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Electron-phonon interaction in a quantum well
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Within the framework of the continuum model, optical polarization modes of lattice vibrations
and a Frohlich-like Hamiltonian of the interaction between an electron and optical phonons are de-
rived. It is found that there are four branches of interface optical modes besides the usual
transverse-optical and longitudinal-optical modes. The frequencies of these modes and coupling
functions of an electron with the optical phonons are discussed.

The electron-phonon interaction plays an important
role in the properties of quantum wells and superlattices.
Previous authors' have used a three-dimensional (3D)
or purely 2D Frohlich Hamiltonian or an effective model
Hamiltonian for the electron-phonon interaction in a
quantum well. These Hamiltonians can partly describe
the interaction, but a more complete Hamiltonian is
needed. In this work the interaction between an electron
and optical phonons in a quantum well has been con-
sidered in more detail and a Frohlich-like Hamiltonian
has been developed. In our discussion a method analo-
gous to those of Fuchs and Kliewer (FK) and of Lucas,
Kartheuser, and Badro (LKB) are used that had been
used by Licari and Evrard and by Wendler et al. ' to de-
velop the electron-phonon interaction Hamiltonian for a
dielectric slab or a bilayer system.

We consider a quantum well for which the polar dielec-
tric region, labeled as 1, is —d ~z ~d and region 2 is
~z~ )d. Thus the space can be divided into three zones:
zone I (~z~ (d), zone II (z )d), and zone III (z ( —d).
Denoting the relative displacement of the ion pair in zone
A, (A, =I, II, or III) as uz(r, t)=ui+(r, t) —

u& (r, t) the
corresponding polarization field p(r, t) in zone A, pro-
duced by the ion vibration can be written as

p~(y, t)=n&equi(r, t)+n&aiE (r, t) .

In the above equation, n&, e&, and a& are the number of
Wigner-Seitz cells per unit volume, the effective charge of
the ions, and the electric polarizability per cell in zone A, ,

respectively. E&(r, t) is the local electric field associated
with the optical modes in the zone k. Following LKB
and LE, ' we have a system of nine coupled integral
equations,

y, P, (r, t)= g f T; (r —r')P,'"(r', t)dr', (2)

where the subscripts i and j stand for the coordinate com-
ponents x, y, or z and T, is the dipolar tensor. ' In Eq.
(2), y,

" are given as follows:

(cooq —co )( I 4ttni, a—i, ) co i„!3—
'V ='Vy ='Ya =

ni. ai.(~o~ —~')+~,'~~4~
(3)

(tooi —co )(I+ ,"~nba) ) —+2 co~il 3

2 2 2nial(cooi co )+t—o i„/4~

After carrying out a two-dimensional Fourier transfor-
mation

P(r) = f dk e'" i'P(k, z),S
4~

we get another system of coupled integral equations,

where coo& is the frequency associated with the short-
range force between the ions and co & is the ion plasma
frequency. Here we have chosen P(r, t) as the form

P(r, t) =P(r)e

y „Py (k, z) =0,
ykP„(k, z) = 2ttk f dz'e "—' ' [P„(k,z')+i 8(z —z')P, (k, z')],

y, P, (k, z)= —2~k f dz' e ' ' [i 0(z —z')Pk(k, z') P, (k, z')], —

(7a)

(7b)

(7c)

where 8(z) is the step function

1, z)0"= —I, z(0,

k is the 2D wave vector in the x -y plane, and the x axis is
chosen to lie along k.

We obtain three kinds of polarization mode from this
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y, P, (k, z) = iky, P„—(k,z),'dz (8b)

and

system of equations: TO, LO, and surfacelike optical
(SO) modes.

When yk =0, we get transverse-optical (TO) modes of
frequency uT&. They are localized in zone X and do not
couple with the electron. We shall ignore them in the
present work.

For the case of y, =0, we have the longitudinal-optical
(LO) modes of frequency coLk. If A, =I, the modes have

frequency co„, and are confined in zone I, i.e., in the
quantum well. %'e obtain the same eigenvectors as did
FK (Ref. 5) and omitted them here.

