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Quasiparticle calculation of the electronic band structure of the (InAs), /(GaAs), superlattice
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%'e present a screened-exchange calculation of the one-electron excitations of the strained pseu-

doalloy (InAs)&/(GaAs)& grown on an InP substrate. The model adopted was the local-density-
functional and quasiparticle self-energy approximation with a statically screened local dielectric ma-

trix and the spin-orbit interaction term evaluated within degenerated perturbation theory. The gap
calculated with the room-temperature lattice constant is 0.66 eV. The calculations of the GaAs and

InAs bulk materials, both unstrained and strained on the InP substrate, were also performed and

give somewhat underestimated values for the zone-center gaps and an excellent agreement with ex-

perimental results for the tetragonal and spin-orbit splittings. The dispersion curves and the con-
tour plots of the valence density as well as of the density of the first conduction states are also

displayed. The behavior of the dispersion curves very close to the zone center was analyzed both
for the strained bulk materials and the (InAs)&/(GaAs)& superalloy, leading to some interesting
features.

I. INTRODUCTION II. DESCRIPTION OF THE MODEL

The technique of molecular-beam epitaxy and its re-
cent improvements like migration-enhanced epitaxy have
recently spawned quite a few experimental studies' on
the highly strained heterostructures like the InAs/GaAs
short-period superlattices (SPS), which can be grown lat-
tice matched on the InP substrate. Those superlattices
are currently being studied for potential technological ap-
plications. It is also interesting to compare the electron-
ic properties of such tetragonal-symmetric (D2d ) materi-
als to the cubic-symmetric (T~d ) alloys like Ga In& „As.
The features like the anisotropy of the electron effective
mass and a lifting of the valence-band degeneracy have
been observed in the strained SPS's.

In this paper a model band-structure calculation of the
(GaAs), /(InAs), superlattice is investigated, taking ex-
plicitly into account the nonlocal screened exchange term
in the crystal Hamiltonian. Due to the calculational
complexity of the structure under study (the absence of
the inversion center in the polar materials and a large di-
mension of the plane-wave basis due to a small Brillouin
zone), we had to sacrifice some of the features of the most
advanced first-principles calculations, ' i.e., the nonlo-
cality and the dynamics of the dielectric matrix. Those
two features, though giving partially cancelling contribu-
tions to the one-electron spectra, inhuence to some extent
the zone-center band gaps and are very important for the
accurate determination of the local charge properties.

The rest of the paper is organized as follows. The tech-
nical details of the present approach are summarized in
Sec. II. In Sec. III the results of the band-structure cal-
culations for bulk GaAs and InAs materials, strained
GaAs and InAs grown on InP substrates, and finally for
the (GaAs)&/(InAs)& superlattice on InP substrates are
exposed and discussed. Section IV is reserved for a brief
conclusion.

Any simple first-principles model for the semiconduc-
tor band-structure calculation suffers from poor predic-
tions for the band gaps. They are much too small within
the local-density approximation (LDA) of the density-
functional method which, on the other hand, gives the
most reliable valence-band wave functions. A fully self-
consistent Hartree-Fock calculation on GaAs (Ref. 9)
starting from an ab initio pseudopotential' and includ-
ing explicitly the nonlocal exchange term has demon-
strated the weakness of that approach when applied to
the crystal-structure calculations. The zone-center gap of
GaAs was computed to be 6.10 eV, as expected from a
calculation lacking the exchange screening terms. A
more serious drawback is much too low electron energies
in the first conduction band at the zone edges. When the
exchange term is schematically screened, e.g. , by the
Levine-Louie —model" dielectric matrix, the GaAs gap
becomes indirect, indicating that the Hartree-Fock eigen-
functions are not a convenient basis set for any further
perturbation-theory treatment of the crystal structure.

In a strict sense, in order to take fully into account the
exchange screening one should compute the complete
nonlocal and frequency-dependent dielectric matrix in
the crystal using the random-phase approximation (RPA)
based on the first estimate of the band structure and
iterate until self-consistency is achieved. Such calcula-
tions are out of the scope of present methods, considering
the formidable computational task of evaluating the
dielectric matrix by the RPA in the crystal environment.

