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High-field transport in semiconductors. I. Absence of the intra-collisional-field effect
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We show that the Levinson (Zh. Eksp. Teor. Fiz. 57, 660 (1969) [Sov. Phys. —JETP 30, 362
(1970)j) quantum transport equation reduces to the semiclassical Boltzmann equation in the limit of
a strong homogeneous electrostatic field. To arrive at this conclusion we use a saddle-point approx-
imation which has not been used in this field before. This approximation is exact in the high-field
limit. We show that even for a relatively moderate field strength of 3X 10' V/m in GaAs (even be-
fore the onset of the Gunn effect, when 90% of the electrons are still in the central valley) the
saddle-point approximation can be used for a majority of the scattering events. The results in this
paper are supported by numerical calculations based on realistic scattering mechanisms in GaAs.

I. INTRODUCTION

The size of modern electronic devices is shrinking con-
tinually while applied voltages remain the same. This
translates into very strong electric fields with rapid spa-
tial variations; however, the problem of high-field quan-
tum transport in strongly inhomogeneous conditions is
far from being solved at present. The problem of high-
field transport in uniform electric fields, on the other
hand, is more tractable and some headway has been made
recently. However, important questions remain
unanswered: At what field strength do quantum effects
become important and the validity of the semiclassical
Boltzmann equation break down?

In this paper we present an answer to the above ques-
tion for nondegenerate electrons in a single parabolic
band of infinite bandwidth interacting weakly with pho-
nons. Our results can easily be extended to nonparabolic
bands and other forms of weak scattering mechanisms.
A quantum transport equation (QTE) for uniform but
strong electric fields and weak electron-phonon scattering
already exists in the literature and is commonly known as
the Levinson' or Barker and Ferry ' equation. In this
paper our aim is not to question the validity of the QTE
but instead to use it to study quantum transport in the
limit of extremely high fields.

The QTE differs from the semiclassical Boltzmann
equation (BE) mainly because the scattering rates in this
equation depend on the electric-field strength, an eff'ect
known as the intra-collisional-field effect. Because of the
complicated nature of the QTE, it is difficult to make an
estimate of the field strength above which this field effect

becomes observable. Previous treatments of the QTE de-
pend on an approximation known as the "completed-
collision" approximation ' and show that the intra-
collisional-field effect is not important up to field
strengths of the order of 10 V/m for electrons in a non-
degenelate single band suffering optic-phonon scattering
with parameters appropriate for GaAs. Note that this re-
sult guarantees the validity of the semiclassical BE up to
this field strength but does not exclude its validity above
this value. Recent results obtained from Monte Carlo
simulations indicate that the results of the QTE are iden-
tical to the semiclassical BE even for extremely high
fields.

In this paper we provide a theoretical justification for
the use of the BE at high field strengths. Specifically, we
concentrate on the following two aspects of the deriva-
tion. (i) We start with the integral form of the QTE, but
instead of making the ad hoc completed-collision approx-
imation we study the asymptotic high-field limit of this
equation by using a more controlled "saddle-point" ap-
proximation. This approximation is valid in the high-
field limit and its validity becomes better as the field
strength increases. (ii) We find that in the high-field limit
the QTE reduces to the semiclassical BE within the same
accuracy as the completed-collision approximation. Thus
the high-field transport equation derived within the
completed-collision approximation and the BE are
equivalent. The main conclusion of this paper is that for
nondegenerate electrons in a single band of infinite band-
width interacting weakly with phonons under the action
of a homogeneous stationary field the semiclassical BE is
valid for any field strength.
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The results of this paper are supported by numerical
calculations. We show that even for a moderate field of
strength 3X10 V/m (before the onset of the Gunn
effect), transport in GaAs is in the high-field regime and
standard approximations that lead to the semiclassical
Fermi golden rule break down. Nevertheless, as men-
tioned above, application of the appropriate high-field ap-
proximations leads to results which are identical to the
semiclassical results that would have been obtained had
the Fermi golden rule been used.