We focus our attention on the case in which both y&
and y, are nonzero. For solving the system of equations
(7b) to (7c), we diff'erentiate Eqs. (7b) and (7c) twice and
then get the following equations:

)'k Pk(k, z)= IkykP—z(k, z), (8a)
Gz

1 2 —2/cd=+e
e)+@2

(12)

Using the relation between the dielectric function in the
medium j and the frequency co,

2 2
Lg CO

e)(a2) =e'„
MT&. CO

(13)

the frequency satisfying Eq. (12) can be given as follows:

B ( k)+[B (k) —4A (k)C~(k)]'
2A (k)

(14)

where

A (k)=a~I+a~2,

Bp(k) =a, (coLI+ coT2)+a 2 (coL2+ coT] ),
a

1 ~L I~T2+ a 2 ~L2~TIp 2 2 p 2 2

and p is the parity and can be chosen as + or —.The
corresponding aP are given by the formulas

yk —k P, (k, z)=0 (i =k, z) .
Jz

(9) a —, =(1+e " )e

yI (g z) A Lekz+B Ie —kz

P,'(k, z) = i A 'e"'—+iB'e "',
~z~

~ d;
yII(k z) A IIe —kz

P,"(k,z)=iA "e "', z )d;
y III(k ) A III kz

(5 "(k,z)= iA e '—z ( —d .

(10a)

(10b)

(10c)

On the basis of Eqs. (8) and (9) and the convergence of
the solutions in zones II and III, we may assume the fol-
lowing forms for the solutions:

+
( 1+ —2kd)e

where e is the high-frequency dielectric constant for
medium j.

We have the four branches of polarization modes ~
for o = + or —and p = + or —.The normalized eigen-
vectors of the modes can be given by

Inserting the solutions into Eqs. (7b) and (7c), one can
obtain the following conditions between coefticients
and B:

~~ ~e F

(E)+ 1 —2kd
( A I BI)+ —2kd( A II A III) ()

1
E

(
2kd —2kd)( A I +BI

)

@2+ 1 —2kd ( A II+ A III) ()
1

+e " (A B)+e "(A ——A ')=0
Ei 1

(
2kd —2kd)( A I B I)

2 3
2 Kd

E'2+ 1 —2kd (AII A III) 0
E2 1

The criterion for existence of the nonzero solutions of
Eq. (14) is

FIG. 1. Electron —SO-phonon coupling functions I'
~ as func-

tions of 2kd for a CxaSb-InAs-GaSb quantum well. I'
~ is mea-

sured in units of (2~e AcoTI/S)' and the length in units of 2d.
We have set the z-dependent factor in I' to 1.
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+(k,z)=

22+(cosh(kz), —i sinh(kz)), lzl &d

e, +1
e 2kd g (e

—kz ie kz)

e1 —1

@1+1
2kd g (

kz kz)

e1 —1

(k, z)= .

2zI (sinh(kz), —i cosh(kz)), lzl &d

6'1+ 1
1+ e 2kd p ( e

—kz ie
—kz)

e1 —1

E1+ 1
1+ e " 2 (e"' —ie"') z & —d

E1 1

with
1/2 H, p„= Je P(r')dr',

r' —r
(20)

g1+ 1
e 2kd + 1 e

—2kd+ 2 sinh( 2kd )
61 1

where r is the position vector of the electron. On the oth-
er hand, one can easily find the following relations from
Eqs. (1)—(4):

(17) E (k, z) = (4n/3+ vk )P (k,z), (21a)

A
u(r, t)= g ek (r)

2n pcomp
(a„p —a kmp) ~

and its conjugate momentum as

vr(r, t)= i g e—„(r)
k, m, p

1/2
An pro

2
(ak p+a-k p) .

(18b)
In Eq. (18) ek „(r) is given by

Now let us consider the electron-phonon interaction.
We write the relative displacement u(r, t) as

1/2

n&e&
P (k, z)= uA(k, z) .

