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Exact and approximate results for the polaron in one dimension
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The Frolich polaron confined to move in one space dimension and interacting with a three-
dimensional lattice is studied. We calculate exact and approximate results for the ground-state en-
ergy and the effective mass. The following exact results were obtained. In (a) the weak-coupling
limit for the energy E= —a' —[(3/2&2) —1]a'', the mass m*/m~ =

—,'ct'+[(5/2&2) —1]/4, and
the average number of virtual phonons X=

2
a'+ [(3/V2) —2]a' ', and in (b) the strong-coupling

limit E= —0.333088a', m*/m& =2. 1254m', and N=0. 6661760.' . Here, a' is the normalized
electron-phonon coupling constant, which was chosen such that E = —a' within second-order per-
turbation theory.

I. INTRODUCTION

One-dimensional polaron problems are relevant in
semiconductor physics, where with state-of-the-art nano-
lithography it has become possible to confine electrons in
one direction (i.e., quantum wires), and in linear conju-
gated organic polymer conductors ', e.g. , cis- and trans-
polyacetylene. The latter are much more strongly bound
and are described by the small-polaron Hamiltonian.

In the present paper we will focus on the large polaron
and we consider the extreme case of complete
confinement into one dimension. The Hamiltonian is of
the standard Frohlich type, which was derived in Ref. 4
for the case of arbitrary spatial dimensions,

H = + +fico„oakak+ g( Vkai, e'"'+ Vi*, ake ' '),
2' b k

where

(2)

with a'=a'(/mI [(n —1)/2]/2I (n/2) and a is the stan-
dard dimensionless three-dimensional (3D) electron-
phonon coupling constant. Note that for n —+1 we have
a'=a/(n —1). The fact that the polaron characteristics
diverge for n = 1 is a consequence of the Coulomb nature
of this problem. By using 0.' instead of cx as the electron-
phonon coupling constant, we have regularized all the ex-
pressions and finite results are found for the energy and
the mass.

Degani et al. have calculated the ground-state energy
and effective mass of such 1D po1arons by using the
Feynman path-integral formalism. They defined a dimen-
sionless electron-phonon coupling constant a,p

which is
related to ours a' =2m', „. Our definition of the
electron-phonon coupling constant is such that the
ground-state energy in second-order perturbation theory
is given by E= —a' in all space dimensions. Degani
et a/. found that the properties of the optical polaron

are a continuous function of the electron-phonon cou-
pling constant. In fact this conclusion is a direct conse-
quence of a scaling relation which was recently proved
for the Feynman approximation and which allows us to
obtain the ground-state energy and the effective mass in n
dimensions from the known results in 3D:

&„D(a')=—E,D
—a'
n

(3a)

m*(a')

nD

n
(3b)

II. WEAK-COUPLING LIMIT

The polaron ground-state energy and effective mass
will be calculated up to the second-order in the electron-
phonon coupling constant. In Ref. 11 a diagrammatic
technique for the moving 3D 1arge polaron has been
developed. These results were generalized to the mu1tidi-
mensional case in Ref. 12. For the details we refer to
Refs. 11 and 12. Here only the results will be presented.
For convenience we use units such that A =mb =~„z= 1.

The energy of a moving polaron is expanded within
conventional perturbation theory

As a consequence a11 the conclusions concerning the
continuous behavior of E and m * in 3D when the cou-
pling constant goes from the weak- to the strong-coupling
limit are also satisfied for n =1 and the conclusions of
Ref. 6 are a natural consequence of the scaling relations
[(3a) an (3b)].

The aim of the present paper is to present exact results
for the 1D polaron ground-state energy and effective
mass in the weak- (up to fourth-order perturbation theory
which is presented in Sec. II) and strong-coupling limit
(see Sec. III). These results will be compared with
different approximate results as, e.g., the Feynman theory
and the 1/n expansion' in Sec. IV.
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E(po) =Eo(po)+ g a'"E„(po)
n=1

(4) E(p, ) =E+p,'/m '+e(po, ), (5)

where Eo(po)=po is the kinetic energy of a free electron
and po

=p/&2 with p the total conserving momentum of
the system. In the limit of a slow-moving polaron, we
have

with E=g„",a'"E„ the polaron energy at zero momen-
tum and m *= 1+g„",a'"m„ its corresponding mass.

To the first order in the electron-phonon coupling con-
stant the polaron energy is given by the diagram

=a'Ei (po) = —a' —f dk k' —2S ok+1 (1 2 )1/2
(6)

The second-order term is given by a sum of three diagrams, one of which is unconnected. " Introducing the notations
for the electron propagators in states with 1 and 2 virtual phonons, respectively,

P(k)= 1

k —2pok+ 1

P(q, k)= 1

(q+ k ) —2po(q+ k ) +2

we obtain

+~a' E, (p—)—f dk P (k ) =
&2

2(1 —po )

2
I

f dk dq P (q)P(q, k)=—
I2

2(1 p2) / (2 2)1/2

2
CX + QO (1 2)1/2

f dk dq P(q)P(k)P(q, k)= —a', +
oo (2 2)1/2 2(1 2)

With Eqs. (6)—(8) we readily find the coefficients of the
weak-coupling expansions (5) for the polaron energy and
effective mass

E1= 1 m)=
~

E2= —( —,'+2 —1), m2=(5'1/2 —4)/16 .

and to the second order in the coupling constant

N2 =(3&2—4)/2,
in case the electron is at rest (po =0).