Section II presents the numerical model used to sup-
port the theoretical results of this paper. In Sec. III we
present a detailed analysis of field-dependent scattering
rates. This section is meant to introduce the two distinct
regimes of scattering, semiclassical and high field. It will
be shown that the two regimes are not analytically con-
nected and require completely different approximations.
The saddle-point approximation is introduced in this sec-
tion. Section IV briefly reviews the semiclassical BE in
integral forms which are not commonly used in the litera-
ture. Some important results of Monte Carlo simulations
of the BE are also presented to verify the assumptions
used in this paper. Section V contains the derivation of
the main results of this paper where we apply the saddle-
point approximation to the QTE. In Sec. VI we show
that the QTE reduces to the BE in the high-field limit.
We also derive the transport equation of Ref. 4 where it
was derived by a less controlled completed-collision ap-
proximation. Finally, Sec. VII contains the conclusions
of this paper.

II. NUMERICAL MODEL

The theory in this paper will be supported by numeri-
cal calculations. We use a time-independent, spatially
uniform "high" field of 3X10 V/m, multiple bands of
GaAs (central and satellite), and realistic intraband and
interband scattering events caused by polar-optic and
acoustic phonons at room temperature. Figure 1 shows
the isotropic total scattering-out rate I /r(k) as a function
of energy [defined by (2) below] used in the numerical cal-
culations. The discontinuity at lower energies is due to
the onset of optical-phonon emission and at higher ener-
gies because of the onset of interband scatterings.

Monte Carlo simulations of the semiclassical BE show
that at this field strength, 90%%uo of the electrons are in the
central valley and the satellite valleys are almost empty;
i.e., we are operating before the onset of the Gunn effect.
Thus we are justified in using our theoretical results,
which are derived for a single central band for this field
strength in GaAs.

We shall show in this paper that for a field strength of
3 X 10 V/m we are already in the high-field regime of the
QTE and not in the semiclassical regime. Thus one
would suspect the validity of the semiclassical BE for
field strengths even before the start of the Gunn-effect re-
gime. Since the onset of the Gunn effect provides a possi-
ble experimental test of the validity of the BE, the field
strength of 3 X 10 V/m is of special interest.
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FIG. 1. Scattering rate for electrons in the I valley of CxaAs

including acoustic, polar-optic phonons, and interband scatter-
ing at room temperature. The discontinuity at lower energies is
due to the onset of optical-phonon emission and at higher ener-
gies due to the onset of interband scattering.

III. EFFECT OF THE ELECTRIC FIELD
ON SCATTERING, MOTIVATION FOR

THE SADDLE-POINT APPROXIMATION

As an introduction to the intra-collisional-field effect
and in order to get a physical feel for the associated time
scales, we give a simple analysis of field-dependent
scattering rates in this section. This section will illustrate
the two distinct asymptotic regimes of the field-
dependent scattering integral: the semiclassical regime
and the extremely-high-field regime. We shall treat these
limiting cases separately, recovering the Fermi golden
rule in the semiclassical regime and motivating the intro-
duction of the saddle-point approximation in the high-
field regime. We want to emphasize that these field-
dependent scattering rates are introduced for illustrative
purposes only and are not derived from first principles.
We do not use them in the QTE, which is derived in-
dependently from first principles. This section should
serve as a convenient introduction to the methods of
analysis used later to deal with the QTE whose time in-
tegrals will be only slightly different from the integrals
treated here.

