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The soft-potential model (an extension of the well-known tunneling model for two-level states in
glasses) has been formulated in terms of soft-mode eigenvectors in order to characterize the localiza-
tion of these modes. The interaction with high-frequency modes explains the absence of very small
restoring-force constants. A quantitative comparison to specific-heat and neutron-scattering data
from vitreous silica, amorphous selenium, and vitreous boron trioxide shows that both the two-level
systems and the low-energy vibrational states can be explained by the same distribution of localized

modes.

I. INTRODUCTION

The thermal properties of glasses below 1 K differ
drastically from those of crystals."? They are dominated
by two-level states which seem to be well described by the
tunneling model.> > The model assumes double-well po-
tentials for some unspecified motion of one or several
atoms. This description, however, fails to account for the
glassy anomalies above 1 K, between 1 and 10 K, where
again one finds clear evidence for additional states coex-
isting with the sound waves.""?> Recent neutron measure-
ments® have shown these to be soft harmonic vibrations
with a crossover to anharmonicity at the low-frequency
end (at frequencies corresponding to several degrees Kel-
vin). This evidence supports the theoretical model of
Karpov, Klinger, and Ignatiev,” and others,® % which
describes both the tunneling and the soft vibrational
motion in terms of soft anharmonic potentials with local-
ly varying parameters.

The present paper intends to put the soft-potential
model on a more quantitative basis by considering the lo-
calization of these modes in detail and by adapting the
model to measured specific-heat and neutron-scattering
data of three different glasses, namely silica, amorphous
selenium, and vitreous B,0;. This quantitative compar-
ison does not only give information about the form of the
distribution of the soft-potential parameters, but also on
the number of atoms participating in the tunneling or soft
vibrational motion.

The paper proceeds as follows: after this introduction,
the soft-potential model is formulated in terms of extend-
ed soft modes in Sec. II. The same section contains a
crude estimate of the interaction of the soft mode with
higher-frequency modes. Section III discusses the predic-
tions of the soft-potential model for the specific heat in
the crossover region between harmonic and anharmonic
states around 1 K. The application of the results to the
three aforementioned glasses is given in Sec. IV. Section
V gives a summary and some conclusions.

II. NORMAL-MODE FORMULATION
OF THE SOFT-POTENTIAL MODEL

A. Localization of the soft mode

In what follows we assume an amorphous solid with
only one mode of exceptionally soft potential, thus disre-
garding the interactions between different soft modes.
Let us denote the eigenvector of the soft mode for atom i
with mass M; by e;. Then

N
S el= (1
i=1
and the motion of the atoms in the soft mode is described
by
u,(t)=f(t)e;/M}!"?, ()

where f(¢) is the same for all atoms and may be a tunnel-
ing or a soft vibrational motion according to cir-
cumstances. -

Without loss of generality, we can assume atom 1 to
have the biggest displacement in the soft mode. We
define x as the amplitude of this displacement of atom 1
in the soft mode. Then the kinetic energy of the mode

N .
Eg= 3 tMaul=1[f()P=1M, /e)a}
i=1

=M, /e)x2.  (3)

This relation defines the effective mass M, of the soft
mode

M,=M,/e} 4)

and this in turn defines N;, the effective number of atoms
in the mode

N,=M,/M , (5

where M is the average mass of the participating atoms.
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This definition of the participation number is slightly
different from that used in computer simulations on local-
ization problems,'> !¢

NY=—/", (6)

but in the general case both definitions will tend to give
similar numbers.

