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We have measured the elastic-scattering rate of high-frequency acoustic phonons in Si by combin-
ing the phonon-imaging technique, a unique sample geometry, and Monte Carlo calculations that
incorporate the full elastic anisotropy of the crystal. A slotted crystal allows us to separate the
purely scattered component of a heat pulse from the combined scattered and ballistic components.
A series of Monte Carlo simulations is performed to predict the ratio of scattered to ballistic pho-
nons for varying scattering strengths. Thus the experimentally measured fraction of scattered pho-
nons can be compared with these simulations to yield a scattering rate. This procedure is necessary
in order to take into account (1) the distribution of phonon frequencies, (2) the huge anisotropies in

heat Aux associated with phonon focusing, and (3) lifetime of the phonon source. For a high-purity
Si crystal, the measured rate is found to be within experimental uncertainties of that predicted for
mass-defect scattering from naturally occurring isotopes.

I. INTRODUCTION

Historically, the most important method for character-
izing the scattering of phonons in solids has been thermal
conductivity. A temperature dependence of the conduc-
tivity yields the frequency dependence of the scattering
rate because the mean frequency of a Planckian distribu-
tion of phonons increases linearly with the lattice temper-
ature. This "spectroscopic" technique has provided valu-
able information about scattering from defects in many
crystalline and disordered solids. '

The simplest "mass defects" in a crystal arise from the
natural occurrence of atoms with differing isotopic mass.
Nevertheless, very few quantitative measurements of iso-
tope scattering have been performed —largely because
extrinsic defects can easily dominate this effect. The clas-
sic observation of isotope scattering was performed on
Ge, employing a special isotopically pure sample for corn-
parison.

With the advent of heat-pulse techniques, which have
the ability to detect ballistic phonons of selected polariza-
tion (longitudinal or transverse) and propagation direc-
tion, one might hope to make systematic measurements
of impurity and isotope scattering. Specifically, it should
be possible to separate the ballistic and scattered com-
ponents of a heat pulse by their differing times of flight
across the crystal. Indeed, nearly all heat-pulse experi-
ments performed at liquid-helium temperatures show a
sharp pulse at the ballistic transit time and a long "tail"
due to phonons which have scattered in the bulk. An ex-
ample of this experimental situation is the heat-pulse sig-
nals in Si shown in Fig. 1, obtained for slightly different
propagation directions, as described below. The extreme
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FIG. 1. Detected phonon intensity vs time for a point on the
FT caustic (upper curve) and just off' the FT caustic (lower
curve) showing the large change in the ballistic signal intensity
for a small change in propagation direction (AB = 5'). The posi-
tions of the two points are indicated in the inset.

variations of ballistic flux with propagation direction im-

ply that a simple ratio of scattered to ba11istic signals (ap-
propriately integrated), does not directly yield the
scattering rate.

Actually, there are several difficulties in determining
the scattering rate from this time-of-flight information:
(1) determining the phonon frequencies, (2) accounting
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for spatial anisotropies (i.e. , phonon focusing), and (3)
knowing the lifetime of the phonon source (i.e., hot-spot
effects). We now briefly discuss each of these effects and
their remedies.

Phonon frequency is the essence of the problem.
Scattering of phonons from mass defects is an example of
Rayleigh scattering, which is given by the well-known
formula

Am
Ao =ca

m

2 (2'�)
4mu

where ~ is the scattering time, v is the phonon frequency,
a is the lattice constant, U is the sound velocity, m is the
mass of the host atom, Am is the difference in host and
defect masses, and c is the concentration of defect masses.
This formula assumes a simple monatomic lattice with
one type of defect. The key point is that the frequency
dependence is extremely rapid, so an experiment aiming
to determine the scattering rate must determine frequen-
cy very carefully. The nature of a heat-pulse experiment
implies that a distribution of frequencies is present, so
this means that some modeling is required in the analysis.
(Thermal conductivity, which involves the equilibrium
Planck distribution of phonons, also suffers from this
fate. ) As we shall see, the frequencies in a heat-pulse ex-
periment can be greatly restricted by appropriate selec-
tion of a phonon detector.

