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Ultrasonic investigation of granular superconducting films
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The dc resistance and surface-acoustic-wave (SAW) attenuation has been measured in granular
Pb/PbO and In/InO„ films as a function of temperature. The behavior of resistance and attenua-
tion data has been found to be in agreement with the predictions of a recently developed model that
is based on a percolation description of granular superconducting films. In this paper we will

present the resistance and SAW attenuation data and compare them to the predictions of the per-
colation model.

I. INTRODUCTION

Previously, a mode1 has been developed' to account for
the excess surface-acoustic-wave (SAW) attenuation that
was observed in a granular superconducting Pb/PbO,
film as the film entered the superconducting state. This
model, based on a percolation description of granular su-
perconductors, ' was found to give qualitative agreement
with the observed SAW attenuation for the granular
Pb/PbO„ film. The model could also be used to describe
the dc resistance of the film; however, it was found that
the agreement between the predicted dc resistance and
the observed resistance for the Pb/PbO, film was not
very good.

We have recently obtained additional data on the dc
resistance and SAW attenuation for the granular
Pb/PbO„ film as well as for some granular In/InO films.
The SAW attenuation data appear to give further support
for the percolation model of Ref. 1. In addition, calcula-
tions using a detailed model for the resistance distribu-
tion function in the superconducting state have been
done for the dc resistance that is predicted by the per-
colation model. These calculations appear to provide
better agreement between the mode1 and the resistance
data. In this paper we shall present the experimental
data that were obtained on the Pb/PbO and InO films
and discuss the data in terms of the percolation model.
The remainder of this paper is organized as follows. In
Sec. II we present the SAW attenuation data and dc resis-
tance data that were obtained on these films. Section III
gives a brief review of the percolation model for the dc
resistance and SAW attenuation. We compare the pre-
dictions of the percolation model to the experimental
data in Sec. IV and discuss the details of the new calcula-
tions for the dc resistance. Finally, we summarize our re-
sults in Sec. V.
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Fig. 1 were obtained on a 500-A-thick granular Pb/PbO„
film which had a normal-state resistance of 1000 Q/0
(sample A). This film was produced by rf diode sputter
deposition in an argon-oxygen atmosphere. The details
of the deposition process, as well as the techniques used
for measuring the dc resistance and SAW attenuation,
have been reported in an earlier work. After making the
attenuation and resistance measurements, this film was
oxidized in air to a normal-state sheet resistance of 1960
0/ at which point the resistance and attenuation mea-
surements were repeated. The data for the oxidized
Pb/PbO film are shown in Fig. 2.

Figures 3 and 4 show the normalized SAW attenuation
and the normalized dc resistance for two 100-A-thick
In/InO films. The normal-state sheet resistance for the
film corresponding to the data shown in Fig. 3 (sample B)
is 690 0/ and the normal-state sheet resistance of the
film corresponding to the data shown in Fig. 4 (sample C)
is 3247 0/ . The In/InO films were produced by reac-
tive ion-beam sputter deposition in an argon-oxygen at-

II. EXPERIMENTAL DATA
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The data that were obtained on Pb/PbO and In/InO„
films are shown in Figs. 1 through 4. The data shown in

FIG. 1. Normalized resistance and normalized attenuation as
a function of temperature for sample A.
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FIG. 2. Normalized attenuation and normalized resistance as
a function of temperature for the oxidized granular Pb film.

FIG. 4. Normalized attenuation and normalized resistance
plotted as a function of temperature for sample C.

1.2

1.0- — 1.0

C0
0.8-

C
Q)

0.6-
U
CP

h$

E 04
0

Z
0.8

N
CD

0.6

CJ
0.4

CD

0.2- - 0.2

0.0
0 3 5

Reduced Temperature

0.0

FICx. 3. Normalized attenuation and normalized resistance
plotted as a function of temperature for sample B.

mosphere. The details of the deposition process for the
In/InO films have also been reported in a previous
work. The structure of both the Pb/PbO, and In/InO
films were found to consist of pure metal grains embed-
ded in an insulating matrix. The diameters of the metal
grains are on the order of the film thickness, and electri-
cal transport occurs by means of electron tunneling
through the insulating barrier between neighboring
grains.

