
PHYSICAL REVIEW B VOLUME 43, NUMBER 6 15 FEBRUARY 1991-II

Quantum network theory of transport with application to the generalized Aharonov-Bohm effect
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Quantum transport for resistor networks is developed with a general form factor, where each
node point of the network is associated with a potential. The phase factor of the wave function in
between two adjacent nodes is related to the reAection coefficient along that path. The exact
transmission probability for a generalized Aharonov-Bohm ring is derived for a clean and cold crys-
tal ring of arbitrary two-lead connections. The even- and odd-numbered rings have distinctly
different transmission behaviors. The periodicity of the odd-numbered ring with respect to the
threaded magnetic Aux is shown to be double to that of an even-numbered one. The origin of this
double periodicity is universal and is shown to be due to the standing wave produced by the two
wave paths differing by odd-numbered lattice spacings at the Fermi energy. We also show that the
double periodicity survives temperature averaging. Thus a mere one-atomic-spacing difference in
electron paths of the ring will manifest itself in the difference of Aux periodicity from the mesoscop-
ic scale to the molecular scale.

I. INTRODUCTION

Quantum network theory has been used by a number
of authors' to calculate energy spectra of a variety of
molecules and solids. In this model a free electron moves
on a strictly one-dimensional (1D) path joining at a node
point to other one-dimensional paths. The network is
generally taken in the same topology as the lattice or
molecule under consideration. From such a free-electron
network, Coulson has calculated the density of states for
graphite. Ruedenberg and Scherr have shown that, as a
consequence of momentum conservation, a KirchhoA law
has to be satisfied at each node point. Della Riccia has
used the free-electron network for investigation of dia-
mond. Weger et al. used the free-electron network with
directed bonds to study anomalously high peaks of the
density of states in the P-W structure. Montroll has gen-
eralized the free-electron network to incorporate a
periodic potential associated with the 1D path and to
calculate the surface density of states from such a model.
One of us has extended Montroll's model to investigate
interface states and superlat tice electronic states. A
semiconductor or diatomic network has also been stud-
ied. In either a free-electron network or a network asso-
ciated with a periodic potential, the density of states is
obtained by imposing a Bloch condition when a unit cell
is translated to the next in a crystalline structure. Sur-
face or local disorder can then be considered as an addi-
tional perturbation.

In recent years, the wave motion of electrons in quasi-

one-dimensional mesoscopic structures has been exten-
sively studied. ' ' This is not only due to the advances
in lithographic techniques available for fabricating such
structures but also due to the strong drive of using the
wave nature of electrons for the next generation electron-
ic devices. ' ' The quasi-one-dimensional electron wave
motion exists not only in metals, such as the Aharonov-
Bohm-type conducting rings, but also in GaAs devices,
where ballistic transport has been shown to be possible '

and where the edge channels can be viewed as indepen-
dent 1D current channels. Thus quasi-one-dimensional
electron networks become widely available on mesoscopic
scale in addition to superconducting networks. Such a
mesoscopic theory of electron transport is characterized
by the wave motion of electrons in a tota1 system size of
M atoms, where M is large but is not allowed to take the
M ~ ~ limit and all length ratios in the structure remain
rational numbers. The quantum transport theory is
based on the Landauer-Buttiker formalism, '

where the conductance between two points is determined
by the transmission probability from one point to the oth-
er. The disorder of the material as we11 as the structure
between the two points determine such a transmission
probability.

The treatment of such spatially inhomogeneous struc-
tures favors the use of local schemes, such as tight-
binding or quantum-network models. Both are semi-
empirical in that they require parameters in terms of ma-
trix elements or "bond" potentials, respectively, on a to-
pological net, and both are designed to make efficient use
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of given bulk material properties. The underlying pic-
ture, however, is quite different. The network model is
defined by a local rule resulting from boundary condi-
tions, the so-called node equation, which may vary from
node to node to account for local parameter variations
and different connectivities. This node equation is deter-
mined by the use of a Kirchhoff law at a given node and
there is a forrnal analogy with classical resistor-network
theory. On a microscopic level the net constitutes the
atomic structure, and the wave equation is the single-
electron Schrodinger equation with an appropriate atom-
ic potential, which determines the form factor entering
the node equation. This allows one to simulate any bulk
dispersion relation, not just tight-binding results. We
note in passing that on a mesoscopic level the net may be
related to a superstructure (e.g. , superlattice), and the
wave equation could be the effective-mass Schrodinger
equation with varying band edge. Along these lines a
free-electron-like node equation has been investigated by
Doucot and Rammal for normal-metal networks from
the Cooperon equation in the weak-localization regime.
DeGennes and Alexander have derived a free-
electron-like node equation from the Landau-Ginzburg
equation for superconducting networks.