III. STRONG-COUPLING LIMIT

(13)

N(po)= 1 ——a3 a
2 Bcx

a—
2po ~

E(po»
Bpo

(10)

The average virtual number of phonons N can be ob-
tained from the polaron energy

For a &) 1 the electron motion is much faster than the
lattice frequency co„o and as a consequence the adiabatic
approximation becomes exact. Following Pekar' the
ground-state wave function of the electron ~g) is deter-
mined by the integrodifferential equation

which is an exact relation which was proved in Ref. 11.
Using the above results for the energy, we can write the
general perturbation expansion

2
P + ~ I/' 2(((g(e' '(@)(

2mb k

—2e '"'( p~e'"'~it )) it/(r)=EQ(r), (14)

X(po ) = g a'"X„(po),
n=1

where the first term is

(12)

which was obtained by using the product ansatz
~
@) =

~ g) ~ P ) for the electron-phonon ground-state wave
function and optimizing with respect to the phonon wave
function ~P). Inserting Eq. (2) into Eq. (14) and using the
transformation r~r/&2a' and k~k&2a' we obtain
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2I(n/2) d k;1, ,
( ) ~( )1+n/2 k n —1

with

=( —A + V, )P(r), (15a)

r(n /2) d "k
, Ip(k) I', ~ =—,, (15b)

a
and p(k)=&/le'"'Iij'j)= J drip(r)l e'"'. Note that the
a' dependence has been scaled out of the problem and in
the strong-coupling limit the ground-state energy is pro-
portional to a' irrespective of the dimension of the prob-
lem. It will be more convenient to convert the problem
into a variational one

+a(bx) ]e with N a normalization constant and
e =0.2624 and b = 1.6392 and 3 =0.332 547 8, and

M =2. 1064.
In order to find the exact result for A = E—/a' we

start from the knowledge that the electron wave function
has to decay exponentia11y at large distances. This can be
found from Eq. (15a) and is a direct consequence of the
Coulombic nature of the electron-phonon interaction.
Thus the electron wave function has to be of the form

P(x )=+I" oa&lx I

'e " . We will cut off the series when

the energy is determined to a sufficient accuracy. %'e
found that

@(x ) =N [1+b lx I
+a(bx ) +c(b lx I ) +d(bx ) ]e

(21)

= &@l~lg&+
" I

In the adiabatic limit Miyake' ' obtained an expres-
sion for the effective mass which we generalized in Ref.
16 to arbitrary space dimensions

(17)
mb

with e, a unit vector in an arbitrary direction. Inserting
the expression for IV1, I

into Eq. (17) and applying the
transformations r~r/i/2a' and khaki/2a' this becomes

is able to determine the energy with sufficient accuracy.
A numerical minimalization of the ground-state energy
leads to a =0.3516, b =1.859, c = —0.002982, and
d=0. 008369 and for the energy E!a' = —0.3330877
and the mass M=2. 1254. For the average number of
phonons we get from Eq. (10) N/a' = —2(E/a' )

=0.666175. The resulting wave function is shown in

Fig. 1 together with the Gaussian and exponential wave

0.8
Exact

0.7
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mb

4 k e 2 e~I'r zI (n /2), 4 d "k
0

0.5
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The above equations (15) and (16) are a generalization
of Eqs. (g) —(10) of Ref. 7 to arbitrary space dimensions.
In the present paper we are interested in the 1D polaron
and in this case Eq. (16) takes the form

0.3

0.2

0.1

W =&qlbli/)+ —f dkl&gle'""Ig&I

and the mass becomes

' =—j"dkk'i&pl '" q&l'
mb

(19)

(20) 10 '

Distance x/x~

q=N[1+b lx I

It is possible to solve the integrodifferential equation
Eq. (15a) numerically and to find the wave function and
energy 3 = —E/u' . We have chosen an alternative
route and propose different functional forms for the elec-
tron wave function and minimize the energy (16) to ob-
tain the optimal approximation. We have taken the fol-
lowing.

(1) An exponential trial wave function: /=i/be
which gives b =0.5 2 =0.25, and M =2.

1/4 —b(2) A Gaussian: P=(2b/n)'/ e " which after the
variational calculation gives b = 1/~ and A = 1/~
=0.318 3099, and M=16/~ =1.6211.

(3) The Pekar'3 wave function: P=(2b/5)'/ (1
+b lx l)e "" which results in b = —",,' =1.2875,
2 = 'o'o' =0.331 5312, and M=2. 2196.