The data shown in Figs. 1 through 4 show the same
general features. As the film enters the superconducting
state, we see that the SAW attenuation decreases to a
minimum more slowly than the dc resistance. In addi-
tion, we see that, with the exception of the data shown in
Fig. 4, there is a small "tai1" in the resistive transition.
Both of these features can be accounted for by the per-
colation model.

III. PERCOLATION DESCRIPTION OF GRANULAR
SUPERCONDUCTING FILMS

In what follows, we present the major features of the
percolation model. The details of the model can be found
in Ref. 1. The basic assumption of the percolation model
is that the long-range superconducting order is estab-
lished in a granular film by means of classical percolation
in a network of Josephson junctions. Under this assurnp-
tion, the granular film can be represented as a random
resistor network. The resistors of the network represent
the Josephson junctions in the film and the nodes of the
network represent the metallic grains. For simplicity, it
is assumed that the nodes of the random resistor network
form a square lattice. At temperatures below the super-
conducting transition temperature of the grains T, a
fraction of the junction resistors in the network will have
zero resistance due to tunneling of electron pairs across
the insulating barrier between neighboring grains. As the
temperature is lowered further, the fraction of zero-
resistance junctions increases. When the fraction of
zero-resistance junctions becomes equal to the critical
percolation fraction (which occurs at a temperature
T, (T ), a superconducting path is formed which
traverses the film. At this point, the dc resistance of the
film vanishes.

In the normal state, the junction resistances are as-
sumed to have values which are distributed according to
the function

18'„(r)=
r ln(r2/r& )

where r2 and r
&

are, respectively, the maximum and
minimum values that the junction resistances can assume.
However, for temperature below T, it was assumed (for
simplicity) that the junction resistances were distributed
according to the function

8', (r) =p( T)5(r)+ [1—p( T)5(r —R„)] .
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In (2), p(T) is the (temperature-dependent) fraction of
zero-resistance junctions and R„ is the normal-state sheet
resistivity of the film. The temperature dependence of
the resistance for temperatures less than T as predicted
by the percolation model is found by using (2) in the
effective-medium approximation. The result of this sub-
stitution yields the following expression for the normal-
ized resistance:

R(T) 1 R„
ln

R„ ln(R„ /r, ) rJ( T)
(3)

In (3), rz(T) is the critical value at which the junction
resistance becomes equal to zero at the temperature T.
That is, those junctions whose normal-state resistance is
less than rJ(T) will have zero resistance at the tempera-
ture T. The quantity rJ(T) can be expressed in terms of
experimentally measurable quantities as follows:

(T)= mhb( T)
h

b(T)
(4)

4e 2@k~ T 2k~ T

(6)

where ~ is the electromechanical coupling constant of
the substrate, co is the angular frequency of the SAW, e,
(eo) is the dielectric constant of the substrate (vacuum),
and R ~ is the sheet resistance of the film ( =p/d, where p
is the resistivity of the film and d is the film thickness).
Equation (6) tells us that for homogeneous films, the
SAW attenuation is proportional to the sheet resistivity
of the film. However, for granular films this simple pro-
portionality does not hold. This can be seen in two as-
pects of the data. First, as mentioned previously, the

In (4) h(T) is the superconducting energy-gap function
for the bulk material and y is a constant on the order of
unity. In addition, rJ(T) can be related to p(T) accord-
ing to the following expression:

1n[rJ(T)/r, ]p(T)=
ln(r2/r, )

Now consider the SAW attenuation in granular films.
The attenuation that is being produced in these films is
being produced by the acoustoelectric effect. For a
homogeneous film, the acoustoelectrically produced at-
tenuation is given by '

a( T) o.
exp

&2rrp

(p —p, )

2p

for p =p( T) = 1, and

SAW attenuation decreases to a minimum more slowly
than the resistance as the film becomes superconducting.
Second, if one computes the SAW attenuation in the nor-
mal state using (6), it is found that the measured attenua-
tion is always larger than that predicted by (6) (see Table
I).