It is with this advantage for more complicated 1D net-
works in mind that we try to develop here the quantum
network theory of transport for clean metals and semi-
conductors. However, in the transport theory, there is a
major deviation from the traditional quantum-network
theory. When only eigenenergies are to be determined,
the electron wave is allowed to travel in one direction and
hence a Bloch condition can-be imposed when one moves
from one unit cell to the next. In transport theory, there
exist both transmitted and rejected waves on the 1D
path, therefore the Bloch theorem does not apply and one
has to take care of the phase factor in the wave function
properly. This is described in Sec. II for a free-electron
network (Sec. II A) as well as for a network with each
node point associated with a potential (Sec. II B). The
form factor derived for a one-band metallic model allows
a generalization to more realistic materials as well as for
the quasi-one-dimensional (multichannel) case by means
of simple substitution of this factor. The form factor for
a two-band model that is suitable for describing semicon-
ductors is given in Sec. IIC. The Kirchhoff law used
here might be generalized to include different strengths to
different inequivalent bonds and hence different couplings
between the connecting leads and the ring with additional
adjustable parameters. ' '

We apply the theory to a clean and cold generalized
Aharonov-Bohm-type ring with two connecting leads and
derive the general and exact transmission probability for
such a ring of an arbitrary form factor. This is given in
Sec. III with the use of a complex Green's function that is
suitable for extension to include a small amount of disor-
der in the ring. In the case of an exact symmetric ring,
our quantum-network theory of transport agrees with the
result of Buttiker-Imry-Azbel" and the result corre-
sponds to their case of some strong coupling between the
connecting leads and the ring. The transmission proba-
bility at the Fermi level for a ring with an even number of

atoms is periodic in the magnetic flux + with period
+0=bc/e, where &0 is the normal Aux quantum, regard-
less of the two connecting locations. However, at certain
locations, good resemblance of double periodicity, No/2,
will emerge. The result for an odd-numbered ring is quite
different and is shown to have double periodicity regard-
less of the connecting locations. In particular, when the
ring is large and the two paths differ by just one atomic
spacing, our result should have important implications.
This is discussed in Secs. IV and V along with calcula-
tions of transmission probabilities as function of energy
and magnetic Aux in metal and semiconductor rings. We
also evaluate the behavior of transmission probability at
finite temperature and show that double periodicity is not
destroyed. Our conclusions are given in Sec. VI ~

II. NODE EQUATION FOR QUANTUM TRANSPORT

A. Node equation for free-electron model

Let us take a segment between mo and m, node points
as shown in Fig. 1(a) with x =0 at node mo and x =l at
node m&. The solution of the wave function P (x)

0 1

from the Schrodinger equation can be written as a super-
position of two plane waves from the two directions.
Thus

m m

—5 ( )/&
=e ' ' a cos(kx+5 ),

0 1 0 1

where

a =42 B
0 l 0 l 0 I

is the complex amplitude, and

tan6
0 1

~m m Bm m0 1 0 I

+B

1 —R

1+R

A quantum network is generally constructed to be to-
pologically equivalent to that of the crystal, the meso-
scopic structure or molecule of interest. For example, a
generalized Aharonov-Bohm-type ring of radius ro is
shown in Fig. 1(a). Here, we assume that the width of the
wire is small relative to all other length scales of the prob-
lem, so that an idealization of the physical structure can
be made. Each of the M node points is at the center loca-
tion of an atom, which is held fixed, and is connected to
neighboring node points by 1D bonds. The number of
such bonds for a given node defines its coordination num-
bers, which for the present topology varies between 2 and
3. The lattice spacing is 1=2~ro/M. In the segment be-
tween any two nodes, there exists a 1D wave function
that satisfies the Schrodinger equation. Three cases of
1D bonds are considered.
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where 6 is the complex phase factor and
0 1

E=A k /2p.
The function R =B /2 is the reflection

0 1 0 1 0 I

coe%cient facing toward the mo node. If a tangential
vector potential A(x) is also present, an electron moving
from the mo node toward the m, node will accumulate
an additional phase shift S (x), which is given by

0 1

S (x)/A'= I A(x') dx'=
0 1 AC m0 o C'o

(4)

We note that in the earlier quantum-network calcula-
tions, only the eigenenergy is sought after, the electron is
then allowed to move in one direction. In this case,
tan5 =+i for each direction. However, in quantum

0 1

transport, both transmitted and reflected waves are
present, the general complex phase factor is related to the
reflection coefficient by Eq. (3). Thus if we denote
the wave function at node m 0 as itt ( m o )

0 1

=a cos6, the wave function at I
&

is
0 1 0 1

'Sm m ()/
(m, ) =P (mo)e

X (coskl —tan5 sinkl ) .
0 1

it(mo)
m0

where a runs over all segments joining at node mo Isee
Fig. 1(b)j. rI is the parameter representing a 6-function

0

potential, and the v parameter allows one to provide
0 1

different coupling strengths. We will settle for an exact
momentum conservation in equal cross sections of all
bond segments. Thus g =0 and v = 1 leading to