The next step is to characterize the anharmonicity.
Since neutron experiments®!” show a similarity between
soft-mode eigenvectors and those at the first maximum of
the vibrational density of states at a crystal-like frequency
. that frequency can be used to set the energy scale for
the soft mode. Then one can define a displacement a at
which the fourth-order term of the soft mode equals the
harmonic term of the unaffected crystal-like mode:

S 1 P
24 3x*

1

IM wia (7)

2
2 S c
We insert these definitions into the well-investigated
soft-potential expression’

Vix)=e[n(x/a)+t(x/a)+(x/a)*] (8a)

or, alternately

V(x)=€e[h'(x/a)+7'(x /a)*+(x /a)*] , (8b)

where the soft mode is characterized by parameters 7 and
t (or h' and 77') much smaller than unity. These two pa-
rameters decide whether one deals with a tunneling mode
or a soft quasiharmonic vibration or something in be-
tween. The two expressions (8a) and (8b) are equivalent
in the sense that they transform into each other by an ap-
propriate shift of the origin of x. What is not equivalent,
however, is a situation with a constant distribution of 7
and ¢ around zero on the one hand and a situation with a
constant distribution of 4’ and 1’ around zero on the oth-
er. It has been shown’® that the latter leads to a distribu-
tion function

P(n,t)="Py|7] 9)

around zero 7 and ¢ in the former, the so-called ‘‘sea-
gull” singularity (see Fig. 1). This suppresses states with
very small restoring force constants. Later on, we will
discuss a possible physical reason for the origin of such a
singularity.

In principle, given distribution functions for 1 and ¢,
the resulting states are characterized by the three param-
eters €, a, and M,. It is useful, however, to introduce a
shorthand notation for two combinations of them,

. =(#%/2M a%)'"? , (10)
and
W =en? . (1

Later, we will extract w, and W from experimental data.
From these two, one calculates the others via the rela-
tions
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distribution function P (n) (arb.units)

force constant n

FIG. 1. Distribution function for the restoring force constant
m with (solid line) and without (dashed line) the seagull singular-
ity.

#/2Ma*=4aW3 /(fiw, )? , (12)

e=(#w,/W)tw, /16 , (13)
and

nL=4W /fiw,)* . (14)

B. Order of magnitude estimates

Since our definitions put x on the scale of single-atom
displacements, one expects a to be about half a nearest-
neighbor distance d,

a=d/2 . (15)

So a does not scale with N;. Whereas from Eq. (7) fol-
lows

e~e,N; , (16)

where ¢, is the value characteristic for one-atom motion.
Consider the expansion of the energy of the amorphous
solid in terms of atomic displacements R,

3N 3N
V:% 2 AstRth_}_% 2 B, RR,R,+ -+

s,t=1 s,tLu=1

(s indicates the number of the atom as well as its dis-
placement direction). In Eq. (17), again the third-order
term U; will become comparable to the harmonic term
U, as the displacements approach the size of a. If we as-
sume a pairwise interaction between the atoms the sums
in Eq. (17) are reduced to sums over the bonds connecting
the atoms participating in the soft mode to the rest of the
glass. There will then be approximately zN, such terms
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for each order, where z is the coordination number. We
have absorbed the factor z in our definition of €,. Since,
however, the contributions to the third-order term vary
in sign on average only a contribution ~V'z remains.
Together with the factor z included in €, this gives a fac-
tor z~!/2. For a rough order-of-magnitude estimate we
write

U=z "' (e, /a*)R} .

s

(18)

R, is decomposed into a part due to the soft mode and a
second part due to all other modes,

R_g:BSx +rx . (19)
Then
RI=Bix +3Bix2r, +3Bxrl 41} . 20)

The coefficients 3, will be of order unity for N, displace-
ments, but, in general, with varying signs. Thus the first
term of Eq. (20) yields the cubic term in Eq. (8a) with

t2~1/zN, . @30

The second term in Eq. (20) gives a phonon dressing to
the potential. It effects a large reduction of the individual
tunnel splittings. Commonly this dressing is included by
using an effective tunneling mass, larger than the mass
M, of the mode.!® We will see that this effect influences
our results on the distribution functions only weakly.
After averaging over the high-frequency vibrations the
third term in Eq. (20) gives a finite linear term in x, which
is proportional to the mean-square displacement of the
atoms. This term is in principle able to explain the singu-
larity, i.e., the linear term in Eq. (8b). Here we want to
point out that, even if such a term does not exist at the
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glass temperature where the soft modes are formed and
frozen in, it will appear on cooling down to low tempera-
tures. In order to estimate its magnitude, we note that
the mean-square displacement at the glass temperature in
a glass is approximately the same as the mean square dis-
placement in a cryStal near melting, so we can use the
empirical Lindemann criterion of melting!®