To account for the observed attenuation data, a rein-
terpretation of the results of Refs. 7 and 8 was proposed.
This reinterpretation can be summarized as follows.
When the fraction of zero-resistance junctions becomes
equal to the critical percolation fraction, the dc resistance
will vanish. The SAW attenuation, on the other hand,
will remain nonzero because the SAW is not confined to
follow the path of least resistance. The SAW will pass
through those regions of the film that are still in the nor-
mal state and these normal regions will produce attenua-
tion. Moreover, the magnitude of the attenuation will be
proportional to the average sheet resistance of small sec-
tions of the film whose dimensions are on the order of the
SAW wavelength. To see this, consider the following
simple picture. The dc resistance measurement deter-
mines the response of the entire film to a dc potential, i.e.,
an ac potential of infinite wavelength. On the other
hand, the alternating currents produced by the SAW as it
propagates can be regarded as an ensemble of direct
currents which sample the resistance of small sections of
the film whose dimensions are on the order of the SAW
wavelength. Since the granular films are inhomog'eneous,
the sheet resistance of these small sections of the film
R (L) of length L will vary from location to location.
Hence, the SAW attenuation should be proportional to
the average sheet resistance of these small sections R (L)
and not the dc resistance. In the normal state the aver-
age resistance of these small sections is larger than the dc
resistance and, thus, the observed attenuation should be
larger than that predicted by (6).

Below Tg, the normalized SAW attenuation that is pre-
dicted by the percolation model is given by

TABLE I. Various quantities de6ned in the text associated with three measured samples.

Sample

Normal-state
sheet resistivity
(&/ )

Normal-state
attenuation (dB/cm)

a„dB/cm
r, (A)
~, (&)
a

1000

2.3
0.5

2.00 X 10
3.3

A(oxidized)

1950

11.82
5.03
0.5

8.82 X 10
3.3

690

1.64
1.3

2.20
5.45 X 10

12

3247

11.13
7.76
8.75

1.» X10'
0.05
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a(T) p
&n P,

for p =0. In Eqs. (6) and (7), cr and po are given by

1
1

a(obs)0 = 21n
ln(r2/r, ) a„

p, =p, +a'ln(r, /r, ),

1/2

where p, =—p(T, ) ( =0.5 for a square lattice), a(obs) is the
observed normal-state attenuation, and a„ is the
normal-state attenuation predicted by Eq. (6).
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IV. COMPARISON OF THE DATA
TO THE PERCOLATION MODEL

In Figs. 5 —8 we show the normalized SAW attenuation
data and the normalized SAW attenuation as predicted
by the percolation model for T & T plotted as a function
of reduced temperature (T/T, ). As can be seen, the
agreement between the SAW attenuation data and the
SAW attenuation predicted by the percolation model is
quite good. In order to apply the percolation model to
these films, the values of r, , r2, and o. must be deter-
mined. The value of r& was estimated to be equal to the
resistance of a cube of pure metal (either Pb or In) whose
dimensions were equal to the thickness of the film. The
value of 0. was determined from the temperature at which
the dc resistance became equal to zero. According to (3),
the dc resistance will vanish when rJ ( T, ) =R„. Using
this condition in (4) allows us to solve for o. The value of
r2 is determined by the condition'

"-~ ~
'
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FIG. 6. Normalized attenuation data and the normalized at-
tenuation as predicted by the percolation model as a function of
reduced temperature for the oxidized granular Pb film.
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The values of r„r2, and o. for each of the samples are
given in Table I, which also contains the experimental
value for the normal-state attenuation, and the theoreti-
cal value obtained for this from the Adler model a„.

Figures 9—12 show the normalized resistance data

0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Reduced Temperature

I I 1 t

1.6 1.8. 2.0

FIG. 7. Normalized attenuation data for sample B and the
normalized attenuation as predicted by the percolation model.
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FIG. 5. Normalized attenuation data and the normalized at-
tenuation predicted by the percolation model for sample A.