0 0 1

the condition

If the mo node is connected to the I, and m 2 nodes only
as in Fig. 1(a), then there are two segments joining at the
node and the conditions at the mo node require that the
wave functions and their respective derivatives be equal.
The second condition is the statement of conservation of
momentum or Kirchhoff's law, which can be generalized
to include scattering at the node point and different cross
sections of the respective channels so that '

aq. . (x)
gv (6)
n

(mo)
=X

(mo) fi

. dS —ktan6
mO 0 a

(7)

FIG. 1. {a) A generalized Aharonov-Bohm ring with one in-
put lead and one output lead. The system is made of the same
material and each node point is centered at an atom. An elec-
tron from the input node i will sample m nodes clockwise and n

nodes counterclockwise to arrive at the output node o. The
magnetic flux N is threaded at the center {open circle) of the
ring of radius r0, where the total number of atoms is M =m + n

and the lattice spacing between two atoms is I. The numbering
of nodes is from the output node counterclockwise. {b) A gen-
eral case of a node point m0 connecting to several other node
points, where KirchhoA s law at m0 is given by Eq. {7) with
summation a running over all segments. Here, x =0 is located
at the m0 node with the positive coordinate x, toward the m
node.

for any mo, where

df (x)
(mo)=

In the case of Fig. 1(a), Eq. (7) is reduced to
2

g tan5 =0,
o.=1

(7a)

because the two derivatives of phase factors originating
from the magnetic flux cancel each other. A similar
equation for Eq. (5) can be obtained between nodes mo
and m2 so that when Kirchhoff's law of Eq. (7a) applies,
we have, for any mo

2cosklit(mo) —e ' it(m2) —e' it(m, )=0,
where the form factor for free electron is F(E)=cos(kl)
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and 0=(l/ro)(@/%0). The node equation for higher
coordination numbers can be written similarly. 0-

B. Node equation for a single-band model

2iu V(x) = —2y sech yx (9)

It is very important to establish a node equation where
there is a potential associated with each node point. This
has been developed by Montroll. While there are a few
simple potentials, such as a step potential well, that can
provide an easy solution for the wave function along the
segment, a potential well of V(x) such that
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has been found to be more useful. Here p is the electron
mass and y is a parameter. We will model our calcula-
tions based on this potential to illustrate a general result.
The potential is shown in Fig. 2. The solution of the
Schrodinger equation along the segment between mz and

m& is then

FIG. 2. Periodic potential for a 1D chain using the potential
V(x ) given by Eq. (9). The atoms are centered at
x/l=0, 1,2, 3,4 sites and pl=2 (dotted curve), yl=3 (solid
curve), and pl =4 (dash-dotted curve).

(x)=a cos(kx+5 )

——sin(kx +5 )tanhyx, (10)

R —1+I F—
tan6 =+i

mOm1 R +1
0 1

where a and 5 are two complex constants of in-
0 1 0 1

tegration as in the free-electron case, and E=A k /2p.
The solution of Eq. (10) provides one bound state in a
one-atom ring. In quantum transport, Eq. (3) for the
phase factor 6 is modified to

0 1

with

klc =cos +g
2

2

u = — cosg sech cosy 2 yl kl
k 2 2

2

zyl . kl
U = — cosg sech sin

k 2 2

(14b)

(14c)

(14d)

and Eq. (5) to

(m, )=e '
P (mo)(F D tan5 )—,

where

2s(c +u)
1+CO +SU

(12)

(13)

yltang= —tanh
k 2

(14e)

Kirchho(I" s law of Eq. (7) remains true except that k is re-
placed by [I+(y/k) ]. Thus for a closed ring of M
atoms with magnetic Aux threaded in the center as in Fig.
1(a), Eq. (7a) applies and the node equation can be written
as

and

kl
s =sin +

2
(14a)

2F(E)g(m) —e ' 1((m+ I)—e' P(m —1)=0, (15)

where m =1,2, 3, . . . , M and the form factor F(E) is
given by

F(E)= 1+
k

2 —1

1+ y
k

L

2

1 —2 tanh , yl
2

2

coskl — ~ 2+ ~ sech sinkl tanh2yl yl
k k 2 2

(16)

In deriving Eq. (16), all node points are taken to be iden-
tical and potentials are joining at the midpoints between
the adjacent nodes. The eigenenergies E satisfy

with the corresponding wave function g(m) given by
+2niS(m /M)

F(E&)=cos S+2~
M No

(17)
where the + sign denotes the counterclockwise and
clockwise directions of propagation and
S=1,2, 3, . . . , M. The ordering of eigenenergies Ez with
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3-

2-

of the 1D crystal chain with a periodic potential must
have a solution of the form of Eq. (17). When yl/2 is
large, the tight-binding limit is obtained because
F(E)-c&+czE. On the other hand, in the free-electron
limit, F(E)-cos[(V2pE /h )1].) Thus, if we express Es
in a Fourier series, one can rewrite Eq. (17) equivalently
as

