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Magnetoresistance oscillations in a grid potential: Indication of a Hofstadter-type energy spectrum
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We present experimental and theoretical results on magnetoresistivity oscillations of high-
mobility two-dimensional electron systems in a weak superlattice potential. Experimentally, the
band conductivity of a sample with a holographically produced grid potential is shown to be con-
siderably smaller than that of the same sample with a similar linear grating potential of the same
lattice constant. This is explained by a magnetotransport theory with due consideration of col-
lision broadening eA'ects and the peculiar subband splitting of Landau levels resulting in a
Hofstadter-type energy spectrum.

The two-dimensional motion of electrons in a periodic
potential of period a and a perpendicular magnetic field B
introducing the magnetic length I =(cA/eB) 'I leads to
intricate commensurability problems. As a function of 8,
a complicated self-similar energy spectrum (Hofstadter-
type energy spectrum) has been obtained in the two com-
plementary, but mathematically equivalent limits of (1) a
strong lattice potential and a weak magnetic field in the
tight-binding approximation and of (2) a weak periodic
perturbation in a Landau quantized two-dimensional elec-
tron gas (2D EG). ' In case (2) one finds that each Lan-
dau level (LL) splits into p subbands if

Ba '/@o —=a '/2trl ' =p/q,

i.e., if the Aux Ba per unit cell is a rational multiple of
the Ilux quantum Co=bc/e. Up to now, this subband
splitting has not been verified experimentally.

In this paper we present magnetotransport results
providing strong evidence for the realization of the
Hofstadter-type energy spectrum, although it is not
resolved explicitly due to thermal broadening. To demon-
strate this, we extend previous experimental and
theoretical work on systems with a unidirectional
modulation to structured systems with square symmetry.

In Fig. 1 we summarize typical results of a series of ex-
periments in which a grid modulation with square-lattice
symmetry was created in two steps by holographic il-
lumination exploiting the persistent photoconductivity
effect in Si-doped AI„Gat —„As at low temperatures. In a
first step a split laser beam reAected from two mirrors, as
sketched in the inset of Fig. 1(a), produced an interfer-
ence line pattern. Thus, a grating potential with modula-
tion in x direction was created and the anisotropic resis-
tivity components pt„'") [Fig. 1(b)] and pity") [Fig. 1(a)]
for the unidirectionally modulated (ld) systems were
measured. The second illumination, with the sample ro-
tated by 90, results in a grid potential with modulation in
x and in y direction. As demonstrated in Fig. 1, the resis-
tivities p„„"=pyy" of the bidirectionally modulated (2d)
samples show oscillations which, at small magnetic fields
(B~0.6 T), are ver similar to and in phase with the
weak oscillations of p~,,', [Fig. 1(a)], but smaller than and
180 out of phase with the large-amplitude oscillations of
p,-',- in the corresponding 1d situation. The data shown in

Fig. 1(a) were obtained from a sample with mobility
1.4 && 10 cm /Vs and electron density N, =5.1 x 10' '

cm ~ after the second illumination, those of Fig. 1(b)
from one with mobility 1.2x10 cm /Vs and N, =3.7
&10'' cm . As has been shown previously, 1d samples
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FIG. 1. Magnetoresistance in a grating (with modulation in x
direction) and a grid potential for two periods and samples. fhe
insets sketch the creation of the potential by (a) in situ holo-
graphic illumination, and (b) the resulting pattern. The arrows
indicate the fiat-band situation defined by Eq. (2) (the second il-
lumination always increases the electron density). The grid po-
tential, created as superposition of two gratings at right angles,
suppresses the band conductivity in high-mobility samples, and
the oscillations due to the scattering rate (with maxima at the
arrow positions) dominate.
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exhibit, in addition to the usual Shubnikov-de Haas
(SdH) oscillations at higher magnetic fields (8 0.6 T in
Fig. 1), characteristic resistivity oscillations at lower
fields, also periodic in I/8, with minima of pI' and
maxima ' of pyy at 8 values for which the cyclotron ra-
dius R, =I kF of electrons at the Fermi energy (EF= h kF/2m) satisfies the commensurability condition