FIG. 8. Normalized attenuation data for sample C and the
normalized attenuation predicted by the percolation model.
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FIG. 9. Normalized resistance data (points) and the normal-
ized resistance as predicted by the percolation model (solid
curve) for sample A.

FIG. 11. Normalized resistance data (points) and the normal-
ized resistance as predicted by the percolation model (solid
curve) for sample B.

plotted as a function of reduced temperature and the nor-
malized resistance as predicted by the percolation model.
We see that, with the exception of sample C, the percola-
tion model predicts a more gradual decrease in resistance
than is seen experimentally. A possible explanation for
the discrepancy between the data and the percolation
model may lie in the assumptions that have been made.
Recall that below T, the junction resistances were as-
sumed to be distributed according to a binary distribu-
tion. Clearly, such a distribution is not realistic. A more
realistic distribution function would be

co, (r) =(1—p) W„(r)+p5(r), (12)

where W„(r) is given by (1). Using (12) in the effective-
medium approximation (see the Appendix), we see that

the normalized resistance is now given by

R (T)
R„

r2 ' (r2/r )
' —1

(r2/r, )
' —1

(13)

where pz=p/(2 —2p) and p, =1/(2 —2p). The solid
curves in Figs. 13—16 indicate the normalized resistance
as predicted by (13). As can be seen, this new calculation
for the resistance appears to provide better agreement
with the experimental data.

Two issues need to be addressed here. First, one might
ask how does the distribution function (12) affect the pre-
dicted SAW attenuation'? lf (12) is used to compute the
normalized SAW attenuation, the result is (see the Ap-
pendix)
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FIG. 10. Normalized resistance data (points) and the normal-
ized resistance as predicted by the percolation model (solid
curve) for the oxidized Pb/PbO„ film.

FIG. 12. Normalized resistance data (points) and the normal-
ized resistance as predicted by the percolation model (solid
curve) for sample C.
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FIG. 16. Normalized resistance data for sample C (points)
and the normalized resistance as predicted by the percolation
model using the full distribution for the junction resistances
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are defined in the Appen-
dix and R„(L) is given by

-6- R„(L)=R„expg[cr 1n(r2/r, )] I .
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FIG. 14. Log-log plot of the normalized resistance data and
the normalized resistance as predicted by Eq. (13) for the oxi-
dized granular Pb film.

The normalized attenuation as predicted by (14) for sam-
ple A is indicated in Fig. 17 by the solid curve. As can be
seen, the agreement between the attenuation data and the
attenuation predicted by the percolation model when (12)
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FIG. 17. Normalized attenuation data for sample A and the
normalized attenuation as predicted by Eq. (14) (solid line).
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1.0-

tances that are larger than the measured dc resistance.
We also find that in addition to explaining the above
effect, the percolation model can qualitatively account for
the shapes of the attenuation and resistance curves.

Q
OC

0.6-
(D
N

E
O 0.4
Z

ACKNO%'LED GMKNTS

The work at the University of Wisconsin —Milwaukee
was supported by the U.S. Office of Naval Research.

APPENDIX

02-

0.0
0.0

I

02
I I

0.4 0.6 0.8
Reduced I emperature

I

1.0

FIG. 18. Normalized resistance of a 16X 16 resistor network
as determined by computer simulations.

is used is not as good as the agreement between the at-
tenuation data and the attenuation predicted by the per-
colation model when (2) is used. Similar behavior is seen
for the other samples. This behavior should not be
surprising since the distribution function for the junction
resistances in a finite network is probably discontinuous.
This would explain the fact that the agreement between
the attenuation data and the percolation model is better
when (2) is used. Some simple computer simulations
have shown that the binary distribution is not unreason-
able for finite networks. In Fig. 18 we show the comput-
er simulation for the average normalized resistance as a
function of reduced temperature for a 16X 16 node
square lattice using (2). This lattice size corresponds to
the size of the finite network for the granular Pb/PbO
film. The data points represent the mean of 50 simula-
tions and the error bars indicate a standard deviation
about the mean. As can be seen, the computer simula-
tions show a substantial tail in the resistive transition of
the finite networks. Since the normalized SAW attenua-
tion is proportional to the average resistance of the finite
networks, the computer simulations seem to indicate that
the binary distribution is not too unreasonable for the
finite networks.