(R2)=0.01d%2~0.04a> 22)
to estimate a linear term
h'?~0.01/zN, . 23)

The original model of soft atomic potentials”? is applic-
able provided the characteristic scatter of the random
quantities ¢ and 4 are bigger than 7}/ and 7%3/?, respec-
tively. If this is the case one can assume the distribution
function P, to be constant. In our case (see Table I
below) these conditions are satisfied. Thus we conclude
that the distribution function, Eq. (9), and the results fol-
lowing from this form are applicable for the substances in
Table I.

III. THE DENSITIES OF QUASTHARMONIC
AND TUNNELING STATES

In the following we derive expressions for the densities
of states in the limiting cases where either harmonic
motion or the strongly anharmonic tunneling motion pre-
vails. These expressions will be used to extract the cross-
over energy W given by Eq. (11) from specific-heat data.

We begin with the quasiharmonic states which behave
as harmonic ones at E >> W. In this case we can assume

N <<n<<l (24)

TABLE I. Parameters of the soft-potential model and derived quantities for three different glasses.

Substance a-Si0, a-Se a-B,0;
From neutron-scattering data:
fiw, (meV) 12.4+1° 5.2+0.5° 7.7£1°¢
From specific-heat data:
T* (K) 2.1+0.4¢ 0.6+0.1¢ 1.240.2f
nqLs (10% J7'm™3) 6.68 4.18 6.38
8.42h 4.5h 9.05"
Derived quantities:
W (meV) 0.3+0.05 0.08+ 0.02 0.17+0.03
10°y, 2.3+1 1+0.5 2+1
#2/2M,a? (ueV) 0.71£0.4 0.08+0.05 0.3+0.2
€ (eV) 55+30 90+60 45430
Xo1/a 0.07 0.04 0.06
Estimate of the number of atoms N, participating in the soft modes:
M (a.u) 16 79 16
d (nm) 0.26 0.38 0.24
M.,a*>/Md?* (=N,) 24 20 68

#Reference 17.
"Reference 28.
‘Reference 29.
9See references in Fig. 2.

‘See references in Fig. 3.
fReference 26.

8This work at T*.
"Reference 31.
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(typical estimates for 1, are 107>-10"*) and neglect the
fourth-order term in Eq. (8). There is another condition

for the potential to be one-well,%!!

9t2/32<7 . (25)

If 1 <<4V'27/3 we can also neglect the cubic term in Eq.
(8a) and the potential becomes harmonic. The second
simplification is that we are interested in low frequencies:
© <w,V'87n (rough estimates for 87 and 8¢ are 87~0.1,
8t =~0.3).

The density of quasiharmonic states is given by

n (#iw)={ 8[#iw

—En,01),, (26)

where E(m,t) gives the level spacing in the potential
characterized by 7 and ¢ and the angular brackets denote
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4

5 P,
16\/2~L , o>W/h .

3 fiw

L
1)

nH(ﬁ&)C )=

(27)

c c

To calculate the density of tunneling states one should
take into account
fio=(A*+A2)1/? (28)

where asymmetry A and tunnel contribution A, are con-
nected with 7,7 via relations7