2R, =a(A, —
4 ), X=1,2, . . . ,

emphasizing the importance of the Fermi wavelength
2x/kF (related to the density N, =kF/2n) as a third
length scale determining the transport properties. The
large-amplitude oscillations of p „'" are attributed to
an additional "band conductivity" ha~~ absent in unmo-
dulated samples, whereas the weaker antiphase oscilla-
tions of p~~ result from quantum oscillations of the
scattering rate. ' In principle, band-conductivity oscilla-
tions are also expected in bidirectionally modulated sys-
tems. It is the purpose of this paper to demonstrate that
the splitting of the LLs by the grid potential into the sub-
band structure visualized by the Hofstadter-type energy
spectrum suppresses the band conductivity, leaving only
the weak antiphase oscillations due to the oscillating
scattering rate.

All the magnetotransport oscillations observed on
modulated 2D EGs can be understood within a quantum
mechanical approach using the simplest approximations
for both modulation potential and collision broadening.
To indicate this, we first recall some features of the energy
spectrum and then briefiy introduce collision broadening
and the corresponding transport theory. More detailed
calculations are left for a future publication.

We treat the potential V(x,y) =V, cosKX+V~cosKy,
with period a =2m/K, as weak perturbation of an unmodu-
lated system, which lifts the degeneracy of the LLs with
energy eigenstates

~ nk~) and eigenvalues E„=6 ro, (n
+ —,

' ), where pi, =e8/mc is the cyclotron frequency, but
which does not couple different LLs. For the 1 d case
(V~ =0), this has been shown to be an extremely good ap-
proximation ' for the parameter values of interest (V
-0.3 meV, a -300 nm, EF-10 meV) and for 8 )0. 1 T,
and yields Landau bands with energies E„(k~)=E„
+X„V,cosKxp, with xp= —l k~ and X„=exp(——,

' X)
XL„(A'), where X=

2 l K . The Laguerre polynomials
L„ lead to an oscillatory dependence of the bandwidth on
the quantum number n, " reflecting that a Landau state
with cyclotron radius R„=l(2n+I)'/ effectively senses
the average value of the periodic potential over an interval
2R„. The zeros of the L„(A') yield condition (2) with
R, =R, for flat bands.

With an additional modulation in y direction, the po-
tential matrix elements

&«,'IV, cosKyl«&& =
2 V&&. (~1,;,k, +~+~1,, k, -~)

couple Landau states with center coordinates diA'ering by
integer multiples of I K. Since all potential matrix ele-
ments in the nth LL have the common factor L„, the
bandwidth oscillations are the same for the 2d (V~ = V„)
and for the corresponding ld (V~ =0) case, and, apart
from the scaling factor L„, the internal energy structure

is the same for all LLs. If condition (1) holds, the energy
eigenvalues are defined on the magnetic Brillouin zone
[k, ~

~ x/aq, )k~ (
~ x/a and form p subbands (per LL)

E„J(k) (j=1, . . . ,p), which are q-fold degenerate. z 3

Contrary to the unmodulated case, the velocity now has
nonzero intra-LL matrix elements (n;k', j'~ v„~ n;k, j) which
are diagonal in k but not in the subband index j. In the
liinit V~ 0, the E„J(k) becomes independent of k„and
the p subbands merge into a single band, E„J(k)~E„
+V,X„cosKxp, where O~xp~qa. For further details
we refer the reader to Refs. 2 and 3.