V. SUMMARY

In this paper we have reported on the measurements of
the SAW attenuation and dc resistance made on granular
Pb/PbO and granular In/InO films. The data obtained
on these films displayed the same tendency —the SAW
attenuation decreased to zero more slowly than the dc
resistance as the films entered the superconducting state.
We have found that the behavior described above can be
explained in terms of a model which is based on a per-
colation theory of granular superconductors. Within the
scope of this model, the fact that the resistance decreases
to zero more slowly than the dc resistance is due to the
fact that the SAW is sensitive to the resistance of small
sections of the film which can have local average resis-

Here we consider the effects of using the effective-
medium approximation for T) T and T & T, The ap-
proach that is used is to replace the Ambegaokar, Halpe-
rin, and Langer (AHL) model' used in Ref. 1 by the
effective-medium approximation (EMA) when the sam-
ple enters the superconducting state. In the context of
the present problem, the EMA states that the effect of
shorting out some of the resistors of the network is
equivalent to giving all of the resistors of the network a
single value R,z which is equal to the effective sheet resis-
tance of the network. R,z is chosen so that the effects of
changing a given resistor back to its original value will,
on the average, cancel out. Specifically, R,z is given by
solving the following integral equation:

R,~—r0= f W(r) dr . (Al)
R,s+Pr

0= "2 1 ~ Rn
Ql"

r R„+(br

lT0=
R„+Jr

dr
r(R„+Jr)

(A2)

(A3)

10=—ln
R„+yr,

+lnR„+Jr,
R„+Jr,

R„+Jr,—ln (A4)

(A5)

Since P=z/2 —1, we have P/(/+1)=1 —z/2. More-
over, since p, =2/z, we have P/(/+1) =1—p, . Ex-
ponentiating both sides of (A5), we obtain

R„+pr2
(r2/r, ) R„+ r,

Solving (A6) for R„,we obtain

(A6)

In (Al) W(r) is the actual resistance distribution and
P=z/2 —1 where z is the coordination number. The
coordination number is the number of nearest neighbors
associated with a given node in the resistor network (for a
square lattice z =4). The coordination number is related
to the critical percolation fraction according to P, =2/z.

Consider the normal state first. Substituting the distri-
bution for the junction resistances in the normal state Eq.
(1) into (Al), we obtain
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1 —p (r, lr, )
' —1

(r, /r, )
' —1

1 —p
(A7)

For a square lattice, /=1 and p, =
—,'. In this case, (A7)

reduces to

R„=(r,rz)'~ (A8)

w, (r) =(1 p) II'„(—r)+p5(r —0), (A9)

where p is the fraction of superconducting junctions
given by Eq. (5) and W„(r) is given by Eq. (1). Substitu-
tion of (A9) into (Al) yields

which is the same result as Eq. (11) which was derived
from the AHL model. Thus, we see that, at least for a
square lattice, the AHL model can be replaced by the
effective-medium approximation.

Let us now consider what happens when T & 7" . In
particular, we will consider the case when the binary dis-
tribution for the junction resistances Eq. (2) is replaced
by a more "realistic" distribution function. The distribu-
tion that we shall use is

R(T) =(rz lri ) [(rz/r, )
' —1] .