A. Equilibrium scattering rates

We introduce the probability P"(k—q~k) than an
electron with momentum k —q is scattered to momentum
k (either by emitting a phonon of momentum —q or ab-
sorbing a phonon with momentum q and frequency co )

during a unit time interval in the presence of of an elec-
tric field F. In the absence of the electric field, this prob-
ability evaluated within a self-consistent second-order
perturbation approximation reads
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lM
l 0 t iP"=o(k —q~k)= g [N + —,'(1+i))]2Ref dt exp exp —[E(k—q) —E(k) —i)fico ]tg2 r(k) A'

where 1/r(k) is the total scattering-out rate [i.e., r(k) is the mean free time or the time an electron spends between two
collisions],

1

r(k) g lMql [Nq+ —,'(1+i))]5(E(k+q)—s(k)+greco ),
q, g

and Nq is the Bose-Einstein statistics. Figure 1 contains a plot of 1/r(k) versus energy for GaAs including acoustic,
polar-optic phonons, and interband scattering. The summation index g=+1 and —1 gives phonon emission and ab-
sorption, respectively.

B. Scattering rate in the presence of the electric field

According to the QTE, the momentum of an electron in the presence of an electrostatic field changes with time as
k(t)=k+eFt, where k is the initial momentum at time t =0. This statement can be precisely formulated within a vec-
tor potential description of the field A(t)= Ft. T—he energy e(k) becomes a time-dependent function due to the time
dependence of the momentum which makes the scattering probaility P"(k—q~k) field dependent:

lM, l' 0 t iP"(k —q~k)= g [N + —,'(1+i))]2Ref dt exp exp —f dt'[s(k(t') —q) —E(k(t')) —
roice ]g2

For parabolic bands, one finds

exp — dt'[E(k(t') —q) —s(k(t')) greco
—

] =exp ——[E(k—q) —E(k) —i)fico ]t+i
2

The effect of the electric field on the scattering probability (intra-collisional-field effect) is contained in the quadratic
term [last term of (4)]. The importance of this field effect can be conveniently discussed in terms of a characteristic time
scale ~F associated with this term,

1/2

7F
mh

elF q

We note that previous treatments of the field effect introduced an energy broadening AE. Here we find it more con-
venient to work with the time scale ~F, which is related to the energy broadening via the relationship A/~F =DE. In
terms of rF, the field-dependent scattering rate (3) can be written as

0 l t'P"(k—
q —+k)= g [N„+—,'(1+ii)]2 Re f dt exp exp — bt exp i sgn—(q.F)g2 r(k) A' 27F

where

b =E(k —q) —s(k) —rjfico

The time integral in (6) contains three functions of time
with characteristic time scales r(k), rF, and A'/b, . We
shall now show that the ratio ~F/~ determines the cross-
over from one asymptotic region of (6) to another. On
the one hand, when ~&&~F, then the effect of the electric
field on an electron during the time ~ between two col-
lisions is small and the scattering probability can be eval-
uated by assuming that the external field is a small per-
turbation on the zero-field result. On the other hand,
when ~F &&~, then the effect of the electric field on an
electron between scattering events plays a dominant role.
These two limiting cases are not analytically connected,
and completely different approximations are valid in
these two regimes as shown below. We now treat these
two limits separately.

1 The semiclassical regime

We shall classify a scattering event to be in the semi-
classical regime if the values of the momenta k, q and the
electric field F are such that r(k) «rF. Within the limits
of time integration in (6) the function exp[t/r(k)] has an
appreciable value only in the time interval of order
[ —r(k), 0]. Outside this region it decays to zero; in this
interval the quadratic function which varies on a scale 'TF

changes very little [since r(k) «rF] and remains at a
value near to unity, i.e., its value at t =0. Thus in this re-
gime the magnitude of the lifetime sets the important
scale, and the quadratic term due to the electric field
plays a minor role. The problem can first be solved by
treating the quadratic term in the electric field as a per-
turbation on the zero-field result. By setting the electric
field equal to zero, the time integral in (6) becomes
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0 2g 2/~
2 Re dt exp exp — b.t—

OO rk 6+6 /~ 8,( k(t)—

=2n.irt5(b, ) .