The second difficulty involves elastic anisotropy. It is
well known that a point source of heat emits phonons in a
highly anisotropic distribution —an effect known as pho-
non focusing. This greatly impacts the measurement of
the scattering rate because the intensity of the ballistic
signal depends sensitively on the direction chosen be-
tween the heat source and detector, and even on the sizes
and shapes of the source and detector. That is, the
ballistic-to-scattered ratio depends critically on the ballis-
tic propagation direction. To illustrate this effect, Fig. 1

shows the large change in the ballistic signal of fast trans-
verse (FT) phonons when the propagation direction is
changed only a small amount —on and off a phonon
caustic.

Immediately one might wonder if the scattered phonon
Aux exhibits any anisotropy. Previous work by Ramsbey
et al. and by Shields et al. has shown that phonons
scattered just a few times retain some of the anisotropy
exhibited by the ballistic phonons. This so-called "chan-
neling" effect must be properly accounted for in a mea-
surement of the scattering rate.

The third major difFiculty is determining whether the
tail of the heat pulse is due to scattering in the bulk or to
a finite lifetime of the phonon source. It is known that at
high excitation levels, whether from Ohmic heating or
laser excitation, a heated region of diffusive phonon prop-
agation (a "hot spot") may be formed which can have a
lifetime longer than the excitation pulse. ' Also, direct
photoexcitation of a semiconductor can produce excited
electronic states (e.g. , excitons and electron-hole droplets)
with significant lifetimes.

In view of these hurdles, it is little wonder that quanti-

tative measurements of scattering rates are rarely at-
tempted using the heat-pulse technique. Notable excep-
tions are the recent works of Held et al. " and Fieseler
et al. ,

' who employ the phonon-imaging' ' technique
to study the scattering of phonons in GaAs.

In this paper we present some key refinements of the
heat-pulse method which resolve the aforementioned
problems. (1) Frequency selection is imposed by using a
superconducting tunnel-junction detector, and the
response of this detector is incorporated into the theoreti-
cal modeling. (2) Precise control of the phonon propaga-
tion direction is achieved by fabricating a tiny detector
and using a focused laser beam as an accurately posi-
tioned excitation source. Raster scanning the laser
beam —i.e., phonon imaging —permits a selection of ap-
propriate phonon-focusing structures. The theoretical
modeling contains the full anisotropy of the crystal. (3)
To avoid effects of source lifetime, we employ a special
sample geometry to spatially isolate the scattered com-
ponent of the heat-pulse signal, rather than relying on the
exact temporal shapes of the heat pulses.

The present measurements are the first, we believe, to
measure the elastic scattering rate in an ultrapure crystal
of silicon. The measured rate is very close indeed to the
isotope scattering rate predicted for this crystal. These
experiments also forecast a basic method for quantitative
measurements of phonon scattering from extrinsic de-
fects.

II. THE EXPERIMENT

A schematic diagram of the basic experiment is shown
in Fig. 2(a). A phonon detector is centered on one face of
a silicon crystal, ' which is immersed in liquid helium at
T = 1.7 K. A 2000-A copper film is deposited on the op-
posite face, which is locally heated by a focused laser
beam. Both surfaces are polished with 1 pm diamond
paste followed by a Syton polish. As in the standard
phonon-imaging experiment of Northrop and Wolfe, '

the laser beam may be fixed, or scanned across the face of
the crystal.

The silicon crystal is slotted about halfway through
with a "gentle" string-saw cut. When the laser spot is
behind the slot, as viewed from the detector, the ballistic
Aux is completely blocked, as indicated in Fig. 2(b). For
this laser-spot position only scattered phonons are detect-
ed. With a slight displacement to the right, both scat-
tered and ballistic components become observable, as
schematically shown in Fig. 2(c). With this information
it is possible to directly determine a ratio of ballistic-to-
scattered phonon Aux.