2~nEs= g a„cos S+
n=0 0

(19)

-2
0

y 8/2

FIG. 3. Energy band E (in units of A'y'/p) as a function of
yl/2, where —A' y /p is the depth of the potential well and l is
the lattice spacing. The band edges are determined by the con-
dition that ~F~ & l. At yl/2=4. 0, a very narrow band exists in
the negative energy range, where E= —2.0 is the bottom of the
potential well, and continuum states start at E =0. At
yI/2=1. 5, the energy band ranges from E= —1.27 to —0.51
and continuum states start at E=+0.26. For yl/2=0, the
free- electron limit is reached.

so that we can see that whenever Eq. (17) is used, all
higher harmonics of S and 4/4p are included.

We note that any realistic 1D band-structure calcula-
tion can always be rearranged into the form of Eq. (17) so
that a realistic form factor is assured. Equation (17) is
also a result of the Korriga-Kohn-Rostoker method of a
band-structure calculation where lattice structure and
periodic potential are segregated on each side of the equa-
tion. This will allow one to realize multichannel or
quasi-one-dimensional results more quickly. The form
factor F(E) from Eq. (16) is plotted as a function of di-
mensionless energy E(p, /fi y ) in Fig. 4, for various
values of yI /2, in the bound-state region in which we are
interested.
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1.0
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respect to the quantum number S from the lowest energy
upward can be determined by Eq. (17). For example, if
M=8, the ordering is S=8, 1,7, 2, 6, 3, 5,4 for N) 0 and
S=8,7, 1,6, 2, 5, 3,4 if N(0. In the case of the 1D ring
with no magnetic Aux, the band structure is shown in Fig.
3 as a function of the dimensionless parameter yl/2,
where the potential well depth is A y /p and l is the lat-
tice spacing. The bound-state solution can be obtained
by replacing k with ik (We n. ote that any exact solution

C. Node equation for a semiconductor model

To model a 1D semiconductor network, the associated
potential at each node should have two more bound
states in a closed ring. This could be achieved by general-
izing the potential V(x) in Eq. (9) into

V(x)= —Vpsech yx . (20)

However, the solution is then inconveniently expressed in
terms of hypergeometric functions. An alternative and
simpler way is to form a unit cell with two different
atoms corresponding to two different potential-well
depths. This will allow one to express the wave function
in circular and hyperbolic functions. In a diatomic ring
of alternating potential-well depths of yo and y „node mo
of yo is joining at x = lp with node m

&
of y, at x = —l

&
so

that the total spacing between the two nodes is l:lp+ l &.

Thus, for the mo node, the equivalent Eq. (5) is
o
I

0.0 .

-0.5-

—1.5-

-2.0
0.0 0.2

\

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ENERGY

e ' g (mo)(Fp —Dptan6 ) =l( . (m, )

and similarly for the adjacent m, node,

e' g (m, )(F, —D, tan6 )=g (mp),

where

(21)

(22)

FIG. 4. Form factor I' (E) as function of energy E (in units of
fi y'/p) in the bound-state region. Shown here is yl/2=1. 0
(dashed curve), yI/2=1. 5 (solid curve), and yl/2=2. 0 (dash-
dotted curve). When yl/2 is small, F(E) is closer to a cosine-
like function in the allowed energy range determined by
~F~ & 1.0 and a free-electron energy-momentum relation is
reached. When yl/2 is large, F(E) is closer to a linear relation
of E and the tight-binding limit is reached.

and

with

cp(c] +u ] ) (so+Up)s~

C ) +S ) +C) 0 ) +S) V)

so(ci+u i )+(co+uo)s,
2 2

C) +S) +C)Q)+S)V)

(23)

(24)
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Pp
cp =cosklp — sinklptanhyplp, (25a)

III. QUANTUM TRANSPORT THROUGH
A GENERALIZED AHARONOV-BOHM RING

Xp
sp =sinklp+ cosklptanhyplp

2

Xp 2
up = sech yplpcosklp,

(25b)

(25c)

Xp 2
Up

= sech yplpslnklp, (25d)

and

&'&1 FF, —
tan6 =+

0 I R +1Dp
(25e)

Similarly c„s„u,, and U&, are obtained by replacing yp
and lp with y &

and l &. D
&

and F
&

are obtained by inter-
changing the two indices in Eqs. (24) and (25). Since
Kirchhoff's law of Eq. (7a) remains valid at each node
point, the net effect of having two atoms per unit cell is to
replace the monatomic form factor by diatomic form fac-
tor, which can be written as

F(&)=(FOF))' ' (26)

In addition to the condition that ~F(E)
~

~ 1, the band gap
between valence band and conduction band appears at
the energy at which Fo (F, ) is positive while F, (Fo) is
negative. An example of the energy gap for a diatomic
ring is illustrated in Fig. 5. Thus, with a mere substitu-
tion by the diatomic form factor, the node equation for
the semiconductor network can be obtained, using the
corresponding Eq. (11) for the phase relation of the wave
function in the diatomic case, which is given in Eq. (25e).

