-
izing energy dissipation, we can use a ', a, b,»T, and b; as
canonical variables for this dissipative PTS system and
extend Dekker’s quantization procedure!’ for damped os-
cillators to write down the quantum Liouville equation
for the density operator p:

p=—ila"[a,Hlp]+i[p[H",a"],a]
—i 3 (6], (b, Hlpl+i 3 [p[H'0/10,] . @

In this paper we are interested neither in any quantity
that is sensitive to the quantum number counting nor in
any thermal noise present in the driving field, so that
quantum fluctuations can generally be neglected in our
consideration.? Thus, instead of the operators, we deal
with their mean values®!*a=<{a) and B;=(b;). Such
replacement simply means that we are taking the semi-
classical approximation.!® It has already been shown'*
that for excitonic optical bistability in the PTS system
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there is no qualitative change in physics if we only con-
sider a single phonon mode coupled most strongly to the
excitons. Therefore, for simplicity, we consider here only
one phonon mode and thus delete the subscript i on 3, w,
v, and A in the following discussion. With the equation
of motion for the density operator (2), we obtain the fol-
lowing equations of motion for the mean values of the
dynamical variables in question:

a=—(io,+y )a—iMB+B*)a+iu*Ee I, (3a)

B=—(io+y)B—illal?. (3b)

For convenience, in what follows we use the rotating

frame. Namely, we replace a in Egs. (3) by ae L' to
obtain

a=—(iA+y, )a—iMB+B a+iQ , (4a)
B=—(io+y)B—illal?, (4b)

where we have defined the detuning A=w, —w; and the
Rabi frequency Q=u}E.

When the external laser field with its frequency near
the exciton resonance falls on the PTS material, the radi-
ation field is scattered by the excitons. In the scattering
region where the incident external field vanishes, the rela-
tion between the positive-frequency part of the scattered
field and the excitonic dipole moment can be written as>°

E{S(r)=W¥(r)a

t—L , (5)
c

where W(r)=(—w? /4mc?r3)(u, X1)Xr, and p.a is the
excitonic dipole moment. Hence the mean value of the
dimensionless scattered field intensity is given by

I ()=[(E(r,0)) /¥4 r)=|a|® . (6)

sc

In the steady state, it is easy to find, by setting the terms
on the left-hand side of Eqs. (4) equal to zero, that this
scattered intensity I, (¢ — o) is determined by the cubic
equation

AT —28A, 1% +(A*+y2)I —I;,=0, (7
where we have defined the incident field intensity
I,,=10% and A,=2A%w/(w’+y?). However, in the
transient regime, we have to solve the nonlinear Eqgs. (4)
numerically.

III. RESULTS AND DISCUSSION

In this paper we use the following parameters for
PTS:!'% 4 =0.05 eV, v=0.002 eV, A=0.1 eV, and
©0=0.258 eV. For the first step, it is helpful to solve for
the steady-state solution using Eq. (7). Through analyz-
ing this equation, we have found that only when the in-
cident field is tuned sufficiently below the exciton reso-
nance, say, o, —w; > 0.4w, does there exist optical bista-
bility, indicating that the virtual exciton is essential for
this bistability. We have also found that the phonon-
exciton coupling is indispensiable to this bistability. This
is similar to the case where PTS is placed in an optical
cavity. 14
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Figure 1(a) is an example showing the scattered field in-
tensity plotted versus the incident field intensity when the
system is in steady state and A=0.5w. Optical bistability
is clearly shown in this figure. Generally speaking, opti-
cal bistability occurs only when the system exhibits non-
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FIG. 1. (a) Scattered field intensity I, vs driving field intensi-
ty I,, (in the unit of y2) for steady-state operation. (b) Transi-
tion of I, from the lower state, corresponding to I;, =1.58y2,
to the upper state, corresponding to I;, =2.29y%. (c) Transition
of I, from the upper state, corresponding to I;, =2.29y2, to the
lower state, corresponding to I, =1.58y2.
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linear responses to the external field and a feedback of the
field or other agent exists. In semiconductors, it is well
known that'®!! virtual excitons play almost the same role
as do real excitons in response to external fields. In the
present case, as the incident field intensity changes, the
dynamics of virtual excitons changes accordingly, leading
to a subsequent change in the phonon mode. As a conse-
quence, the exciton-phonon coupling changes the proper-
ties of the virtual excitons, resulting in a change in the
scattered light. This internal process of “feedback” pro-
vided by the phonon mode permits possible multivalued
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FIG. 2. Time (¢) evolution of the scattered field intensity I,
for different driving intensities, where (a) I;,=1.93y2, (b)
1,=2.20y2, and (¢) I,, =2.2192.
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solutions to the output intensity of the nonlinear optical
scattering problem. This means that within a certain
range, there can be three distinct scattered intensities for
each incident intensity. We have found, through numeri-
cal simulation, that the middle solution is unstable, and
hence only the upper and lower solutions can be reached.
As observed in Fig. 1(a), when I;, increases continuously
from zero, I, increases continuously until it reaches
point b where it becomes unstable. Further increase of
I,, leads to an abrupt jump of I, to the upper branch.
Similarly, when I, decreases continuously, I, jumps to
the lower branch at point a where the solution is unsta-
ble.