Although the above equation leads to a well-known re-
sult, the Fermi golden rule, here we give a simplified dis-
cussion of the semiclassical regime to point out the
difference between it and the high-field regime.
Specifically we want to stress that one important charac-
teristic of the low-field regime is that the k and q space is
divided into two regions, one region (satisfying energy
conservation) which contributes to the scattering integral
while the other region contributes nothing. Depending
on the values of the momenta k and q there are two
cases. Case (i), fi/b, & r(k). The time interval [ —r(k), 0]
contains many periods of the oscillating term in (6) and
the value of the integral is negligible. Case (ii),
ih'/6 & r(k). The oscillating term varies little in the inter-
val [

—r(k), 0] and the value of the time integral is finite.
Thus the effec of the time integral is such that only those
momenta k and q give finite scattering for which the en-
ergy difference 6 satisfies the relationship irt/6 & r(k); i.e.,
in this regime the integral in (6) behaves like a broadened
5 function in energy 6 with a broadening of irtlr(k). We
shall see below that in the high-field regime the momen-
tum space cannot be divided in this way.

d [g(k q)—p( k )] - eF 6 t
dk

h.
tc

Time

FIG. 2. A schematic representation of the time dependence
of the initial energy state c(k+eFt) and the final energy state
e(k —q+eFtj+gcoq. Both the energies coincide at time t~ and
a transition is possible at this time in a semiclassical sense. The
cross-hatched area represents the minimal area required by the
uncertainty principle hE ht =fi Since AE. =

I B[s(k—q)—E(k)]/BkI eF b t/2, an application of this minimal principle
directly gives At =~I; defined in (5).

2. The high geld r-egime

In the high-field regime the values of the momenta k, q
and the electric field F are such that r~ ((r(k). This
condition says that for a scattering event to be in the
high-field limit the transferred velocity in the direction of
the field UT=q. F/IFIm has to satisfy the following con-
dition:

vT ))
e

I
F Ir'(k )

The functions which set the important time scales in
this regime become more transparent if we rewrite the
time integral in (6) as

6~F 0 (t —tc)'
exp —i sgn(q F) dt exp exp i sgn(q F)

2A r k 27 F
(10)

where we have introduced an important time parameter
t&. Physically tz is the time when the energy levels
E(k(t) —q) —r)A'ro and E(k(t)) cross and we call it the
"level-crossing time" defined by

E(k(tc) —q) —s(k(tc)) rifi' =0 . —
For parabolic bands we get

tc =sgn(q F)—r~ . (12)

The physical relevance of the times tz and ~~ is illustrat-
ed in Fig. 2.

The time integral (10) contains a positive definite ex-
ponentially decaying function for negative times and a
strongly oscillating function. The exponentially decaying
function has an appreciable value only in the time inter-
val of order [

—r(k), 0]; outside this region it decays to
zero. The oscillatory function has a maximum period of

oscillation of order ~~ for times t near t~, and for times
far from t~ the period decreases below this value. In the
high-field regime, where rz &(r(k), this function oscil-
lates many times in the interval [

—r(k), 0] for any k.
Thus we cannot separate the k and q space into [case (i)]
and [case (ii)] as was done while discussing the semiclassi-
cal regime. Since this separation in the semiclassical lim-
it gave us energy conservation, one might naively (and in-
correctly) conclude that energy conservation is lost in the
high-field regime. In the semiclassical regime this separa-
tion is possible because the energies of the final and initial
states change very little over the lifetime ~ and one can
associate the time t =0 with the instant of scattering. In
the high-field limit the time dependence of the initial and
final states is very strong and one has to be careful in in-
terpreting this time of scattering. There is nothing physi-
cally special about t =0 in the high-field limit; instead the
time tc is the only physically significant time associated
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with a given k and q via (11). If one interprets the time
of transition as the time tc, then energy conservation is
satisfied, as can be seen from Eq. (11).