In the Landauer-Buttiker formalism, the conductance
between two points, say between i and o, depends on the
transmission probability from point i to point o. Refer-
ring to Fig. 1(a), a generalized Aharonov-Bohm ring of
M =m + n atoms is composed of two paths, so that from
point i clockwise, one encounters m atoms (or m nodes)
in the ring while counterclockwise, n atoms. The asym-
metry is given by b = ~m n~. If—we consider such a ring
as an obstacle box between the two connecting leads, then
the transmission probability from point i to point o at
zero temperature will generally depend on the energy of
an incoming electron wave and the magnitude of magnet-
ic flux even though the ring has a perfect crystalline
structure. The two connecting leads can be considered as
a perturbation to a closed ring so that at an arbitrary
node point j, the wave function at the node point 1t(j)
satisfies a matrix equation that can be written as

2FQ(j ) e' 1tj(—j+1) e' P(j ——1)=G(j ), (27)

and

F+i +1 F-
R+1

go =(F+i +1 F)g( 1 ) . —

tf(m +1) (29)

(30)

where j=1,2, 3, . . . , M and

G(j )=5J,[$0—Fg(1))+5, +&[p; Fg(m —+1)] . (28)

An electron moving along the connecting leads will not
accumulate an additional phase factor due to the magnet-
ic flux. lto and p; are wave functions at one lattice spac-
ing from the ring at each connecting lead. From Eq. (12),
we have

CL
CO

0
0
CO 2Fg(j) —e' g(j —1)—e ' g(j+1)=6 M .

g (j) has a solution that can be written as

(31)

Here, a Bloch condition is imposed between node 1 and
node 0 in Eq. (30), since only an outgoing wave exists,
while, between node m +1 and node i, the general rela-
tion of phase factor from Eq. (11) applies. F(E) is the
general form factor whose expressions for metallic and
semiconductor models has been described in Sec. II. The
solution of Eq. (27) can be obtained by introducing a
complex Green's function g (j) that satisfies

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ENERGY

+2m.iSj /M
T

M

""=2M &2M s=i 2F —cos
p

(32)

FIG. 5. Diatomic form factor F= (FOF, )
' for modeling

semiconductor networks. The additional energy gap is deter-
mined by the condition when the product FoF, is negative.
Here yolo/2=1. 5 for Fo (dashed curve) and y, l, /2=1. 45 for
F& (dash-dotted curve) and F (solid curve} has two branches,
connected by a solid bar at F =0 to indicate the band gap. En-
ergy E is in units of fi yo/p and lo=ll =I/2 is used. When the
difference between yo and y, is increased, the band gap in-
creases.

Note that g (j) is the exact 1D Green's function and is
not, a tight-binding Green s function, because F(E) is in
general not linear in energy as mentioned earlier. The
upper (lower) sign is for the counterclockwise (clockwise)
direction of propagation and g( —j)=g*(j). By substi-
tuting Eq. (28) into Eq. (27) and setting j= 1 and m + 1,
respectively, we have two homogeneous equations for
P(1) and g(m +1). After solving for the reflection
coefficient R from the secular determinant, we have
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(1—F') [ ~g (m ) ~' —g'(0) ]
—1

(1—F')[ ~g(m) ~' —g'(0) ]+1—i2+ I —F'g(0)
(33)

Here g(0) is a real quantity. The "in-band" complex
Green's function (~F~ & 1) can be summed in closed form
so that the transmission probability T= 1 —~R~ can be
written as

2~+
4 sin mP+sin nP+2sinmPsinnPcos

No

2 2 2~+ . . 2~%
4 sin mP+sin nP+2sinmPsinnPcos + sinm P sinn/3 —2 cos —cosMP

4o

2 (34)

where

cosP=F(E) . (35)

We note that the Green's function of Eq. (32) also has
"out-of-band" solutions, corresponding to regions with
~F~ ) 1. However, if the ring and the connecting leads are
considered as being made of the same materials, no in-
coming wave with out-of-band energy can be prepared.
The situation would be different if difFerent materials
were used. In that case, Eq. (28) had to be modified and
out-of-band solutions would contribute to the transmis-
sion probability.

