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We consider theoretically the long-wavelength magneto-optical response of an electron system,
harmonically confined in two (quantum wire) or three (quantum dot or disk) spatial dimensions by
external parabolic potentials. In particular, we prove explicitly that the resonance frequencies of
such systems are independent of electron number and exactly the same as the corresponding bare
resonance frequencies. This is the generalization of Kohn’s theorem to harmonically confined
structures. We discuss a number of recent experimental results in light of this exact result.

The electrodynamic response of an interacting-electron
system (IES) in the presence of a confining potential is
generally dominated by the collective motion of the elec-
trons. In the microscopic description of such systems the
resonance frequencies are shifted from the one-electron
transition energies by many-body effects such as self-
energy corrections, depolarization effects, and vertex or
excitonic corrections. In the classical limit, the natural
description is in terms of plasma effects and is treated by
hydrodynamic theory. In either case, the electrodynamic
response reveals little of the underlying one-electron
states of the IES and the theories are messy, containing
uncontrolled approximations. We present here a proof
that, for a special class of IES’s, the electrodynamic
response to a uniform electric field can be solved exactly
and contain direct information about the bare one-
electron levels in the system.

The most well-known example of this type is Kohn’s
theorem! where the long-wavelength cyclotron-resonance
frequency of a three-dimensional translationally invariant
IES in a jellium background is known to be exactly the
bare cyclotron resonance frequency w.=eB /m, where B
is the uniform external magnetic field and m the bare
one-electron band mass (i.e., unrenormalized by the
electron-electron interaction) of the system. The transla-
tional invariance of the IES (i.e., there can be no impuri-
ties or phonons breaking the translational invariance) en-
sures that the total Hamiltonian can be divided into a
center-of-mass part and a relative coordinate part with
the electron-electron interaction entering only the relative
coordinate-dependent part of the Hamiltonian. Since
long-wavelength external radiation couples only to the
center-of-mass part of the motion, it follows directly that
electron-electron interaction cannot affect the resonance
frequency. In the many-body language, Kohn’s theorem
asserts the exact cancellation between the self-energy and
the vertex diagrams for long-wavelength response of the
translationally invariant three-dimensional IES. Of more
relevance to the current context is a recent paper? by
Brey, Johnson, and Halperin, who showed that a variant
of Kohn’s theorem exists for electrons confined in a one-
dimensional parabolic potential (the parabolic potential
well case) with free motion in the other two dimensions.
In Ref. 2 it was shown that the response of this paraboli-
cally confined two-dimensional IES is at the bare
harmonic-oscillator frequency, independent of electron-

43

electron interaction effects. Experimentally,® the reso-
nance frequencies in parabolic quantum wells are ob-
served to be independent of the two-dimensional electron
density, consistent with the theorem. In this paper, we
obtain a generalized Kohn’s theorem in the context of
atomlike quantum dot or wire structures, where the
confining parabolic potential is either three or two dimen-
sional. There is current interest* ! in these systems as
magneto-optical properties of various types of quantum
dot and wire structures are being increasingly investigat-
ed with advances in growth and lithographic techniques.
We first provide an explicit proof of a generalized Kohn’s
theorem for harmonically confined atoms (i.e., quantum
dots) and then discuss a number of recent experimental
results in this context. We note that the original Kohn’s
theorem! applies to a manifestly translationally invariant
system whereas our generalization (and, that of Ref. 2)
makes it valid for specific inhomogeneous (i.e., transla-
tionally noninvariant) situations where the background
potential is quadratic. This generalization may be intui-
tively expected since a quadratic potential corresponds to
a uniform jelliumlike charge background via the
Poisson’s equation.