1 —
n krak(4~/3+ vk )

(21b)

H, ph= g F p(k, z)e'"'
P( akmp

—a kmp),
k, m, p

where

(22)

F (k, z) = Jdz'
1/2

~Ae co

[ 1 net( 4~+ v—
k )]-

2SCO mp

Carrying out a 2D Fourier transform for Eq. (20), us-
ing (18a) and (21), we have finally obtained a Frohlich-
like Hamiltonian as follows:

e„(r)= e'" PP (k, z)
1

v'S
—k z' —z

mp (23)

and ak is the annihilation operator of the phonon cor-
responding to the eigenvector P (k, z). When m is a
positive integer we have the LO mode. If m is o. we get
the SO modes. We also have the commutation relations

[u, (r, t), ~, (r', t) ] =i fi5,,5(r r'), —

[u;(r, t), ui(r', t)]=[w;(r, t), w (r', t)]=0,
and then

4~e 1
He-1 g i ~coL1

&O1

1/2
tkp

cos z
2d

For the electron —LO-phonon interaction, we have the
following from (23):

kmp k'm'p' ] ~kk'~mm'~pp'

kmp k'm'p']=[ kmp k' 'p']

By the usual quantization procedure we obtain the Ham-
iltonian of the free-phonon field

m=1, 3, . . . ,

2d

sin

2 1/2 akm+

2d'
H „= g irtco (a„" a„+—,') .

k, m, p

For the Hamiltonian of electron-phonon interaction,
we have +H. c.

m =2, 4, . . . , 2 fg77

2d

2 1/2 k

(24)
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This is the same result as Licari and Evrard (LE). Here
60& and e

&
are, respectively, the static and the high-

frequency dielectric constants. p is the 2D component of
the position vector of the electron on the x -y plane.

For the surfacelike optical phonons we have

~e-so = g F ~(k, z)e'" ~(ak —& t
k )

k, o.,p
ancl

(25)

1/22~he'F +(k,z)=i
Sco + (e, —1)(e~—e, )

2A+
cosh( kz), (26a)

F (k,z)=i
1/22~re' (&2~i —&1~2)

Sco (e, —1)(e2—ei )
sinh(kz), (26b)

with

~T (Eo —E, )' (e, —1)'

It is seen from our results that the SO modes in a quan-
tum well are diFerent from that in a film. For the case of
quantum well we have four branches of the surfacelike
optical modes and the electron-phonon coupling function
relates to not only the wave vector k, the thickness of the
quantum well, and the position z, but also the parameters
of the two kinds of medium, such as the dielectric con-
stants and the frequencies of the optical phonons, etc.

It is easily found that eigenvectors and the electron-
phonon coupling functions for the SO modes are local-
ized near the interfaces. Their absolute values get max-
imum values at z =+d and go down when they are far
from the interfaces. This is why we call them surfacelike
modes.

For understanding the properties of the electron —SO-
phonon interaction in detail, we have numerically com-
puted the coupling functions F for the GaSb-InAs-
GaSb quantum well. The parameters used for the com-
putation are chosen as InAs: e0, =14.61, e &=11.80,
AcoT& =27. 14 meV, ancl AcoL] =30.20 meV; GaSb:
02=15.69, e 2 14.44 A~T2 28-59, and %co„2=29.80

from Ref. 11. We have plotted these coupling functions
as functions of 2kd in Fig. 1. For simplicity, we set the
factor depending upon z as 1 here. It is shown that the
coupling functions F attenuate with an increase of the

wave vector k and the thickness 2d. Only the phonons of
longer wavelengths are important for the electron-
phonon interaction. The two branches of higher frequen-
cies are more important for the electron-phonon interac-
tion than the other two in the four branches of SO modes.
On the other hand, the thinner the quantum well, the
stronger is the electron —SO-phonon interaction. For a
sufficiently thick well the interaction between the electron
and SO phonons can be neglected.

It is also found that when the thickness is large
enough, we get the 3D Hamiltonian for the electron-
phonon interaction from our Hamiltonian (22). If the
electron is localized near an interface, the Hamiltonian
then reduces to the ordinary Hamiltonian of the
electron —interface-optical-phonon interaction. If the
medium outside the quantum well is a nonpolar
crystal —for instance, the vacuum —our results reduce to
Licari and Evrard's. We had used it to discuss the prop-
erties of polarons in a polar slab in previous work. '

To sum up, we have discussed the optical polarization
modes of lattice vibration in a quantum well and
developed a more complete Frohlich-like Hamiltonian of
electron —optical-phonon interaction in this work. Our
results have demonstrated that the LO modes in a quan-
tum well are the same as those in a thin film. However,
the SO modes are quite difFerent from those in a mono-
layer film. This new Hamiltonian is necessary for provid-
ing a more accurate description of the electron-phonon
interaction in a quantum well.
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