Equation (34) provides the exact expression of
transmission probability of the generalized Aharonov-
Bohm ring with an arbitrary form factor and is sym-
metric with respect to the interchange of I and n. The
use of different form factors (hence different periodic po-
tentials) differs in the mapping of this factor into the en-

ergy space only.
In the special case of a symmetric ring, M is an even

number and m =n =M/2, so that Eq. (34) is reduced to
2

MP ~C&
4 sin cos

2 No
2

5

4
cosMP+ cos + + slil M/3

1

4o 4

(36)

By comparing Eq. (36) with Buttiker-Imry-Azbel's re-
sult [Eq. (4.25) of Ref. 11], it is clear that our quantum-
network result corresponds to the use of an 5 matrix of
the form

phase y can be written as

1
can=2 tan

2
sinMP

2~&
cos

0

—cosMP

(38)

IV. AHARONOV-BOHM OSCILLATIONS

The periodicity of the transmission probability at an
incident electron energy corresponding to the highest oc-
cupied state at zero temperature (and hence called the
Fermi energy, EF, here) has been studied by many au-
thors. ' ' ' ' This periodicity depends on whether the
number of atoms on the ring is even or odd. When M is
even, there are two classes of even numbers: EF is locat-
ed at M/4 for 0&) 0 and at 3M/4 for &&0 if
M = (4, 8, 12, 16, . . . , 4X, . . . , ). Similarly, EF is located
at (3M+2)/4 for 4) 0 and at (M —2)/4 for +&0, if
M=(2, 6, 10, 14, . . . , 4N+2, . . . , ). Note that Eq. (34) is
symmetric with respect to 4. When M is an even number
of either class and m =M/2, Eqs. (34) or (36) indicate a
periodicity of No. When M is an odd number, there are
again two classes: EF is located at (3M +1)/4 for &0) 0
and located at (M —1)/4 for @& 0, if
M=(1,5, 9, . . . , 4%+1, . . . , ). Similarly, EF is located
at (M+1)/4 for N) 0 and located at (3M —1)/4 for
4& &0, if M=(3, 7, 11, . . . , 4N+3, . . . , ). In either case,
the periodicity is exactly doubled. This can be shown, for
example, by observing the 4%+1 type of odd numbers.
Substituting the values of EF into Eq. (35), we have

1

3

2
3

2
3

1

3

2
3

2
3

(37)
and

F(EF,&b) 0) =sin ( —,
' —4/4O)~ 27T

(39)

1

3

which represents a case of strong coupling between the
connecting leads and the ring (that is e= —,

' close to the
maximum value of e= —,

' in Ref. 11). As mentioned ear-
lier, a diA'erent coupling can be accomplished by intro-
ducing additional parameters in KirchhofF's law as shown
in Eq. (6). Our result relies on a strict conservation of
momentum with equal cross sections for connecting all
bonds. Finally, in the extreme case where the two con-
necting leads are merged into one, only the second term
of Eq. (28) exists and R = —e '+, where the accumulated

F (EF,N & 0)= sin ( —'+ N /&bo) .
~ 277

M
(40)

sinm p+ = +sinm p (42)

sinn p+ = —sinn p (43)

Thus, in addition to T being symmetric with respect to
the origin of 4, Eqs. (39) and (40) provide that

F(EF,N/No= —0.5+x ) = F(EF,C&/@o=x )
—(41)

for 0&x &0.5. Referring to Eq. (35), this leads to
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and

2~&
cos

0

2~@
cos

—0.5++ 0
(44)

where m is odd and n is even [change signs in Eqs. (42)
and (43) if m is even and n is oddj and P+ (P ) is positive
(negative). Therefore, both the numerator and denomina-
tor of Eq. (34) are unchanged so that

T = —0 5+x =T =x
+o +o

(45)

We note that this double periodicity is exact for any com-
bination of (m, n) pairs and M values, regardless of the
choice of the form factor. It is thus a universal double
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FIG. 6. Transmission probability T(E) as function of energy
E, in units of fi y /p, in the energy band of one-band metallic
model with yl/2=1. 5. Here N/No are 0 (upper solid curve),
0.1 (dashed curved), 0.35 (dash-dotted curved), and 0.45 (lower
solid curve). The ring has M=16 atoms with symmetric leads
(m =n =8). Thus at %=0, T=1.0 at all 16 eigenenergies (lo-
cated at each peaks, which is doubly degenerated except at the
two band edges) as in the case of the resonant tunneling. T
reaches a minimum value of 0.64 in between two eigenenergies.
As N increases from zero, any doubly degenerated eigenenergy
state splits into one higher and one lower energy state. Thus at
N/No=0. 1, T has peak locations moved to the new eigenergies.
Now T =0 at eigenenergy locations of N =0 and the peak
values of T are reduced at N/+0=0. 1. The combined result ap-
pears as if a "compression" of transmission probability from
any two eigenenergies of %=0 by the magnetic flux. As N in-

creases further, the compression is increased so that the two
peaks, one from the higher split state of the lower quantum
numbered state and one from the lower split state of the next
higher quantum numbered state, are merged to form a single
peak as in the case when N/No=0. 35. As N increases to
N/+0=0. 45, the merged peaks are reduced drastically and at
+/+0=0. 5, T=0 at any energy. As @ increases further from
N/@0=0. 5, the trend is reversed so that at 4/No=1. 0; T
reaches a complete cycle. The magnetic compression is uniform
in the entire energy range because the T peaks have the same
value. If the number of atoms in the ring is increased, the T
peaks will be more densely packed in the same energy band.