In an empty isotropic three-dimensional harmonically
confined atom, the one-electron transition energies are at
the bare harmonic frequency w,. In the presence of finite
number of electrons in this ‘“‘atom,” the one-particle
confining potential will be substantially renormalized by
self-consistent (mean-field) potential arising from the elec-
trons themselves, and, consequently, the one-electron en-
ergy levels will change due to this Hartree potential.
There will be additional many-body (self-energy) correc-
tions (beyond the mean-field effect) due to the short-range
exchange-correlation part of the electron-electron in-
teraction. In fact, in the IES the single-particle energy
levels do not strictly exist except in the quasiparticle
sense. The question being addressed here is the follow-
ing: what are the electromagnetic resonance response
frequencies of the IES in the long-wavelength limit? The
answer to this question, as we show here, is unique for a
harmonic atom, namely, that the electrodynamic
response frequency of a harmonic IES is the bare har-
monic frequency, irrespective of electron-electron in-
teraction effects. The application of a magnetic field to
the system gives rise to another frequency w, in the usual
way, leading to mode mixing effects. This conclusion is
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exact and completely independent of the number of elec-
trons in the system or their mutual interactions.

We first consider an isotropic, harmonic atom (three-
dimensional ‘“quantum dots”) confined by a three-
dimensional potential V(x,y,z)=1moj(x*+y*+z?) in
the presence of a uniform, external magnetic field B.
Here, m is the bare, one-particle, electronic effective mass
in the system. The Hamiltonian for the system can be
written as

a)C
H= 2 (1/2m)( plx +p1y +pzz)+7(xipiy_yipix)

mogz’ | mQ?
+—(x
2 8

+ b |+ 3 ulr,—r;),

i<j

(1)
where u denotes the electron-electron interaction,
r;=(x;,;,z;) is the position of the ith electron in the
atom, p; =(p;,P;y»D;;) is the momentum of the ith elec-
tron, and, with no loss of generality, we choose the exter-
nal magnetic field to be along the z axis described by a
symmetric gauge A=(—By/2,Bx /2,0) in the x-y plane.
The frequency (Q is given by

Q=[w?+(20y)*]""? . )

At first, we neglect the electron-electron interaction
[the last term in Eq. (1)] and solve the single-particle
problem. The z motion is decoupled from the x-y motion
and can be trivially solved. We concentrate now on the
x-y part of the single-particle Schrodinger’s equation
defined by the term within the large parentheses of the
Hamiltonian in Eq. (1). The problem can be solved in a
cylindrical coordinate system giving the energy spectrum

1l|_;-1_ +éﬁwc R (3)

where n is a non-negative integer, and / is the quantum
number for the z component (/,) of the angular momen-
tum. Using the dipole selection rule (Al =z=1) for the
long wavelength absorption of electromagnetic radiation
we obtain the resonance frequencies

E+=g(ﬂia)c)=ﬁwi (4)

E,,=#Q |n+

which are the same as the corresponding classical result.®

In the presence of the electron-electron interaction,
U=3,,ulr,—r;), we now prove that o, are still the
resonance frequenc:1es of the system. We introduce
operators @ and b+ defined by

a,=3 m%(xjiiyj)ii(pjxiipjy) , (5)
J
b.=3 |mEx; Fiv)) Tilptipy) ©
t—z mz(x_l—'_lyj)_kl(])jxﬁlpjy
J
It is easy to show that
[H,ai]=iﬁw+?1\i (7)
and
(H,b,|=+#ow_b, . (8)

If W;, is an eigenstate of the interacting Hamiltonian
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with the eigenenergy E| ;, then from Egs. (7) and (8) we
get

Ha,V¥,,=(tho, +E Ja, ¥, (9a)
and

Hb W, ,=(tfiwo_ +E )b, .V, . (9b)
We infer from Eq. (9) that ¥, ,=a,¥;, and
Vo= =b, +¥, are also eigenstates of H with the eigen-
values E , ,=E, ,tfw, and E,,,,=E,, t#o_, respec-
tively.