To describe the broadening of the LLs due to scattering
by impurities, we follow recent work for the 1d case ' '
and introduce into the Green's function G„, (E) =[E

E„,——2 (E)1
' a quantum-number independent self-

energy [a = (k,j), a cutoff n ~ 2EF/hra, is implied)

Z -(E) =rp'g (I'/2~) d'kG;k, ,(E),
n,j (3)

which in the absence of modulation reduces to the self-
consistent Born approximation (SCBA) for randomly dis-
tributed short-range scatterers. " With the spectral func-
tion A„,(E) =n ImG„, (E), this yields for the density
of states (DOS) of the nth LL (per spin) D„(E)
=(2x) gj fd kA„,(E). As a typical result, Fig. 2(a)
shows D„(E) for a grid with p/q=5 (8 0.23 T for
a =300 nm), and for two values of the damping, in com-
parison with the corresponding results for V~ =0. ' We
also calculated D„(E) for other Ilux ratios. The general
result, previously found from coherent potential approxi-
mation calculations in the strong-modulation tight-
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FIG. 2. (a) Calculated density of states D„(E) and {b) band

conductivity Aa~~(E) for one Landau level and two values of the
collision broadening, I p/V, = 1.0 and 0.05. Solid (dashed)
curves are for a grid {grating) potential with V X„=V~L„V„
{V X, =V„V, =0) and p/q =5. For I p/V„= 1.0 the internal
band structure is not resolved, D, (E) and Aa~~(E) [here
15xha~, , (E) is plotted] are similar for grid and grating. For
I p/V, =0.05, the resolved subband splitting dramatically
reduces Ao~~ for the grid [with only tiny contributions from the
narrow outer bands (near + 1.5)].
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binding limit, ' is that, in the presence of collision
broadening the fine structure (due to the many subbands
for large p and q) is smeared out and only a coarse split-
ting into groups of subbands according to the Hofstadter-
type energy spectrum' is resolved. The DOS appears as
a continuous function of the magnetic field, in spite of the
highly singular 8 dependence of the energy spectrum.

Our calculation of conductivities is based on Kubo's for-
mulas, "' which in the approximation consistent with Eq.
(3) read ' o»= fdE[ f'(E—)]o„„(E), with f' the
derivative of the Fermi function and

2A
d k gg ((n';a'~v„~n;a)( A„(E)A, , (E),2z 4

n, n'j,j'
(4)

where a' - (k,j'). We distinguish two contributions,
cy»=ha»+cr„"„, a band conductivity Aa»(E) arising
from intra-LL contributions (n' =n) which diverges in the
absence of scatterers and vanishes for the unmodulated
system, and an inter-LL (n'Wn) contribution a„"„(E),
which arises from scattering and is the only contribu-
tion in the unmodulated case. We consider here only the
situation where both collision (—I p) and modulation
(—VxÃ„) broadening are much smaller than Aco„and,
consequently, the resistivities are p„„=ayy/ay and

pyy tyxx/tax with tTyx e Nx/mrs'2 ' = 2

First we calculate h, a» under the assumption that the
subband splitting of the LLs is not resolved. Since the
intra-LL velocity matrix elements are proportional to the
modulation potential, one then may replace E„, by E„ in
the spectral functions of Eq. (4) in order to calculate
ho'»(E) to lowest order in the modulation. With the ad-
ditional approximation

A„,(E)A„(E)= (n'I p) 'h(E E„), —

which neglects the internal subband structure and the col-
lision broadening of the LLs and eff'ectively introduces a
constant relaxation time r = A, /I p, the sum over j and j' in
dry»(E) can be evaluated analytically. The result b, cryy is
independent of Vy and equals exactly the result for a uni-
directional modulation in x direction obtained previous-
ly. ' In the interesting range of temperatures, where
k&T is larger than Arp, but smaller than the energy sepa-
ration hz = —„' mro, a (A, ——,

' ) of adjacent ffat bands, this
result is Acyyy cc (V /I p)cos (2+R,/a —x/4), independent
of T. Extending Beenakker's' simplified quasiclassical
calculation to the case of bidirectional modulation, one
Ands exactly the same result: the calculated band conduc-
tivity hoyy is independent of the modulation in y direction,
in sharp disagreement with the experiment.