periodicity.
In particular, we are interested in the case of the

closest possible configuration of a symmetric ring. Ex-
perimentally, the Aharonov-Bohm effect has been mea-
sured and the existence of both single and double periodi-
city in a mesoscopic sample has been established. ' The
No/2 periodicity has been attributed to various sources
by other authors. "' '' ' ' In disordered materials, the
+o/2 period of transport has been related to the interfer-
ence of conjugated waves. The effects due to impurity
scattering, temperature, and electron-electron interaction
have been reported. ' ' ' ' However, here we show that
even in a clean crystal ring of odd-numbered atoms at
zero temperature, double periodicity in transmission
probability is exact at any connecting configuration. In-
cident electrons at the Fermi energy of an odd-numbered
ring will arrive at the output node with totally cancelled
amplitudes and the resultant standing wave along the in-

put lead and the ring is similar to the backscattering in-
terference for a disordered ring that produces the dou-
ble periodicity. However, our standing wave is produced
by a fixed geometry on a crystalline ring. This additiona1
possibility for the origin of double periodicity can be ap-
plied to Aharonov-Bohm effect on a mesoscopic scale as
we11 as on a molecular scale. In a thick disordered ring,
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FIG. 7. Transmission probability T (E) for an even-

numbered metal ring with asymmetrical connecting leads. Here
M = 16 with m =7 is shown. The magnetic flux values are
N/No=0 (solid curve), 0.25 (dashed curve), and 0.50 (dash-

dotted curve) ~ The "geometrical compression" on the transmis-
sion probability due to the two different electron paths along the
ring is nonuniform in energy. As shown here in the case of
N =0 the reduction of the T value is much greater at the energy
E near 1.02 as compared to any other location. This is due to
the total cancellation of the two amplitudes from the two paths
at energy E=1~ 02 (the Fermi level). As the incoming electron
energy starts to deviate from that value, the degree of cancella-
tion is reduced. This explains the "envelope" of T with respect
to energy as shown by the solid curve. When magnetic flux is

applied, the wavelength of propagation along the two paths will

be increased (decreased) if +/No is positive (negative). The de-

gree of cancellation of amplitudes at the output node is then al-

tered. Thus the combined geometric and magnetic compres-
sions of T results in complicated curves obtained as shown here.
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FIG. 8. Transmission probability T(E+) at Fermi energy
as a function o app ie maf l' d gnetic flux N for an even-numbere

f M=36000 and even-numbered paths to themesoscopic ring o
m =9000t' 1 ads with m =18000 (solid curve), m =

(outer dashed curve). Single periodicity of Np is obtained for a
cases. The value of T is generally close to 1.0 until N/Np is
close to +0.5. owever, we n0.5. H r we note that the best transmission is
obtained when m =2.

FIG. 10. Phase of the reflected wave as function of the ap-
pie ml' d magnetic flux in a one-lead ring acco '

g q.rdin to E . (38).
r EHere M = 17 and yl /2= 1.5. The incoming electron energy

in units o y p isf A / ' E=1.00 (solid curve), 1.02 (dashed curve),
and 1.04 (dash-dotted curve). Note that those energies are

E=1.049 andbounded by the two adjacent eigenenergies of E =
0.927 of the ring at 4=0, which merge into = . ainto E=0.991 at
N/@p=0. 5. The sharp switch occurs whenever the incoming
electron energy is in resonance with one of the eigenenergies of
the ring at that particular flux [Eq. i17)].

the electron paths, composed of electrons traveling be-
tween elastic scattering centers, can be viewed as many

d dd-numbered atoms. A question then
arises because the Fermi energy of each of those rings is
d'ff t from all others and from the Fermi energy o t ei eren

h wn thatthick disordered ring. However, it can be shown a
when M is large, the double periodicity remains close to
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FIG. 9. Transmission probability T(EF) as a function of ap-
plied magne ic uxp

'
d g

t' flux for an even-numbered mesoscoic ring of
M=36000 as in Fig. 8 but with odd-numbered paths to the con-

=13501necting ea s. ere m-l d H m = 17 999 (outer solid curve), m =
curve) m =4499

(inner dashed curve), and m =1 (inner solid curve). Note that
low transmission region is s-i.te
4 /C p=0. Again, single periodicity is obtained in all cases. As

velops a kind of double periodicity gradually. However, even at
m =1 no exact double periodicity is achieved.

the exact result of Eq. (41), even if the Fermi energy is
shifted upward or downward by a small fraction o t e
total energy range as evaluated in Eq. 34).