In the presence of external electromagnetic radiation
propagating along the z direction, we must add the fol-
lowing perturbation to the Hamiltonian:

H'= 3 Ee '“!(x;+iy;)
J
1

=FEe —iwt
mQ

a,+b_), (10)

where E is the electric field, o the frequency of the exter-
nal radiation, and we have considered right-handed circu-
lar polarization. The perturbation H', defined by Eq.
(10), can only connect the state WV, , with the states W, ,, ,
and W, ,_; because it is a linear combination of a and b
operators. Similarly, left-handed circularly polarized ra-
diation will only connect the state ¥ , with ¥, and
W, _, .. Since an arbitrary electromagnetic field can be
decomposed into a combination of right-handed and left-
handed polarization, it is clear that an arbitrary elec-
tromagnetic perturbation will only connect the system
W, , with states W ,;, and W ,.,, which are also eigen-
states of the unperturbed interacting Hamiltonian H with
energies shifted by 7w . We, therefore, conclude that
the resonance frequencies for the interacting system will
be exactly the same as those of the noninteracting system,
namely, o, defined by Eq. (4). As is clear from the above
discussion, this result depends only on the commutation
properties of the electromagnetic perturbation H' [of Eq.
(10)] with the interacting Hamiltonian H (through the
operators @, and b ) and is exact. Thus, independent of
the number of electrons in the harmonic atom, it can ab-
sorb long-wavelength electromagnetic radiation only at
the bare frequencies.

Similarly we can show that the same result holds for an
anisotropic harmonic atom (where the harmonic frequen-
cies in the x,y,z directions are different) as well as for a
situation (of current experimental relevance) where the
confinement in the x-y plane is harmonic while that along
the z direction, V' (z), is arbitrary but with the magnetic
field oriented exactly along the z direction. For the aniso-
tropic harmonic atom, the commutation properties dis-
cussed above still hold because the classical energy can
still be separated out into a center-of-mass (the one-
particle part) and a relative coordinate (the interacting
part) part, but the eigenmodes cannot be written down
exp1i20it1y because it involves the following cubic equation
nw":

wﬁ—w4(w2+a)2 +a)2 +w2)

+olw (a) sin’6 cos’¢ +w}sin’0 sm2¢+a) cos?0)
+(olo}l tolol tolol)]—wiole}=0, (11)
where o, , . is the harmonic frequency in the three di-
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rections and (6,¢) are the spherical polar angles for the
orientation of the magnetic field.

For an anisotropic two-dimensional system, or, an
asymmetric quantum disk (i.e., when the confinement in
the z direction is so strong, that the z width can effec-
tively be considered zero) this equation can be solved to

give the following resonance frequencies (with
w, =eB cosf/mc) for the system:
i Wkt + o2t [of+ 20 (? +o})+ () —w) 21172
i - .
2 (12)

This result also applies to the case of an arbitrary
confining potential ¥ (z) in the z direction and a “tilted”
magnetic field B directed at an angle 6 with respect to the
z direction, provided that the confining length in the z
direction is much shorter than the other relevant
lengths—in particular, the width of the confining wave
function in the z direction must be substantially smaller
than the magnetic length and the wave-function widths in
the harmonic x-y directions. Clearly, the theorem breaks
down in high magnetic field in this tilted situation.

For the sake of completeness, we briefly discuss the
case of one-dimensional parabolic quantum wires in a
perpendicular external magnetic field. We assume the
wires are built on zero-thickness (in the z direction) x-y
plane by adding a confinement in the y direction. The
confining potential is 1mwdy?. Thus, the electrons are
free in the x direction, and completely (i.e, 5-function-
like) or harmonically confined in the z direction as well as
being harmonically confined in the y direction with the
external magnetic field along the z direction. We use the
Landau gauge. The Hamiltonian of the system is then
given by
H= 2 [(1/27’”)(})3‘ +p1,2v )_wcyipix +(m /2)@ Zy[2]+ U ’

1

2 2y1/2 (13)
where & =(w; +wj) '“. We define operators,
e =3 [may; Fip;, —(0./®)p;] - (14)
j
It is straightforward to prove,
[He,]=xAwe, . (15)

Applying a similar argument as before, we can show that
if W, is an eigenstate of the Hamiltonian (13) with energy
E,, then ¢, ¥, is also an exact eigenstate of the Hamil-
tonian with the energy e, t#®. The resonance frequen-
cies for the IES are then at &= (w?+w})'”? which does
not depend on the electron density of the system.