Through numerical calculations of Egs. (4) and (6), we
have studied the time evolution of the scattered intensity
after a sudden intensity change or sudden switching on of
the incident field. Figures 1(b), 1(c), and 2(a)-(c) show
some interesting results. Figure 1(b) describes the situa-
tion that when I reaches steady state (point @) with
I,,=1.58y2, then we suddenly increase I;, from 1.58y2
to 2.29y2. How I, evolves from the lower state (point a)
to the upper state (point ¢) is clearly shown. We see that
the switching time is approximately one order of magni-
tude longer that the lifetime of the virtual exciton, but
the same order of magnitude as the lifetime of the pho-
non mode. Comparing Fig. 1(a) with 1(b), one can find
that in the course of I, going from the lower state to the
upper one (from point a to ¢), it goes along the line of the
lower branch, and then gradually goes upward and, final-
ly, after oscillating a bit, reaches point c¢. Figure 1(c) de-
scribes the reverse case of Fig. 1(b). By comparing Figs.
1(b) and 1(c), one can see that I, goes along a different
path from point ¢ to a. By comparing Figs. 1(a) and 1(c),
one can see that I, goes along the upper branch until it
reaches point d; then it goes gradually down to point a.
Therefore, interestingly enough, through our study in the
transient regime, we can obtain detailed information
about not only the evolution of I, between bistable
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states, but also how it completes a hysteresis loop.

In addition to the switching behavior of the scattered
field intensity I, we have also studied how I builds up
from zero through a switching on by an incident field at
initial time t=0. Some numerical results calculated from
Egs. (4) and (6) are shown in Fig. 2 in which we have
chosen three different input intensities in the region that
bistability occurs. For fixed detuning A there is a corre-
sponding threshold, and smaller A leads to lower thresh-
old as long as bistability occurs. If I, lies below the
threshold, I, evolves to reach the lower state. Other-
wise, I, eventually reaches the upper state. In Fig. 2 we
choose A=0.5w, and the subsequent threshold for I;, is
found to be approximately 2.21y2. By comparing Fig.
1(a) with Fig. 2, we see that Fig. 2(a) and 2(b) where the
I,’s are smaller than this threshold value, I, goes into
the lower branch, while in Fig. 2(c), where I;; is beyond
the threshold, I, goes into the upper branch. From Fig.
2 we can also see Rabi oscillations. However, these oscil-
lations are modulated; i.e., the centers of oscillation
change with respect to time. When I; is below the
threshold, I, first goes up then goes down to reach the
lower state [see Figs. 2(a) and 2(b)]. By contrast, when I,
is above the threshold, I first reaches the lower state,
then goes up to reach the upper state [see Fig. 2(c)]. In
addition, through numerical analysis, we have found that
no matter what initial condition is used, I, cannot evolve
into the middle branch [see the line between points b and
d in Fig. 1(a)]. So we can conclude that the middle or
third solution of I is not stable. Meanwhile, the peaks
in Figs. 2(a) and 2(b) show the possibility for I, to tem-
porarily stay in the middle state, which means that the
middle state can only be reached temporarily.
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