Before describing the results, we mention a few per-
tinent details in the experiment. The laser is a cavity-
dumped Ar+ (A, -5000 A) with a pulse width of 10 ns and
a typical incident pulse energy of 10—50 nJ. The beam is
focused to a spot about 10 pm in diameter and raster
scanned by means of galvanometer-mounted mirrors un-
der computer control ~ The detector is a PbBi supercon-
ducting tunnel junction with 10X10 pm sensitive area,
as described by Hebboul and Wolfe. ' The supercon-
ducting gap can be adjusted by varying the ratio of Bi to
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Pb. Most of the data are taken with a measured super-
conducting gap of 26 =2.8+0. 1 meV, which implies that
only phonons with a frequency above 2b, /h =680+25
GHz are detected. A boxcar integrator selects the time
interval over which the phonon signals are recorded,
which in these experiments is usually set to be between tb

and 1.5tb, where tb is the ballistic time for the phonon
mode being considered. The boxcar output, which is pro-
portional to the heat Aux for a given laser-spot position,
is stored in a computer.

The crystal is cut with (110) faces for the detector and
excitation surfaces, making the depth of the slot not criti-
cal, since the phonon intensity is smoothly varying per-
pendicular to the slot boundary. A wide-angle phonon-
focusing pattern for an unslotted silicon crystal is shown
in Fig. 3(a). The bright areas indicate regions of high
phonon Aux. ' For the sample dimensions shown in Fig.
2(a), only a small section at the center of this pattern is
observable, and the slot allows only observation of the
right half of the ballistic pattern. Figure 3(b) shows an
experimental image for the slotted crystal. The ballistic
signals on the right side of the image show the fast trans-
verse (FT) ridge bounded by two caustics. The left side of
the image (behind the slot) shows the much weaker scat-
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FIG. 2. (a) Schematic of the "slotted" sample geometry. The
slot in the crystal is positioned approximately halfway between
two (110) faces and extends approximately halfway into the
crystal. The detector is deposited on the front face while the
laser is raster scanned across the back face. (b) Top view of the
sample geometry showing the path of a once-scattered phonon.
(c) Schematic of the expected intensity distribution for this sam-
ple geometry.

FIG. 3. (a) Experimental phonon image of a 9.4X5.6X2.5
rnm' unslotted Si crystal with (110) excitation and detection sur-
faces, showing the phonon-focusing pattern obtained with a
detector with an onset frequency of 820 GHz. (b) Experimental
phonon image of the slotted sample shown in Fig. 2(a). The slot
boundary is along a vertical line through the center of the image
and the scattered phonons can be seen weakly on the left side of
the image. The image was taken using a tunnel-junction detec-
tor with a 680-6Hz onset frequency. The intensity of the pho-
nons on the left side of the image has been photographically
enhanced to accentuate the scattered phonons. (c) Phonon in-
tensity vs angle for the line marked in image (b). The ledge ratio
R is the ratio of the scattered to total phonon intensities at the
slot.
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tered Aux. A weak continuation of the FT ridge behind
the slot is the "channeling effect" described in Refs. 5
and 6.

To get a quantitative measure of the phonon scattering
in this crystal, we examine a single horizontal line across
the image —through the center of the FT ridge. (Actual-
ly, the vertical scan is turned off; and a horizontal line
scan is slowly recorded. ) The result shown in Fig. 3(c)
may be compared to the schematic drawing in Fig. 2(c).
A more complete picture of the heat fIux may be
displayed as a pseudo-three-dimensional (3D) representa-
tion of the image, as in Fig. 4. For quantitative informa-
tion, however, we concentrate on the single line scan in
the (100) plane, Fig. 3(c).

From this data, we define a "ledge ratio" R =S/H,
which indicates the fraction of scattered Aux, as shown in
Fig. 3(c). Ideally, for two laser-spot positions displaced
infinitesimally to the left and the right of the slot bound-
ary, the scattered Aux should be nearly the same. Howev-
er, since the slot does not produce an infinitely sharp
cutoff (due to the finite source size and subsurface crystal
damage in the slot proximity), we extrapolate the signals
on either side of the slot, as shown, fitting the data to ex-
ponential functions. A vertical line is drawn through the
midpoint of the ledge dropoff, and the intersection of this
line with the fitted curves determines S and H.