That program was partially implemented for the bulk
semiconductors and for the Si/Ge superlattices in a re-
cent series of papers. ' In those calculations the LDA
was used for the evaluation of the basis set of functions.
Actually, the LDA basis is quite close to the self-
consistency since the LDA Hamiltonian contains a local
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screened-exchange term.
The starting point of the present approach is the LDA

calculation of the Bloch functions to be used in the subse-
quent perturbation treatment of the screened-exchange
term. The pseudopotential used in the LDA is the
ab initio norm-conserving potential, ' using the
Ceperley-Adler exchange-correlation functional. ' All
calculations have been performed in a plane-wave basis
with a kinetic-energy cutoff' of 18 Ry. The self-energy
correction 6X to the LDA eigenvalues due to the ex-
change term screened by a statical and local dielectric
matrix can be written as

5&„k= ( «l5&
l
«&

= & & l(«l~"" '+ "lmq) I'5JJ'(k —q+G),
m, q G

where (m, q) stand for the occupied states, (n, k) for the
occupied and unoccupied states, G is a reciprocal-lattice
vector, and 5W(Q=k —q+G) is the partially screened
Coulomb interaction. Following Gygi and Baldereschi'
the exchange screening is split into two parts:
esc'(Q, co=0) denoting the diagonal part of the inverse
dielectric matrix of the semiconductor fitted from the
RPA calculations' and eM'(Q, co=0) representing the in-
verse of the homogeneous-electron-gas static Lindhardt
function, which should be subtracted because the long-
range metallic part of the screening has already been tak-
en into account in the exchange-correlation part of the
LDA functional:

58'(Q)=4 [esc'(Q, co=0)—e~'(Q, co=0)] (2)

and

.-'( )=,
kTF+[1+(1—1/eo)a ]Q +Q

(4)

In the present calculation the value of the dielectric con-
stant at the zone center, eo, has been set to 10.9 and the
value of the fitting constant o. to 0.86.

One of the salient features in the treatment of the
screened-exchange term is the evaluation of the singular
integral over the Brillouin zone. We used the special-
points method' in order to reduce the number of q
points in the LDA part of the calculation. Here we
sketch the method of integration.

The LDA Bloch functions are expanded into plane
waves:

(r) —y &k (G) i(k+cr) r

G

in inverse Bohr units. We use the following parametriza-
tions of use' and eM'.

Q +(X 60
e '(0)=sc Q

p(q;G, , G, )= g a* (G~)a (G, ),
m occ

and the mean value of the density matrix in the Brillouin
zone as

N

p,„(G„Gz)= g g w, p(q;;G, , G2),
m occ i =].

where q s denote the Chadi points and the w, 's the
weights of the points. We approximate the integral of the
screened-exchange term, Eq. (1), by a sum of products of
p„matrix elements times energy denominators integrat-
ed over the Brillouin zone:

5X(G„G2)= g p„(G,+G', G2+G')I(G'),

where

I(G')= J 5W(k —q+G')dq

is computed for each reciprocal-lattice vector Cx' at 10
points in the Brillouin zone; all calculations in the present
study were performed using two Chadi points. The spirit
of this approach is based on the fact that the use of a rel-
atively small number of Chadi points gives a good ap-
proximation for the calculation of the mean density ma-
trix; on the other hand, the numerical evaluation for the
singular three-dimensional integral (9) requires 10 q
points in order to decrease the error to under 0.01%.