(4) The Pekar-type ansatz:

o
O

10

ential

)
10

10
10 15

Distance x/x~

FIG. 1. Normalized wave function for the 1D polaron in
the strong-coupling limit for diA'erent approximations and
for the exact theory. The distance is in units of
x~ =V'fi/2m&coLo(1/a').
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function. Around the origin [see Fig. 1(a)] the exact wave
function is quadratic while at large distances [see Fig.
1(b)] the wave function decays exponentially.

IV. APPROXIMATE RESULTS AND CONCLUSION

The 1D optical polaron has been studied by Degani
et al. using the Feynman path-integral approach. In the
weak-coupling limit they reported results up to the first
order in the coupling constant ( a,„=a' /2n ):
E= —2m.a, = —0,", and m*/mb =1+2m', =1++'.
The coefficient m, differs from that of Eq. (9) by a factor
of 2 which we believe is an error of Ref. 6. In the strong-
coupling limit Degani et al. obtained E 4wcxop= —a' /~ and m */mb =256m u, =a' X 16/~, which
is our Gaussian result given in the preceding section.

But the Feynman result can be obtained without any
sophisticated calculations just through the scaling laws
(3). Thus from the well-known Feynman results' for a
3D polaron in the weak-coupling limit E3D = —a —

—,', o. ,
2

and m3D =1+—,'0'+
—,', a, and the strong-coupling limit

E3D = —a /3' —(3ln2+ —'), and for the mass m 3D
=(16/81m )a —a (4/3m)(2ln2+1), one readily obtains
the results for the 1D polaron in the weak-coupling limit

(22)

and the strong-coupling limit

E =—a' —(ln2+ —,'), m* = a' —a' (2ln2+1) .1,2, ~ 16,4,2 12
7T 7T'

The scaling relations (3) were proved for the Feynman
approximation and, in general for Gaussian-type approx-
imations. ' It can be generalized easily to arbitrary di-
mensions

TABLE I. The second-order coefficient for the ground-state
energy E, and the polaron mass m2.

Theory —E2

Feynman
Scaling from 3D
Scaling from 2D
1/n leading term
1/n expansion

0.037 037
0.047 759
0.051 855
0.037 793
0.069 167

0.222 222
0.212 649
0.206 265
0.226 760

Exact 0.060 660 0.191 942

1

2n &7r
8

n '1T

3

'2

108
5

277T 1+0
n

(27)
1

2n &7r
14n+(13 —4&10)+9

It was proven that the leading term coincides in 3D with
the approximation of Adamowski et al. ' and Saitoh, '

which is the best Gaussian-type upper estimate where an
arbitrary quadratic trial action was introduced in a path-
integral evaluation of the ground-state energy. In the
strong-coup1ing limit the leading approximation 2 coin-
cides with the Feynman result, which in the weak-
coupling limit E2 is slightly improved. For n =1 we ob-
tain

been developed which is based on an expansion in inverse
powers of the number n of space dimensions. In such an
approach there are no limitations on n. The results for
the coeS.cients E2 and 2 in the weak- and strong-
coupling limits are as follows:

2

n lE (a') = E —a'—
nD l 1D =23

16
71 ~ =(17—4&10)/4~ .

15m
(28)

. = * 'l .m„*D(a') = mID —a'
n

(24)

and used to obtain approximate results in 1D from exact
ones in, e.g. , 2D and 3D. For the 3D polaron we have
the exact results

These results are a lower bound on the energy. Thus ab-
solute values of E2 and A in Eq. (27) are larger and they
are very close to the exact values as seen from Tables I
and II.

The 1/n expansion for the effective mass gives

(E~)3D= —0.01591962, (m2)3D=0. 02362763,
(25)(2 )3D=0. 108513, (M)3D=0.0227019,

TABLE II. The ground-state energy and polaron mass in the
strong-coupling limit to leading order in a'.

and for the 2D polaron Theory A =—F. /cx' M=(m /mb )/a'

(E2 )2D = —0.025 927 67, (m~ )~D =0.051 566 33,
(26)

( A )2D
=0. 164 026, (M )qD =0.120 370 .

Now we use the scaling laws (24) for n =1 and 1=2,3,
and insert Eqs. (25) and (26). The results are presented in
Tables I and II. As intuitively expected the closer the
starting dimension is to n = 1 the better the approxima-
tion we obtain from the scaling argument.

In Ref. 10 a new approach to the polaron problem has

Exponential
Gaussian
(1/n leading term)
Pekar
Modified Pekar
Scaling from 3D
Scaling from 2D
1/n expansion

Exact

0.25
0.318 310

0.331 531
0.332 548
0.325 539
0.328 052
0.346 233

0.333 088

2.0
1.6211

2.2196
2.1064
1.8389
1.9259

2. 1254



F. M. PEETERS AND M. A. SMONDYREV 43

1

2n &7r

2

2(3m. —8)+8
1

n

2
1 256+ 0

1

2n &7r n

(29)

results of a 1D polaron energy, mass, and number of vir-
tual phonons in the limits of weak and strong electron-
phonon coupling. These results are compared with re-
sults from different approximate theories.
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