We find that the ledge ratio is relatively insensitive to
adjustable experimental parameters such as power level,
gate width, and surface preparation. Figure 5(a) shows
the dependence of the ledge ratio on excitation power for
two experiments employing detectors with different onset
frequencies as indicated in the figure. As expected, the
experiment with the 850-GHz onset frequency shows a
larger ledge ratio (stronger scattering) than that with the
680-GHz onset frequency. For an order of magnitude
change in power, R changes only about 2S%. This sug-
gests that the frequency distribution of the detected pho-
nons is not changing significantly over this range of exci-
tation powers. We shall see from a Monte Carlo calcula-
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tion described in the next section that the detected fre-
quencies fall in a narrow region above the onset frequen-
cy of the detector.

As shown in Fig. 5(b), the ledge ratio does depend on
the chosen gate width. For a narrow sampling window
centered around the ballistic time of Right tb, the scat-
tered Aux is largely excluded. However, for sampling
gates beginning just before the ballistic onset time tb and
having widths between about 0.2tI, and 0.6th the ledge ra-
tio is nearly constant. At gate widths larger than 1.6tI,
the ledge ratio is observed to rise slowly. This increase
may be partly due to phonons which have scattered off
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FIG. 4. Pseudo-3D representation of the experimental image
shown in Fig. 3(b). This view is from the left side of the image
looking toward the slot boundary; x and y scan directions are
shown in Fig. 2. The scattered signal is in the foreground and
the ballistic features are in the background.

FIG. 5. (a) Power dependence of the ledge ratio. The data of
Fig. 3(c) were taken at a power of 3 mW as indicated by the
vertical dashed line. Data for both 680- and 850-GHz tunnel-
junction detectors are shown. (b) Gate-width dependence of the
ledge ratio. The vertical dashed line indicates the value used for
the data of Fig. 3(c). The rise in R for a gate width larger than
0.6th probably corresponds to the detection of phonons scat-
tered from the sidewalls. These data were taken using an 850-
GHz tunnel-junction detector.
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the side surfaces of the crystal. By choosing a gate width
of 0.5t&, we therefore exclude this sidewall scattering.
For this restricted sampling time, and for these rather
small values of 8, the scattered signal 5 is primarily due
to singly scattered phonons.

Therefore, by choosing a restrictive time window for
observation, we are minimizing effects due to surface
scattering, which depend on sample geometry and bound-
ary conditions. Scattering at a surface may be specular
or diffuse, ' ' depending on the surface preparation, and
the transmission of the phonons depends on the adjoining
medium (e.g., metal film, liquid helium, vacuum). In our
experiment, scattering from the excitation or detection
surface would involve at least three straight phonon
paths before reaching the detector, with one of them in
the detector-to-source direction, implying that the sur-
face scattered phonons will contribute to the detected
flux mainly at times later than our chosen time gate.

III. THEORY OF ELASTIC SCATTERING
IN AN ANISOTROPIC MEDIUM

Although the simple formula (1) for the mass-defect
scattering describes the essential feature of the phonon
scattering by isotopic atoms, some modifications are
needed to apply it to the quantitative studies of elastic
scattering of phonons in silicon. In addition, for a Monte
Carlo simulation of the scattering, we also need a formula
describing the probability of scattering for particular
phonon modes and wave vectors. So, here we briefly re-
capitulate the derivation of the isotope scattering rate of
long-wavelength acoustic phonons in an anisotropic
medium.

According to the lowest-order perturbation theory, the
scattering rate I (=r ') of phonons by randomly distri-
buted isotopic atoms is given by

where Vo is the volume per atom and the phonon density
of states D per unit volume is given by

D(co)= g I(2~)' ~ v„'

where the integral is taken over the solid angle 0,& sub-
tended by the constant-frequency (cu&=co) surface of the
phonon k in wave-vector space and v& is the phase veloci-
ty. Hence, by putting

dA~

(U') ' . J~ 4'
we find

Vo co~
4

I ~= g =Aov~ .
4~ (U3)

This is the necessary refinement of Eq. (1). Equation
(8) depends on A, only through the frequency coi and
hence the total isotope scattering rates is independent of
the mode and propagation direction of the initial phonon.
Numerically, we obtain the result 2 0

=2.43 X 10 sec
for silicon.