In the rest of this paper, we briefly discuss a number of
recent magneto-optical experimental results in IES in
light of these exact results. Obviously, the validity of the
theorem in real systems depends on how close the
confining bare potential is to quadratic. It is possible at
present to obtain a two-dimensional electron gas confined
in a nearly perfect (one-dimensional) parabolic potential
in Ga, Al,_, As heterostructures as demonstrated in Ref.
3 (and references therein). In these systems, the far-
infrared optical excitation is found? to obey the theorem
as discussed by Brey, Johnson, and Halperin.? In the
case of two- and three-dimensional (i.e., quantum wire,
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quantum disk, and, quantum dot) confinement, however,
the bare potential is generally not exactly quadratic and
only in specific cases'! it can be approximated as such.

Three types of three-dimensional confinements are
currently being investigated. Electrons on the surface of
liquid He are not charge compensated and external elec-
trostatic fields are used®® to confine the carriers. The
electron systems obtained in this way are generally large
and contain on the order of 107-108 electrons in pools of
1 cm diameter. Selective etching of a semiconductor
heterojunction obtained by photo- or electron-beam
lithography is used to define geometrical confinement
whose size varies from um (Ref. 6) to nm (Ref. 7). Final-
ly, confinement is also obtained by the use of cross-grid
gates formed at the surface of GaAs/Al Ga,_ As
heterojunctions,®! of InSb (Ref. 9) and Si metal-oxide-
semiconductor!® (MOS) devices. These devices provide a
selective depletion field with the same spatial periodicity
as the gate and allow a continuous tunability of the
confining potential.!* In all these cases, and when isotro-
py in the plane can be assumed, the confining electrostat-
ic potentials can be expanded in the series

V(R)=S a,(r/a)* (16)
k

which converges for » <a, where a is the physical radius
of the confinement. It is obvious from the above equation
that the generalized Kohn’s theorem remains valid in sit-
uations where the radius of the electron distribution R
(which depends on the total number of electrons Ny) is
such that R <<a. Sikorski and Merkt’ have recently
studied quantum dots in InSb with N, =20 electrons
(where N, is the number of electrons in the dot). Their
experimental results are completely consistent with the
assumption of a two-dimensional harmonic atom. They
observed a resonant mode with frequencies given by the
functional form of Eq. (4) and, to within their experimen-
tal accuracy, the frequencies are independent of N,.
These two findings strongly suggest that in the region
where the electrons are confined, the potential is essen-
tially quadratic for this structure. Demel et al.,” Liu
et al.,® and Alsmeier, Batke, and Kottaus'® have ex-
plored situations with 20 <N, <350 bridging the region
between quantum dots and classical discs of electrons. In
these studies, a dominant mode was observed with reso-
nant frequencies consistent with Eq. (4). But, in all three
of these studies striking deviations from the above
theorem are observed either in the form of an additional
resonance”®!3 or in the form of a dependence'® of the
main resonance on N.

An additional mode with a weaker oscillator strength
was found at higher frequencies, bearing a similar field
dependence as described by Eq. (4).”% The very fact that
this exact mode was observed”®!*® demonstrates that in
these systems the lateral confinement was not strictly par-
abolic. However, assuming that the nonparabolic com-
ponent can be considered a small perturbation, the main
observed mode can still be viewed, in the context of the
generalized Kohn’s theorem, as ‘“the center-of-mass
mode” which corresponds to the oscillation of the static
electron distribution. The extra mode, then, corresponds
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to an internal excitation of the electron distribution. The
above assumption is, in fact, reasonable for cross-grid
gated systems as shown numerically by Kumar, Laux,
and Stern.!'! In the case where the quantum dots are
defined physically by selective etching, the electrostatic
potential depends on the remote ionized donors, and, on
electrons trapped on the surface in unintentional per-
imetric defects. It is likely that these defects deplete a re-
gion around the perimeter, making it possible to have
R <<a as observed in Ref. 7. Demel et al.” interpreted
all their observed modes as magnetoplasmon modes
confined in a disk whose frequencies can be calculated us-
ing classical magnetohydrodynamic theories.>!? They
observed a coupling between the center-of-mass and the
internal mode which manifests itself in the lifting of the
excitation degeneracy at mode crossing. They interpret
the mode coupling in terms of nonlocal effects (and, in
view of the generalized Kohn’s theorem, nonparabolic
confinement is also required). If the observed modes can
be related to magnetoplasmon theory (as is argued in Ref.
7), then these modes bear different angular momentum
quantum numbers.>!? For this reason, this coupling is
not allowed in systems with circular symmetry.