C. The saddle-point approximation

Now we are ready to simplify (10) by making the
saddle-point approximation. The maximum contribution

to the integral comes from the region where the in-
tegrand oscillates the least number of times, i.e., when t
lies near the "saddle-point" tc; for values of t away from
tc the integrand oscillates and the contribution to the in-
tegral is small. This suggests the saddle-point approxi-
mation, where one can replace the time t in the slowly
varying exponentially decaying function by tc, provided
that the saddle point lies in the range of integration, i.e.,

0
dt exp exp i sgn(q F)

QO rk 2%+

tc
=min exp, 1 ' f dt exp i sgn(q F)r k) 2~2

(13)

where the function minIa, b j is defined as the minimum of a or b Th. is function is introduced because for tc) 0 the
saddle point tc is outside the range of integration; thus t never achieves the value tc and the integral on the left-hand
side of (13) is negligible. The minI j function on the right-hand side of (13) ensures that the integral on the right-hand
side also becomes small when tc )0. Without the presence of this term the right-hand side would diverge for positive
tc Per.haps a more elegant way of writing the minI j function in the above equation would be to use the following iden-
tity (which we shall use in the following sections):

min exp
tc tc

, 1 =exp 8( —tc) (14)

D. Error estimate of the saddle-point approximation

R+=

The integrals in this expression can be written in terms of the error function erf []:

To give a more rigorous justification for the saddle-point approximation we define R+ as the ratio of the exact in-
tegral [left-hand side of (13)]and its saddle-point approximation:

0 tc o (r —r, )'
dt exp —exp +i exp f dt exp +i

QQ 'T 2VF 7 QO 27F

7 Fexp(+ir~/2r ) erf &+i /2 +i
7 F T

tc
erf V'+i /2

+F

(16)

where v'+i =(1+i)/&2. This expression formally de-
pends on the ratio r~/r and tclr~; however, an analysis
of this expression shows that in the high-field limit
(r~/r & 1) the relevant parameter is in fact tclr and not
tc/~~. To the lowest order in ~~/~ we get for tc) 0

8+ —exp( tc /r ), — (17)

and for tc & 0 we get

exp(+ 1rc /2%~ )
R j

—1+ [exp( tc lr) —1] . —
&+2~i tc

From this analysis we conclude that in the high-field
limit the saddle-point approximation is valid for
~tc/rI & 1. For ~tc/~~ ) 1 this approximation is not val-
id. This is because for large values of tc the integral on
the left-hand side of (13) goes to zero algebraically while
the saddle-point approximation becomes proportional to
exp(tc /r). Thus the saddle-point approximation ex-
ponentially underestimates this integral for negative tc,

E. Summary of the section

We have shown that the parameter ~~/w(k) determines
whether we are in the semiclassical or high-field regime.
In the semiclassical regime rz/r(k) ))1, we use the

I

and exponentially overestimates this integral for positive
values of tc. The underestimation for negative tc does
not cause a problem since the left-hand side of (13) is
small anyhow in this regime, but for positive and large
values of tc the exponential overestimation has to be
killed "by hand" as was done in (13).

Figure 3 shows a numerical example of this approxima-
tion; the figure contains plots of the real and imaginary
parts of the left-hand and the right-hand sides of (13) as
functions of tc for the high-field limiting case
r~/r(k) =

—,'. Although this value of —,
' does not represent

the limiting case rz /w « 1, we chose this value as
representative for GaAs below the Gunn-eftect regime
(see Fig. 4 and discussion below). Numerical studies
show that already at the higher-field value of
r~/r(k) =0. 1 the two curves are indistinguishable.
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FIG. 3. Numerical demonstration of the accuracy of the
saddle-point approximation. The figure contains plots of the
real and imaginary parts of the left-hand (solid line) and right-
hand (dashed line) side of (13) as a function of t&. The right-
hand side is the saddle-point approximation of the left-hand
side. A value of ~F/~= —,

' appropriate for GaAs at a field

strength of 3X 10' V/m is used.