For the Monte Carlo simulation, we have to keep track
of each phonon, possibly scattering several times before
reaching the detector. For this purpose, we also need to
know the probability for a phonon to be mode converted
and scattered in a specified direction in wave-vector
space. This probability y&& for the scattering from pho-
non k to phonon A,

' is derived from Eq. (2) be rewriting it
as

d A~.r,=y f )„,.4'
J

Thus we get the polarization-vector-dependent result

2%
(2)

where A, =(k, j) specifies the wave vector k and mode j of
a phonon, X is the number of atoms, g is a factor measur-
ing the magnitude of mass fluctuations caused by isotopic
atoms, co=2~v is the angular frequency, and e is the po-
larization vector. More explicitly, the factor g is defined
by

g=gf; 1—

where f, is the fraction of ith isotope with mass m, and
m =g;f;m, is the mean atomic mass. If we use the fol-
lowing equation, valid for a cubic crystal:

y (e, ).(e, )pF~=-,'n.p

where I'& is some general function depending on A., we
can eliminate the polarization vectors from Eq. (2) and
obtain

ri.=
6

Vog~~D(~i. ),

This equation indicates that the scattering is quite aniso-
tropic, i.e. , the intramode scattering occurs predominant-
ly in the forward and backward directions but the inter-
mode scattering mainly perpendicular to the initial prop-
agation direction. We also find that the scattering into
TA phonons dominates the scattering into LA phonons
due to the presence of the factor of U &. . More precisely,
the relative magnitudes of the scattering into the three
acoustic branches in silicon are 0.531, 0.376, and 0.093
for the scatterings into slow transverse (ST), FT, and LA
branches, respectively. Here we note that the
polarization-vector dependence of the individual scatter-
ing events, as shown in Eq. (10), is the origin of the chan-
neling of elastically scattered phonons observed recently
by phonon-imaging experiments. ' The isotropic ap-
proximation for the scattering, i.e., the elimination from
Eq. (10) of the polarization-vector dependence in the
scattering rate by setting ~ei„.ei ~

=
—,', has been shown to

be inconsistent with the strong channeling in the experi-
mental data.

The Monte Carlo simulation of phonon propagation in
the slotted geometry is performed with procedures simi-
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lar to those described in Refs. 5 and 6. A large number of
starting phonons are assumed to be excited at a surface
point of the (110)-oriented silicon sample. Each phonon is
assigned a frequency higher than the onset frequency of
the detector weighted by the Planck distribution with
an appropriate value of heater temperature (e.g. , 10 K).
As will be shown later, the Monte Carlo result is rather
insensitive to the values of the heater temperature. The
phonons are emitted randomly into the crystal with an
isotropic distribution in wave-vector space. The relative
population of the initial phonons of each mode is
specified to be proportional to the density of states
(-Uz ). I z is used to generate the time for the first
scattering event and the initial group velocity is used to
find the position at which the scattering event occurs for
each phonon. The surface position and arrival times are
recorded for phonons crossing the detection surface of
the crystal. Phonons crossing the slot or those traveling
longer than an assumed time of fiight (1 5th, wi.th tb as
the ballistic time of Aight for FT phonons traveling the
sample thickness along the [110] direction) before hitting
the surface are discarded. If scattering occurs inside the
crystal, we use y&& to calculate the mode and propaga-
tion direction of the scattered phonon and the process is
repeated. We assume that the sample is infinitely extend-
ed parallel to the surfaces; i.e., no scattering at the
sidewalls is assumed. If a phonon crosses the excited
crystal surface it is also discarded by assuming that liquid

(a)

He is a highly absorbing medium of phonons. In this
manner we have counted 3 X 10 phonons hitting the rec-
tangular area limited by ~tane

~

~0.6 and ~tane~~ ~0.3
(e and e are measured from the [110]direction) on the
detector surface of the sample within the assumed time
gate. For each phonon we have recorded the x and y
coordinates, arrival time, frequency, and number of
scattering events.