To understand the suppression of the band conductivity
observed in the experiment, we have to take the peculiar
subband splitting of the Hofstadter-type energy spectrum
serious and to insert realistic values for the collision
broadening. From the mobility at zero magnetic field one
can estimate that in the experiments shown in Fig. 1 the
collision broadening is small enough to resolve the gross
features of the Hofstadter spectrum well away from flat
bands. If the splitting of subbands j' and j is resolved, the

For zero modulation, this is a well-known result, ' '

describing the SdH oscillations. In the interesting tem-
perature range, Aco, & k~T &hq, the Fermi function in
the energy integral defining a„"„can be replaced by the
first term of the expansion f'(E) =f'(E„)+f"(E„)(E

E„)+ —. , so that a„"„can be expressed in terms of an
effective scattering rate

I, =2m„r dE[2xl I pD„(E)] (7)

which oscillates as a function of n with maxima for flat
bands. ' For kz T &(h& the sum over n is easily performed
to yield the T-independent Drude-type result o„"„=(e
XN, /mrp )I „„/A, where nF=EF/Aro, and EF=N, /Dp
with the zero-B DOS Dp =m/nA has been inserted.

If Eq. (2) holds, the oscillating Landau bandwidth van-
ishes at the Fermi energy, the peaks of the DOS (near
E=EF) become high, a„"„ebc omes maximum and the
band conductivity minimum, since the intra-LL velocity
matrix elements near EF vanish. This explains the anti-
phase oscillations for high-mobility systems (small I p)
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FIG. 3. (a) Calculated band and (b) scattering contribution

to the conductivity vs chemical potentia1 for temperature T=5
K, 8=0.23 T, a =300 nm (p/q =5), and I o=0.02 meV. Solid
(dashed) curves are for grid (grating) potential with V„=Vy
=0.25 meV (V„=0.25 meV, Vy =0).

spectral functions do not overlap, and thus the corre-
sponding nondiagonal matrix elements of the velocity do
not contribute to Ao»(E). Then the band conductivity of
the 2d system is considerably smaller than that of the cor-
responding 1d system, as is visualized for a typical situa-
tion in Fig. 2(b).

In the inter-LL contribution o.„"„to the conductivity we
neglect the modulation effect on the velocity matrix ele-
ments, i.e. , small corrections of the order V, X„/Acp, .
Then, the modulation aAects cy„"„(E) only via the self-
energy. To leading order in ~Z /Aco, ~, we obtain from
Eqs. (3) and (4)

cry'p(E) = (e /A )g (2n+ I ) [27tl I pD„(E)] . (6)
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with unidirectional grating modulation, where the band
conductivity dominates, since AoJ, ~ 1/I o whereas cr~~= o",, ~ I 0. We also obtain the same phase of the a„"„os-
cillations for both unidirection ally and bidirection ally
modulated systems, provided the electron density and the
period of the modulation are the same. To understand the
suppression of the band conductivity for systems with a bi-
directional grid modulation, we have to assume that the
collision broadening is so small that the subband splitting
of the Hofstadter-type energy spectrum is partially re-
solved. This assumption is consistent with our knowledge
about the strength of the modulation potential. Figure 3
demonstrates the antiphase behavior of the diA'erent con-

tributions to the conductivity, and also the suppression of
the band conductivity in the case of a grid modulation. If
the collision broadening exceeds the subband splitting,
nondiagonal velocity matrix elements between subbands
of the same Landau level render the conductivity of the 2d
system equal to that of the corresponding 1d one. We
thus predict that in low-mobility samples the band con-
ductivity will be of the same order of magnitude for both
unidirectional and bidirectional modulation.

We thank K. von Klitzing and C. Zhang for stimulating
discussions and G. Weimann for the high-mobility hetero-
structures.
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