"standard" methods to deal with the transport equation;
we shall not be concerned with this regime in this paper.
In the high-field regime [r~/r(k) && 1] we can make use
of the saddle-point approximation to simplify the in-
tegrals.

Notice that r(k) depends on k, the electron momentum
before scattering, while rF [see Eq. (5)] depends on the
electric-field strength as well as the magnitude of the
transferred momentum F q~/~F~ in the direction of the
field. Thus for a given electric-field strength there are
some scattering processes for which the initial momen-
tum and transferred momentum are such that the semi-
classical condition rF/r(k)))1 is satisfied and some
scattering processes for which the high-field condition
r~/r(k) &&1 is satisfied. Figure 4 shows how the region
of scattering "phase space" is divided into semiclassical
and high-field regions for GaAs at a field strength of
3X10 V/m, i.e., just before velocity saturation or the
Gunn-effect regime. The figure contains contours of the
ratio rF/r(k) where the x axis shows the electron initial
velocity k/m and the y axis the magnitude of the
transferred velocity ~F q /~F~m in the direction of the
electric field; here rn is the effective mass of an electron in
the central valley of GaAs. The shaded area shows the
semiclassical regime where the ratio is larger than one;
scattering events in the rest of the figure is in the high-
field limit. We see that for this field strength of 3X10
V/m most of the scattering phase space is in the high-
field regime. For higher field strengths the high-field re-
gion would grow even more and the semiclassical region
would shrink. Note that because of energy conservation
some parts of the region shown in the figure are not ac-
cessible for scattering.

IV. THE SEMICLASSICAL BOLTZMANN EQUATION

The semiclassical BE plays two important roles in this
paper. First, we shall show in this paper that the QTE
can be expressed in various forms which are not strictly
identical but are equivalent within the same order of
~F/~; one of these forms will turn out to be the semiclas-
sical BE (22). Second, the BE provides us with estimates
of the electronic distribution function which will be used
to estimate the time scales within the QTE.

Since the integral form of the BE is not commonly used
in the literature we first present this equation in its in-
tegral form. For stationary and homogeneous fields the
BE can be written as

f(k)= g ~Mq~ [Nq+ —,'(I+ ))]if dt f (k —q+eFt)
q, g

X exp —f dt' 1 5(c(k —q+eFt) —E(k+eFt) —i)irido ), (19)r(k+ e Ft ')

where I/r(k) is the total scattering-out rate (2) and f (k)
is the distribution function. A derivation of this equation
can be found (for example) in Ref. 7.

In Sec. III we introduce the level crossing time tc,
where we were able to replace t by tc by making use of
the saddle-point approximation in the high-field regime.
This level-crossing time tc can also be introduced in the
semiclassical BE by using Eq. (11) to get

2+F
tc —t = sgn(q. F)[e(k—q+eFt)

(20)

5( 8( k —q+ e Ft ) —e( k+ e Ft )
—rthco ) =5( tc —t )rF /fi .

(21)

—E(k+ e Ft) —
ilirtcoq] .

This result can be used to convert the energy argument of
the 5 function into a time argument:
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lisions to ensure convergence of the results. At this field
strength, about 90% of the electrons turn out to be in the
central valley and only about 10%%uo in the satellite valley
(i.e., regime just before the onset of the Gunn effect and
velocity saturation). Thus we are justified in using these
numerical results to support our theoretical claims which
are based on a single parabolic band.

For a homogeneous effect field the distribution func-
tion depends on the momentum in the direction of the
electric field k~~, and perpendicular to the field kj. Figure
5 contains 3D plots of the function eF&(k) Vf(k)/f(k)
versus parallel velocity v~~ =k~~/m and perpendicular ve-

locity v~ = k~/I [note that the mean free time r(k) is iso-
tropic, i.e., it depends only on the magnitude of the mom-

nentum k]. The electric field is directed in the direction
of decreasing UI~. The figure contains a range of velocites
for which the distribution function has an appreciable
value [specifically f (k) ~f,„/100, where f,„ is the
maximum value of the distribution function for all mo-
menta]. The figures show that the magnitude of the plot-
ted function is of order unity or less, which implies that
(24) is satisfied by the results of our numerical simula-
tions.