The two-dimensional distribution of the phonons on
the detector surface is shown in Fig. 6(a). In this figure,
the density of dots is proportional to the phonon intensi-
ty. In Fig. 6(b) the corresponding pseudo-3D representa-
tion for the phonon intensity distribution is plotted. A
continuation of the FT ridge behind the slot is clearly evi-
dent. This is due to the channeling effect of the scattered
FT phonons, as previously observed for (100)-oriented sil-
icon. Comparison to the experimental image in Fig. 4
shows that the FT ridge is wider than the calculation.
This indicates that the dispersive shift of the FT phonon
caustics is significant even for phonons with a frequency
of 0.7 THz in silicon. A detailed discussion on the
dispersive shifts and the effect of dispersion on the iso-
tope scattering in silicon is planned for a separate paper.

As stated above, the Monte Carlo results are rather in-
sensitive to the chosen value of the heater temperature.
Line traces across the slot boundary for two different
values of the heater temperature (10 and 30 K) are shown
in Fig. 7. As can be seen from the figure, the ledge ratio
is virtually identical for the two traces, despite the large
temperature difference. This similarity can be explained
by examining the frequency distribution of the detected
phonons as shown in Fig. 8. Both total and scattered Aux
are shown for each temperature. The corresponding
curves for 10 and 30 K are remarkably similar consider-
ing that the peak of the Planck distribution scales linearly

Theory
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FIG. 6. Monte Carlo calculations assuming elastic scattering
at the theoretical isotope scattering rate and the slotted sample
geometry shown in Fig. 2(a). (a) Calculated phonon flux with
the slot at the center. (b) Pseudo-3D representation of the im-
age in (a).

tan 8

FIG. 7. Theoretical line scans for temperatures of 10 and 30
K, showing the insensitivity of the ledge ratio to source temper-
ature.
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with temperature. Also, remember that the ledge ratio is
determined by the ratio of scattered to total phonons.
The high-frequency phonons are selected against by both
the signal time gate and the increased scattering rate of
the higher-frequency phonons. This is because the
higher-frequency phonons have slower velocities (due to
dispersion) and scatter more often, both leading to longer
travel tii.~es from source to detector. The 0.5th time gate
diminishes -4e signal due to these higher-frequency pho-
nons.

IV. DETERMINATION OF THE SCATTERING RATE

A brute force approach to determining the scattering
rate in our sample of silicon would be to adjust the
scattering rate in the Monte Carlo simulations until there
is a good overall agreement with the experimental image.
This is not practical, at least at the present time, because
exact registration of the experimental and theoretical
focusing patterns would be required, and least-squares
fitting would imply many iterations of the time-intensive
Monte Carlo simulations. Indeed, an entire array of
64000 data points is hardly necessary to determine a sin-
gle characteristic scattering time ~. The next simplest ap-
proach would be to compare theoretical and experimen-
tal line scans in the (100) plane, as we have plotted in
Figs. 3(c) and 7. Still, this requires significant fitting time.
Our present approach is to make use of the (100) line
scan, but, as previously discussed in Fig. 3, to reduce this
information to a single representative number —the ledge
ratio, R =S/H. (Our determination of R, however, does
make use of most of the data along the line scan. ) We
have seen that for a given geometry and time selection,
this parameter is principally determined by the bulk
scattering time ~.

Figure 9(a) shows a separation of the calculated Aux
into its ballistic and scattered components, assuming

Theory
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' = A v" with 3 = 2 o and a source temperature T = 10
K. By symmetry, the ballistic component must reach a
maximum at the slot, i.e., along the I110] direction. To
accurately determine the peak ballistic signal, we fit the
"data" to a fourth-order polynomial, shown as the
dashed line on the top. The scattered Aux on the left of
the slot is fit to a simple exponential, as done for the data
in Fig. 3(c). The ledge ratio is thus determined as shown
in Fig. 9(b).