1 —p)

n

(A15)

R(L, T)=r) [[R„(L)lr(] ' —1] (A17)

The average resistance of the finite networks is then

R (L, T)= f R (L, T)4&L (PL )dpi (A18)
p( T)

where NL (pL ) is given by Eq. (14), Ref. 1. Substituting
the expression for NL (PL ) and R (L, T) into (A18), we ob-
tain

R (L, T) = f [R„(L)lr, ]v 27rcTL p(&)

Next, let us consider what effect (A9) will have on the
attenuation [or, more specifically, R (L, T)] in the region
T(T . To compute R (L, T), we first write rzlr, in
terms of R„. Upon doing so, (A15) becomes

R(T)=r, [(R„/r, )
' ' —1] . (A16)

We then follow the procedure described in Ref. 1, Sec.
III; we replace R„by R„(L) and p, by PL. Under this
substitution, (A16) becomes

R(T)+Prz
ln(rz/ri)= ln

1 —p
'

1 —p, R ( T)+(t)r(
(Al 1)

0= A(1 —p) f — dr —p, (A10)
L

where 3 =[ln(rz/r, )] '. Performing the integration, we
obtain

X exp

r& j+ — exp
)/27TCJ L p ( &)

2
PL, Pc

dpL
OL

2
PL, Pc

dpL
OL

(A19)

Multiplying both sides of (Al 1) by 1 —p, and exponen-
tiating, we obtain

R (T)+Qrz
R(T)+Jr, (A12)

where p, =(1—p, )l(1—p ). Solving (A12) for R (T)
yields

1 —p)(rz/r, )
' —1

R(T)=(t)r((rz/r() '

(rz lr, )
' —1

(A13)

Equation (A13) is the most general expression for the
resistance in the region T (T . We see that when p =0,
p, = 1 —p„and (A13) reduces to (A7), that is, R ( T) = R „.
When p =p„ then p, = 1 and R ( T) =0.

For simplicity, let us restrict the remainder of this dis-
cussion to the case of a square resistor network so that
pi =1/(2 —2p) and R„=ri(rz/ri )'~ . Dividing both
sides of (A13) by R„,we obtain

Consider the second integral (Iz). Because of the na-
ture of the integrand, we can extend the upper limit of in-
tegration to infinity. We then have

r) (X)

I2 = exp
+2m'o L p ( &)

2
PL, Pc

dPL, .
OL

(A20)

Making the change in variable x =(pL —p, )/(&2crr ),
(A20) becomes

' f "e-"dx,
vr

(A21)

where x, = [p ( T) p, ] I(&2cr L ). The i—ntegrand in (A21)
is related to the error function. Thus

r&Iz= [1—erf(x()] . (A22)

Now consider the first integral (I, ). Since the argu-
ment of the integral contains a decreasing exponential,
we can extend the upper limit of integration to infinity
without any complications. Hence

1 —Pl
R (T) p, ("2/rl )

=(rz/r, )
'

(rz/r, )
' —1

(A14)

where pz=p/(2 —2p). In addition, if rz ))r„ then the
denominator is approximately equal to (rzlr, )

' and
(A14) reduces to

Xexp
2

Pr. Pc
dpL ~

OL

Using Eq. (18) in Ref. 1, we can rewrite (A23) as

(A23)
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I& = exp+2~ol .
s (&)

PI.
1n(r~/ri )

1 —p

r&I)=
V'~ r, R„

rz ' R„(L) I "e -"dz (A26)

z z
pL ppl. p ) pI.

20L

(A24)

Completing the square in the argument of the exponen-
tial and using Eq. (20), Ref. 1, we obtain

rz ' R„(L)

(A27)

[1—erf(z, ) ]

ri rz ' R„(L)
[1—erf(z, )],

2 rj R„

where z, = [p(T) p, ]—/(&2o. l ). Thus, (A19) becomes

r, rz ' R„(L)
R(L, T)=

2 r( R„

+27roIp '( D

where

X exp

R„

( — )'PI. Pc
dpL

2&7 L

2
CTL

p, =p, — ln(rz /r i ),
1 —p

(A25)

—[1—erf(x, )]

r&

2R„(L)
erfc(z, )

The normalized attenuation for T (T is then

a(T) r~ ' R„(L)
r& R„

(A28)

p3=(p, —p)/(1 —p), and p4=(1 —p) . The first two
factors of the integrand do not depend upon pL and can
be taken outside of the integral. Making the change in
variable Z =(pL —p, )/(&2o. L ), (A25) becomes

—erfc(x, ) (A29)

where erfc(x)=1 —erf(x) is the complementary error
function.
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