A==l In32= S 1l > (29)
V2 n%
‘ 13/2
Ag=W exp 3 VR (30)
nL
and the preexponential factor in Eq. (30) has been

neglected. As in the previous case we can assume the
function P (7,1) to be independent of z. It is convenient to

an average over 77 and ¢. A straightforward calculation'? change the variable ¢ to A and to |use
assuming the validity of Eq. (9) yields 8[fio—(A%+A2)!?]. As aresult we get
|
2V 2n}
nyps(fio)= WﬂL no j|77| Py(1n) ﬁa)z\/z 2 | 7 (31
e (#iw)?— Wexp | — AN/ e ]
3 g
[
Changing the variable from 7 to p =(A,/%w)* we get Nein =01.L2" (35)
272 m? [rd Po[1(p)] where
ArLs = — -,
TS 313w o pVi—p log? (W /%Y p ) W tom 172
L= —1 —_— .
where pin = [Ao(Mmin) /i 1. V2 tio Tolw)

The quantity p,;, is small and we can omit p in the ex-
pression V'1—p. Thus the quantity we have to estimate
is

0 dny
Py(n) .

(32)
Mmin ‘/l"ﬂ

We have introduced 7,,,;, because if p (n)=const this in-
tegral diverges at the lowest limit. Actually the quantity
Nmin 1S determined by the duration time of the experi-
ment, f.,,. Indeed, if we want to extract n (%) from the
specific-heat experiments, the only TLS that contribute to
the specific heat are those which have made a transition

during Lexpt- On the other hand, the characteristic transi-
tion rate is given by the relation?°
1 (A&l (w _22 [yl
T 7o) | fiw Tolw) 3 g2
(33)
Here 7o5(w) can be expressed in the form
To(a))za)(z)/w3 , (34)

where w,=(p#is>)!"2/y, p is the density of the glass, y is
the characteristic value of deformation potential, and s is
the sound velocity. Making use of Eq. (33) we get

Here 7io is of the order of k5 T, wWhere T, is the tem-
perature of the experiment in low-temperature specific
heat. In a reasonable approximation
L=—~ 2\/2 Tt /Tolkg Texp)] - (36)
The estimate of the integral (32) depends on the ratio
between 7,;, and 87, the characteristic scale of the func-

tion P (7). If ., <<87 we can assume Eq. (9) to be valid
and

I =2‘/77minPO =

Assuming W /%iw=10, 1,=~10"9 s, Lexpt =10% s, we get
L =~20; if 7, =3X107> we get 7,,;,~0.02. If 5., > 8y
we can give only an order-of-magnitude estimate of the
integral (32): I~ 2/\/87;P0

As a result we have’

2P/ 2L13, (37

S AL \
nyLs = W , (38)
where =min(7.,,,67). It should be stressed that this
expression is valid at o << W /#. Making use of Egs. (27)
and (38) we can relate the density of quasiharmonic states
at w>W/# to the density of tunneling states at
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w << W /#. We have’

. 1/2 . 4
L 10}
nylfio)=Lnrg |[— — (39)
24 7 w
or
1/2 4
nylfio) 1 |4 )
T T | Tom — (40)
TLS Ny, | 9m @,

This equality can serve as a basis to determine W from
specific-heat data. The contribution of TLS to the low-
temperature specific heat is

TLS * 2
cy =?nTLSkBT, 41)

while the contribution of harmonic states is

_ 172
ne k5T

W

cf=30n1.5 42)

The temperature T* at which these two contributions be-
come equal is given by the equality

1/4 1/8
kT*=w | -—
180 o
1/4 1/12
’IT2 3 texpt
=W |—< —=In——- (43)
180 2
With 7., =10 s and 7,=1 us we get
W=1.6kT* . (44)