This procedure is repeated for six difterent Monte Car-
lo calculations, with values of 3 ranging from 0.13O to
2.03 p ~ The solid circles in Fig. 10 show the results of
these calculations. Between 0.25 3 o and 2.03o, the ledge
ratios determined in this way fit a straight line.

The experimentally determined ledge ratio of
R =0.145 [see Fig. 3(c)] is plotted as a horizontal line on
this graph. The shaded area gives the statistical uncer-
tainty. The intersection of the horizontal line with the
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FIG. 8. Frequency distribution of detected phonons for two
different source temperatures (for the same time gate of 0.5th) in
the Monte Carlo calculation. Both total (upper thick lines) and
scattered (lower thin lines) distributions are shown for both 10
and 30 K.

FIG. 9. (a) Separation of the components of the theoretical
phonon Aux into ballistic and scattered parts assuming T=10
K and A = Ao. (b) The ledge ratio is determined for the
theoretical line scans by fitting the ballistic part to a fourth-
order polynomial (upper dashed curve) and the scattered part at
negative angle to an exponential. The ledge ratio is found by
computing the value of these functions at the slot position.
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FIG. 10. Determination of the scattering constant. The solid
circles are the theoretical values of the ledge ratio assuming
various scattering constants. The highest five points are fit to a
line. The horizontal line is the experimental value of the ledge
ratio. The intersection of the two lines gives the experimentally
measured scattering constant.

fitted curve gives the scattering-rate constant appropriate
for this silicon crystal. The stated uncertainties, of
course, do not include any systematic errors associated
with the measurement procedure. From consideration of
the adjustable parameters, laser power, and sampling
time (Figs. 5 and 7), we feel that the systematic errors
should not exceed about 25%. Thus the measured
scattering-rate constant for pure silicon is found to be
A =(1.06+0.3) Ao. This uncertainty applies to the abso-
lute determination of a scattering rate. For comparison
of scattering rates for different crystals under similar con-
ditions, the method we have devised above should have
an accuracy of about 10%%uo or better.

The above analysis excludes the longitudinal phonons,
which arrive earlier in time than the transverse phonons.
While the longitudinal mode should exhibit reduced
scattering (due to its larger velocity and thus longer mean
free path), the elastic scattering constant A is mode in-
dependent and can be recovered from a study of either
mode. Defects which change the local symmetry or have
low-lying electronic levels, however, may scatter the lon-
gitudinal and transverse modes differently and induce
new anisotropies into the scattering.

Figure 11 compares experimental and theoretical line
scans of the longitudinal signal in the (100) plane, as be-
fore. The parameters for the theoretical line scans are
identical to those for the transverse calculations except
that the time selection is between t =0 and 1.5ti„where
tb is the ballistic time for the longitudinal mode. As can
be seen in the figure, the experimental and theoretical
ledge ratios agree quite well when the theoretical calcula-

FIG. 11. Experimental data and theoretical Monte Carlo cal-
culations for the longitudinal phonon mode. By assuming a
value of the scattering constant to be 2 = Ao, the calculation
agrees well with the experimental trace as shown.

tion assumes a value of 3 = Ao for pure isotope scatter-
ing, consistent with the results of the analysis for the
transverse phonons above.

V. CONCLUSIONS

In summary, by combining phonon imaging with
tunnel-junction detection, a slotted sample geometry, and
Monte Carlo calculations, we have performed quantita-
tive measurements of the bulk phonon scattering rates in
silicon. The analysis is facilitated by the definition of a
dimensionless quantity, the "ledge ratio" associated with
the slot, which is directly correlated to the amount of
scattering in the sample. Comparison of the measured
ledge ratio with that computed by Monte Carlo calcula-
tions assuming varying amounts of elastic scattering
yields a determination of the scattering rate for our sam-
ple. In high-purity silicon the scattering rate determined
by this method is nearly identical to that predicted for
isotope scattering. Further experiments and calculations
including dispersive effects and utilizing detectors with
different onset frequencies should provide more direct in-
formation about the frequency dependence of the elastic
phonon scattering.
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