V. THE QUANTUM TRANSPORT EQUATION

The integral form of the QTE (Refs. 1 —4 and 8) is the
starting point of our treatment of the high-field regime.
Equation (13) can be rewritten as

f(k)=g [N + —,'(I+il)] f dt& f dtzexp[g(t, , t2)]exp —f dt'[s(k q+eFt—') E(k+—eFt') i)fico„]-/zv, ['
g2 oo co

1& 2

(25)

where

t 0
g (t&, t )2=1 fn(k —q+eFt )

—f dt' + ,' f-r k+eFt'
1

r(k+eFt')
1

r(k q—+ e Ft )' (26)

and t & and t & are the larger and smaller of t, and t2. We have written this equation in a form so that comparison with
(3) is more transparent. This equation is valid for nondegenerate electrons in a single, unbounded band interacting
weakly with phonons in the presence of a static, homogeneous electric field. The reader should refer to Refs. 4 and 8
for details about the techniques and approximations involved in the derivation of this equation. In this paper we shall
take the validity of this equation for granted and base the rest of the analysis on it.

The approach we follow in the rest of this section can be motivated by noticing that the QTE (25) has two integra-
tions over time compared with none in the BE (22). These time integrations will be removed by making the saddle-
point approximation.

A. Saddle-point approximation

To handle (25) in the high-field regime, rF ((~(k), we follow the steps introduced in Sec. III and write this equation

f (k) =g IM, I'[X,+ —,'(I+ri)]

0 0 (ti —tC )
X f dt, f tde 2px[g(t, , tz)]e pxi sgn(q F)

00 oo 27 F
(27)

(t, tc)'—
exp i sgn(q F—)

27 F

where r~ is the time scale (5) introduced by the electric
field and tc is the level-crossing time (11). Note that no
approximation has been made in deriving this equation
from the original QTE (25).

Let us now consider one of the time integrals in (27),
say, integration over t&. This integral contains an oscil-
lating function exp[i sgn(q F)(t, —tc) /2rF] with a time
scale rz and the function exp[g (t, , tz)] which, as we shall
soon show, varies on a scale r. This situation is exactly
analogous to the time integration in (10) encountered in
Sec. III. We will concentrate on momenta k, q which
correspond to the high-field region and follow the same
steps and arguments that we used in Sec. III to motivate

I

the saddle-point approximation.
Let us now examine the scale of variation of

exp[g(t, , tz)] as a function of t, . Specifically we need to
know the fractional change in this function as the time t,
changes by an amount ~F, i.e., an order-of-magnitude es-
timate of the quantity

7 F exp[g (t&, tz)]/exp[g (t„tz )]=rF g (t, , tz)
dt) dt,

(28)

For t, & t2 this quantity equals
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d +F +F
g(t, , t2)= +

dt&
' 2r(k —q+eFt t ) 2r(k+eFt, )

'ttrf (k q—+eFt, )

f (k —q+eFt, )

and for t, &t2 wehave

7 F
2r(k q+—eFt, )dt ' 2r(k+eFt, )

(29)

(30)

is also very small in the high-field limit. %'e are justified
in using these results based on the semiclassical BE be-
cause the main conclusion of this paper is that the QTE
gives results which are identical to the semiclassical BE
even in the high-field limit. Moreover, we use these re-
sults only as an order-of-magnitude estimate. Thus we
conclude that exp[g (t~, t2 )] as a function of t, varies on a
scale ~. These results suggest that we can make the
saddle-point approximation in the t

&
integral, i.e., replace

t, by tc in the function g ( t, , t2).