III. RESULTS

We have tested first the model on the cubic bulk semi-
conductors GaAs and InAs. The calculation has been
performed with the lattice constants experimentally ob-
tained at 300 K, as displayed in Table I. In the case of
GaAs we were able to compare our results to the ones
previously obtained with the same model. Our calculated
GaAs gap without spin-orbit correction is 1.15 eV, com-
pared to 1.22 eV obtained by Gygi and Baldereschi, '

who calculated with lattice constants extrapolated to 0 K
and used a different technique of integration over the
Brillouin zone. ' Our calculated gap is too small com-
pared to the experimental value of 1.42 eV. The model
used does not take into account the nonlocal and dynam-
ic properties of the dielectric matrix. The more elaborate
models incorporating the nonlocal and dynamic screen-
ing render the results closer to the measured value: the
fully converged calculation with a cutoff at 18 Ry by
Zhang et al. gives a gap of 1.29 eV; and Godby et al.
obtained 1.53 eV, but their cutoff is at 12 Ry. Both re-
sults include the spin-orbit corrections. The discrepancy

TABLE I. Experimentally found lattice constants (Ref. 17)
expressed in atomic units and used in the present calculation for
the cubic crystals.

GaAs

10.681
We define the density n1atrix in reciprocal space as fol-
lows:

InP

11.094

InAs

11.949
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GaAs
InAs
GaAs/InAs

ax, y

11.094
11.094
11.094

a,

10.038
11.834
11.071

TABLE II. The lattice constants in atomic units evaluated
within the elasticity approximation (Ref. 18) and used in the
present calculation in the case of tetragonal materials.

TABLE IV. Some of the most important quasiparticle ener-
gies expressed in eV and measured from the top valence state at
the point I . The asterisk indicates that the energy shown
represents also the spin-orbit splitting. In the case of the tetrag-
onal materials that split levels are denoted by HH for the heavy
hole and LH for the light hole. s.o. denotes the spin-orbit split-
off level The numbers in parentheses represent the experimen-
tally found values (Ref. 17).

between the gap calculated by Zhang et al. and the mea-
sured values leaves room for core corrections that are
large for the state I 6, .

In the case of InAs the calculated LDA direct band
gap is very small —just a few meV —but this feature does
not interfere with the iteration process since the separa-
tion between the valence and the conduction states is
larger than 1 eV at the Chadi points and the wave func-
tion still represent a workable basis for the quasiparticle
calculations. The calculated quasiparticle gap is 0.29 eV
compared to the measured value of 0.354 eV, which is in
better agreement with experiment than in the case of
GaAs.

Next, we calculate the bulk GaAs and InAs matched
to the InP substrate. The symmetry of these crystals is
tetragonal (with point group D2d). The lattice parame-
ters evaluated within the elasticity approximation are
shown in Table II. The results are summarized in Tables
III and IV. Note the very good agreement between the
calculated and measured deformation potentials.

The top valence level at the center of the zone is a I 7,
(heavy-hole) state for GaAs and a I 6, (light hole) for
InAs. In GaAs, which is uniaxially compressed while
strained on InP, our calculation produced an anticrossing
in the direction I —Z of the bands originating from I 7,
and I 6, levels, which are tetragonally split from the I 8,
cubic-symmetry level. It occurs between the (0,0,0.06)
and (0,0,0.07) points of the Brillouin zone.

At the center of the zone we get large and opposite-
sign heavy-hole —light-hole tetragonal splitting
E» —ELH = —0.376 for GaAs and 0.149 for InAs.
Furthermore, the GaAs gap is reduced by the strain
down to 480 meV, whereas the InAs gap increases to 338
meV. Due to the strain-induced coupling between cubic
light holes and spin-orbit (s.o.) split-off states the ap-
parent s.o. splitting is large in the tetragonal bulk materi-
als: E, , =249 meV for GaAs and 527 meV for InAs.

GaAs

InAs

GaAs

InAs

GaAs/InAs

Cubic
—0.33*

( —0.34)
—0.38*

( —0.38)

1.04
(1.42)
0.29
(0.35)

Tetragonal
HH 048—0.38

—0.63
—0.15
—0.58
—0.05
—0.39

s.o.
LH 0.34
s.o.

0.66LH
s.o.