In the derivation of Eq. (43) we have neglected phonon
dressing effects on the tunneling element A, These
effects are additional to the ones on the soft vibration
where they cause an effective mass. In general, transi-
tions between the two minimum configurations of the
tunneling entity do not only involve the soft mode but
also other modes since their equilibrium positions are
changed. These additional transitions can be described
by their overlap integrals which are of order (1—1/N)
but contribute due to their multitude. (Here N is the
number of atoms in the glass.) Since we consider slow
tunneling processes, most of these additional relaxations
will follow the tunneling particles asymptotically, i.e., the
particles get dressed. This dressing effect has been stud-
ied in another context, e.g., for the quantum diffusion of
hydrogen where it mediates the activation.?! The exact
size of the dressing effect in the glassy situation is not
known so far. Calculations on tunneling of interstitial
atoms in a crystal give about the same order of magni-
tude as the exponential part of the naked A, Eq. (30).2
This would add a factor of two to the logarithmic term in
(43). Due to the exponent - this has only a very small
effect on T*, and we conclude that phonon dressing and
therefore also the effective tunneling mass as distinct
from the localized mode mass cannot be determined from
T*.
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IV. PARAMETER DETERMINATION FOR THREE
DIFFERENT GLASSES

In order to determine the crossover energy W between
harmonic and anharmonic states we take the correspond-
ing crossover temperature T* from log-log plots of the
specific heat over T cubed versus temperature 7T and use
Eq. (44) of the preceding section. In this way, one uses
the limiting forms [Eq. (38) and Eq. (27)] at low and
(comparatively) high frequencies to determine the cross-
over. For vitreous silica, one can use results of many au-
thors, some of which are plotted in Fig. 2 (the anomaly in
the data for suprasil W has been discussed by v.
Lohneysen and Platte?*). For amorphous selenium, the
results in the crossover region are plotted in Fig. 3. In
the case of vitreous boron trioxide, one can benefit from
earlier fits?® of linear, third- and fifth-order terms of the
specific heat to determine T*. The resulting W values are
tabulated in Table I.

The possibility to fit specific-heat data in this way sup-
ports the interpretation of the rise above T* in terms of a
fourth-order quasiharmonic density of states, though it
cannot be considered as a final proof of the whole picture.
A more stringent test could be done by inelastic neutron-
scattering measurements at low temperatures and fre-
quencies, where the temperature dependence of the sig-
nals should enable a separation of harmonic and anhar-
monic contributions. Some indication of an onset of
anharmonicity at a frequency corresponding to about
twice the W calculated from the specific heat has been
seen in vitreous silica,® but this originated from classical

T T T T T
50 \ a Spectrosil (Ref.23) .
e Suprasil W (Refs. 2,24)
: § Suprasil  (Refs. 2,24)
— 20 o Heralux (Ref. I7)
X
E" -
3 10+
—
S T 1
3
]
< 2+ .
1+ _
05+ =
1 1 1 1 1
01 0.2 05 1 5 10
T (K)

FIG. 2. Specific heat (Debye contribution subtracted) over
temperature cubed vs temperature in a log-log plot for different
vitreous silica samples after Zeller and Pohl (Ref. 23), Hun-
klinger and Raychaudhuri (Ref. 2), v. Lohneysen, Riising, and
Sander (Ref. 24), and Buchenau et al. (Ref. 17).
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FIG. 3. Specific heat (Debye contribution subtracted) over
temperature cubed vs temperature in a log-log plot for amor-
phous selenium after Zeller and Pohl (Ref. 23) (solid circles);
Lasjaunias, Maynard, and Thoulouze [Ref. 25(a)] (open
squares); and Brand and v. Lohneysen [Ref. 25(b)] (open circles).

~E

relaxation over the barriers at higher temperatures. Thus
an experimental proof of a fourth-power quasiharmonic
vibrational density of states in glasses is still missing,
though existing data®2’ show harmonic behavior down to
relatively low frequencies.

The quantity w, can be taken from neutron measure-
ments of the vibrational density of states as that frequen-
cy where the density of states exhibits the first maximum.
This maximum has been measured for vitreous silica,!’
for amorphous selenium,?® and for vitreous boron triox-
ide.?