In the work of Alsmeier, Batke, and Kottaus!® no extra
mode was detected. However, the frequency o, was
found to be dependent on N,. This fact by itself signals a
breakdown of the generalized Kohn’s theorem. They
also observed a small deviation of the w _ mode from the
functional dependence of Eq. (4). Such a deviation is also
not expected in the classical magnetoplasmon®!? theories
(where the bare potential is far from parabolic).

Finally it is interesting to explore the case of large elec-
tron disks (N, >20000) (Refs. 4—6) since in that case a
clear breakdown of Kohn’s theorem is expected for
R ~a. Mast, Dahm, and Fetter* and Glattli et al.” have
studied such large confined systems on the liquid-He sur-
face. Reference 5, for example, gives a dramatic illustra-
tion of this breakdown with the observation of more than
fifteen magnetoplasmon modes. It is important to note,
however, that these systems are probed with nonuniform
electromagnetic fields and the long-wavelength approxi-
mation of the theorem does not apply. Thus, the break-
down is due to both the nonparabolic confinement as well
as to the nonuniformity of the probe. The nonuniformity
of the exciting field by itself allows 11 of the 15 reso-
nances observed in Ref. 5. (In a system with circular
symmetry, a uniform field can only excite normal modes
with angular momentum quantum number equal to £1.)

0
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For this reason it is interesting to consider large disks of
electrons on semiconductors since they are usually
probed with uniform far-infrared radiation. Allen,
Stormer, and Hwang® carried out such measurements on
3-um-diameter disks containing about N;=26000 elec-
trons. They observed® a resonant mode following the
dependence of Eq. (4). No obvious observation of the
breakdown of the theorem could be observed in their re-
sults. It is important to note, however, that the function-
al dependence of the resonant frequency by itself does not
guarantee the parabolicity of the well. The breakdown in
this case would be signaled through the observation of
higher-frequency magnetoplasmon modes. The first addi-
tional mode is expected around a frequency of 3. > !?
Allen, Stormer, and Hwang6 interpreted their observed
mode in terms of a classical depolarization field of a uni-
formly charged oblate ellipsoid. It is interesting to note
that this analysis corresponds exactly to the case of the
quantum harmonic atom and, therefore, is fully con-
sistent with the generalized Kohn’s theorem. For this
case the areal electron density distribution is
ny(r)=2N,/(mR?)(1—r?/R?)"/%. This analysis, which is
apparently quantitatively quite satisfactory, does not lead
to the correct density profile in a large charge compensat-
ed electron disk (the density should be uniform). The ob-
served mode in Ref. 6 is better described as a magneto-
plasmon in a two-dimensional uniform electron gas in a
disk geometry. 1

In conclusion, we have generalized Kohn’s theorem to
quantum dots, disks, and wires by showing explicitly that
the long-wavelength magneto-optical response of har-
monically confined IES occurs exactly at the bare reso-
nance frequencies of the system, independent of the elec-
tron density. This result sheds light on a number of re-
cent experimental results in low-dimensional systems.

Note added: We have become aware of several papers
published subsequent to the submission of our
manuscript with similar results: P. A. Maksyn and T.
Chakraborty, Phys. Rev. Lett. 65, 108 (1990); F. M.
Peeters, Phys. Rev. B 42, 1486 (1990); A. V. Chaplik and
A. V. Govorov (unpublished).
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