2.37
(2.03)
2.53

1.72

2.46

2.61

4.73
(5.02)
4.50

4.47

4.28

3.74

12-

6-)
CV

L3 2—
CY.
UJ 0
LLI

E =0
9

The third part of the present work consists of
the calculation of the electronic structure of the
(GaAs))/(InAs)( superlattice grown on the InP sub-
strate. ' The values of the superlattice parameters within
the anisotropic linear continuum elasticity approximation
are shown in Table II. The atomic positions have been
evaluated under the assumption that each layer of the su-
perlattice is strained in a way that its in-plane parameter
is matched to the one of the InP substrate. The respec-
tive positions of the atoms Ga, As, In, and As in the
tetragonal unit cell are (0,0,0), (0.25,0.25,0.2328),
(0,0.5,0.5), and (0.25,0.75,0.7672). The point-group sym-
metry of the crystal is Dzd and the wave functions were
expanded up to a cutoff'of 18 Ry, the same as used in the

GaAs
InAs

—7.3( —6.7)
—5.4( —6.0)

—1.6( —1.7)
—2.0( —1.8)

TABLE III. The calculated and measured deformation po-
tentials expressed in eV. a denotes the deformation potential of
the direct gap. b denotes the shear deformation potential for a
strain of tetragonal symmetry. The numbers in the parentheses
represent some measured experimental values (Ref. 17).

(100j
X

(( 0 0) (000) (0 0 () (0 01/2)
I Z

FIG. 1. Energy band structure for the (GaAs)&/(InAs)& su-
perlattice grown on an InP substrate in the [001] and [100]
orientations. Sold line, states coming from an average tetrago-
nal bulk material. Dash-dotted line, states coming from the
folding due to the superperiodicity.
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strained GaAs (GaAs)„/(InAs) strained InAs
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FIG. 2. Contour plot of the charge densities and of the first two conduction-state densities at the I and Z points of the Brillouin
zone, in the plane closest to (001), and containing two successive bonds.
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calculations for the bulk crystals. The main results are
summarized in Table IV.

The calculated gap is 0.66 eV. The extrapolation of the
existing measured gap values to 300 K gives the re-
sults ranging from 0.72 to 0.80 eV, depending on the indi-
um composition of the alloys. Having in mind the initial
discrepancy between the calculated and the measured
gaps of the constituent bulk semiconductors, our result
for the superalloy seems quite reasonable.

The electron dispersion curves are drawn on Fig. 1,
along the two directions ($,0,0) and (0,0,(). Although
they seem somewhat intricate, we can get an initial un-
derstanding by splitting these curves into two classes.
The solid lines stand for the dispersion curves that would
have been obtained for an average bulk material around
the Brillouin-zone center. The dash-dotted lines corre-
spond to the folding due to the superperiodicity along the
growth axis. Note the strong anticrossing between the
spin-orbit valence band and the folding of the light- and
heavy-hole bands. The second conduction state at the
zone center (lying 1.92 eV above the first one) comes from
the zone boundary of the first conduction state of an
averaged bulk material. The tetragonal symmetry in-
duces a rather slight splitting between the heavy and the
light holes at the zone center (EHH —ELH =50 meV), a
fact that is easily accountable when one realizes that the
superlattice as a whole is nearly unstrained: its free equi-
librium parameter nearly matches the InP substrate one.

Figure 2 shows the density contour plots computed in
the plane (011) for strained GaAs, InAs, and for the su-
peralloy in a plane very close to (011) and containing two
successive Ga—As and As—In bonds.

IV. SUMMARY AND CONCLUSION

In this paper we have presented a theoretical study of
the electronic structure of the strained polar semiconduc-
tors based on the quasiparticle approach, with explicit
evaluation of the Fock exchange operator. The same
method was subsequently used for the calculation of the
strained (GaAs)&/(InAs)& superstructure. Our prediction
of the deformation potentials is rather accurate. The
direct band gaps obtained for GaAs, InAs, and conse-
quently for the GaAs/InAs superlattice are too small,
partially because the model employed does not take into
account the nonlocal and dynamical properties of the
Coulomb screening. On the other hand, the encouraging
results for the deformation potentials should allow reli-
able estimates of the superlattice gaps from the measured
gaps of the constituent materials. We hope that the
simplified quasiparticle approach, together with the prac-
tical and accurate Brillouin-zone-integration technique
adopted in this paper, will contribute towards numerical
exploration of the small-period superlattices a step
beyond the local-density approximation.
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