Having W and o,, the quantities 7, €, and M. a? can
be calculated from Egs. (12) or (14). Inserting these
values into Eq. (30), one can calculate the negative 17 and
from this, the displacement x ; of a tunneling state with
a tunnel-splitting temperature of 0.1 K (A,=0.1kp) but
neglecting phonon-dressing effects. The number of atoms
participating in a single localized vibrational or tunneling
mode is not obtained directly. For an order of magnitude
estimate of N, we calculate the ratio M,a*/Md*~N,,
where M is the atomic mass and d the interatomic dis-
tance which were introduced in Sec. III A. For a rough
estimate, it seemed reasonable to choose oxygen masses
and oxygen distances in vitreous silica, because the
bond-stretching frequency of the Si—O bond is much
higher than the bond bending one which determines w,.
For the same reason we chose the oxygen masses and dis-
tances in boron trioxide. In the case of selenium, the van
der Waals distance of 0.38 nm was chosen rather than the
short covalent bonding distance. The results of the esti-
mate are also given in Table I, and show participation
numbers of between 10 and 100 atoms.

V.SUMMARY AND CONCLUSION

To summarize, the soft-potential model’~'* which ex-
tends the well-known tunneling model># to include soft
vibrations in glasses, has been put on a more quantitative
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basis by comparison to specific-heat and neutron-
scattering data. As compared to the standard tunneling
model the soft potential has three additional parameters;
two of these, however, enter only as a product, so that
one has effectively three parameters. The first of the ad-
ditional parameters is the frequency w, of the soft mode
in ordered surroundings. We assign to o, the frequency
of the lowest maximum in the vibrational density of
states of the glass, a procedure suggested by neutron re-
sults.!” Thus @, can be obtained directly from experi-
ment. The other two parameters are the effective mass
M, which characterizes the number of atoms participat-
ing in the mode, and the atomic displacement a at which
the anharmonic part of the potentials begins to prevail.
These latter two parameters enter only in the combina-
tion M,a?. Thus only two parameters are in fact added
to the original tunneling model. One of these (w.) is
directly accessible to experiment while the second one
(M,a?) describes combined effects of vibrational localiza-
tion and anharmonicity and is obtained from the temper-
ature T* where the specific heat changes from ¢, ~ T to
cy~ T°.

Since the comparison indicated from the very begin-
ning a relatively high number of atoms partaking in a sin-
gle soft mode, it seemed reasonable to define the localiza-
tion of the soft mode in terms of its eigenvector [Egs. (4)
and (5)]. The final result of a reasonably localized mode
is based on a comparison of densities of quasiharmonic
soft vibrations on one hand and tunneling states on the
other. Since the latter have larger atomic displacements
than the former, the question arose whether the anhar-
monic interaction with high-frequency modes might in-
validate the comparison. Our results show, however, this
influence to be weak.

The comparison does not give directly the number of
partaking atoms, but rather the product of the effective
mass with the square of a displacement g at which anhar-
monic terms of the potential become dominant. This
quantity characterizes the behavior of the mode at higher
displacements and will thus be useful for the description
of these modes at higher temperatures, possibly even in
the undercooled limit. The number of 10-100 partaking
atoms is obtained via a crude estimate of the length a.

The resulting picture of a tunneling mode of a 10-100
atoms with tunneling distances of less than one-tenth of
atomic distances is not what is often found in translation-
al tunneling in crystalline solids. In those cases, the
motion is localized to one atom and its immediate neigh-
borhood. Nevertheless, the picture of many atoms re-
ceives some support from computer simulation stud-
ies,!>1® where all vibrational excitations of disordered
solids at lower frequencies were found to be extended
modes. Since localization in a computer simulation be-
comes visible only if the number of partaking atoms is
smaller than the square root of the total number of atoms
of the simulated system, and since the number of parti-
cles in these simulations never exceeded 4096 atoms, the
numerical work so far does not contradict a localization
to hundred atoms. Preliminary results of a computer
simulation show localized modes with localization to
about 20 atoms.*°
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