V. NUMERICAL RESULTS AND DISCUSSION
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FIG. 11. Transmission probability T(E) for the odd-
numbered ring is shown here with M = 17 and m ==8. The mag-
netic flux is N/+p=O (solid curve), 0.25 (dashed curve), and
0.50 (dash-dotted curve). The results indicate the presence o
both geometrical and magnetic compressions.

We have been investigating the Aharonov-Bohm ring
in terms of the underlying atomic structure. As opposed
to mesoscopic descriptions, we are thus required to con-
sider the ring and its connecting leads in terms of a

tary units. If there are M nodes in the ring, the leads
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FIG. 14. Transmission probability T(E) as a function of in-

coming electron energy, for a semiconductor ring, using the
form factor derived in Eq. (26). Here M=16 and polo/2=1. 5

and y&l~ /2=1. 45 are used for a symmetric ring. The magnetic
Aux is N/+0=0 (upper solid curve), 4/+0=0. 1 (dashed curve),
N/+0=0. 35 (dash-dotted curve), and N/No=0. 45 (lower solid
curve). The energy E is in units of p/A yo and lo=l, =l/2.
The result is similar to that of a metal ring as illustrated in Fig.
6 except that there exists an energy gap as described in the text.

E. One-lead metal ring

In Fig. 10, we show the phase of a rejected wave from
the extreme one-lead ring according to Eq. (38). Whenev-
er the incoming electron energy from the lead is equal to
one of the eigenenergies of the ring, the rejected wave
will accumulate an integer phase factor of 2~. Thus, if
the incoming electron energy is steadily increased from
one eigenenergy to the next higher one, while keeping the
magnetic Aux constant, the phase of the rejected wave
will decrease by a factor of 2~ during that period. Thus,
one can consider the one-lead crystal rings as a "phase
valve, " where the phase of the reAected wave can be
"tuned" by the threaded magnetic Aux. Here we show
that for a given incoming electron energy, the phase of
the rejected wave gradually increases with the applied
magnetic Aux and then sharply decreases by a factor of
2~ when that incoming energy becomes in resonance
with one of the eigenenergies of the ring. Such sharp
phase switching is not guaranteed in the disordered ring
because the electron energy may lie in the band gaps of
the metallic ring.

F. M odd

For an odd-numbered ring, it is not possible to have
exact symmetrical lead positions. The configuration
closest to a symmetric ring is when 6 = ~m

—n
~

= 1. Thus
the incoming electron wave incident on the j =I +1
node will travel on two paths differing by at least one
atomic spacing: 6 is odd for any m. In the case of 5= 1,
the transmission probability is zero at the eigenenergies
of the ring when (I(=0. The behavior of T(E, (I&) as a
function of E and N is shown in Fig. 11. The combined
geometric and magnetic compressions on T(F. ) is evident
as in Fig. 7. Double periodicity as derived in Sec. IV is
shown in Fig. 12 for M=36001. This is to be compared

with the single periodicity for M=36000 as shown in
Fig. 8.

G. Finite temperature

At finite temperature, the transmission probability is
averaged over a small energy range so that'

(46)

where f is the Fermi distribution. Equation (46) is calcu-
lated and shown in Fig. 13 for various values of tempera-
ture for an odd-numbered ring. We show that the double
periodicity can survive the temperature averaging. Simi-
larly, ( T) for an even-numbered ring survives the tem-
perature averaging and remains at the single periodicity.

H. Semiconductor ring

Finally, the transmission probability in a semiconduc-
tor ring can also be evaluated using the form factor de-
rived in Eq. (26). The behavior of T is similar to that of a
metallic ring except that the energy range is split into two
regions separated by a gap as one would expect from a
semiconductor material. This is shown in Fig. 14.

VI. CONCLUSIONS

We have formulated an exactly solvable quantum-
network theory of transport by properly relating the
reAection coefficient with the phase factor of the wave
function associated with the 1D path between two nodes.
The node equation approach, derived from the use of
Kirchhoff's law, has been shown to be convenient for cal-
culating the transmission probability and is useful for
evaluating complicated networks. The use of form fac-
tors allows one to model metallic as well as semiconduc-
tor networks and even realistic materials, provided such a
factor can be obtained. Thus the network theory is based
on an explicit structure model.

The exact transmission probability for generalized
Aharonov-Bohm ring is obtained for a clean crystal. The
Green's-function approach shown in the derivation al-
lows one to generalize to include some disorder in the
ring as well as different types of connecting materials.
The even- and odd-numbered rings have a distinctly
different transmission behavior. The double periodicity
in the odd-numbered ring is exact. It is a universal dou-
ble periodicity regardless of the two connecting locations
and the form factor used. So long as crystallinity is main-
tained in the sample, this double periodicity will prevail
from mesoscopic scale to molecular scale. The origin of
periodicity is the standing wave produced by a crystalline
ring and that this double periodicity survives the temper-
ature averaging. The fact that electrons travel on two
large paths differing by just one atomic spacing before
joining together can result in totally different behavior in
quantum transport.
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