The first two terms on the right-hand sides of both of
the above equations are small because rF/r(k) ((1 by
definition in the high-field regime. By making use of the
semiclassical result (24) of the last section we see that the
remaining term [third term on the right-hand side of (29)]

5
F = 3&&0 V/m

B. Analysis of the discontinuity in the integrand

One minor point is worth noting: Although the func-
tion g (t~, tq) is continuous at the point t, =tz, its deriva-
tive is not, as can be seen from (29) and (30). However,
this discontinuity is of order 1/r(k) and its eff'ect is very
small in the high-field limit when integrated with the
strongly oscillating function; therefore, the saddle-point
approximation can be used even in the presence of the
discontinuity in the derivative of g (t &, tz).

2.0

61.5 10
61. 10

6
0.5 10

{a) Real Part

F—= 1/3

6
Exact Resuit

2.0--
Saddle-Point Approx.

—0.5

\
'
~ \ 'I

1 I I 1 1 \ \ '\ 1 1 'I 1
1 1 1 1 \ 1 1 1 1 1 1

1 1 1 1 1 \ 1 1 1 1 1 '1

I 1 1 1 1 1 1 1 \ 1 '1

1 1 1 1 1 1 \ 1 1 1
1 'I \ 1 1 1 \ \

1 \ \ 1 \ \ \
I 1 1 \ \ \ 4 \ 1 \

1 'I 1 1 1~'I I \ 5 \

/
//5 /

{b)Imaginary Part

—= i/3F

6-0.5 10
6-1. 10

v,
~
{~,)

'~

6
—1.5 10 -4 —2

—0.5--

4
~ ~

FIG. 5. Plot of the function eF7(k) Vflk)/fik) vs parallel
velocity u~I =k~I/m and perpendicular velocity U&=k~/m. The
data for this plot are obtained from Monte Carlo simulations of
the semiclassical Boltzmann equation at a field strength of
3 X 10' V/m for electrons in GaAs. The electric Aeld is pointing
in the direction of decreasing Ut~. The plotted function is of or-
der I or less; this validates the assumption (24) made in the main
body of this paper. In other words, this figure confirms that the
fractional change in the distribution function f (k) as the
momentum changes from k to k+eF~F during a time interval
equal to the characteristic time scale ~F set by the electric field
is small.

T1111e t( 2 TF

FIG. 6. Numerical demonstration of the accuracy of the
saddle-point approximation with a discontinuity, as discussed
in Sec. V. The figure contains plots of the real and imaginary

parts of the numerator (solid line) and denominator (dashed

line) of Eq. (31) as a function of t~. The denominator is the
saddle-point approximation of the numerator. A value of
vF/~= —' appropriate for GaAs at a field strength of 3X10

3

V/m is used.
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Since the main contribution of the integral over t2
comes from the region t2 —tc, we discuss the discontinui-
ty at the time t2 =tc. We now justify this point more
rigorously by using the function exp( —

I
t —tc I

/2r) as the
I

slowly varying test function which varies on a scale 7 and
has a discontinuity in its derivative of order 1/7.
Specifically we shall test the accuracy of the saddle-point
approximation by evaluating the ratio R+ defined as

0
R+ = dt exp

(t t )'—
C +. C

exp i
27 27F

0 (t tc—)'
f dtexp +t

oo 27F
(31)

Here the denominator is the saddle-point approximation to the integral in the numerator. We have placed the discon-
tinuity in the derivative at time tc, i.e., the saddle point, because the effect of this discontinuity is expected to be most
pronounced at this point. Also, later in this section we shall make the saddle-point approximation for the t2 integration
in (27) and replace t~ by tc Fol.lowing the steps introduced in Sec. III we express (31) in terms of the error function
erf[ ]:

tc I tc I . rF
exp(+i'/8r ) . 1 — erf &+i/2 +i

rF

tc
1 —erf v'+i /2

7F

+20( —tc )erf
+ti/+l TF

2&2r
(32)

where v'+i =(1+t')/v 2 To. lowest order in rF/r we

get for tc) 0

R+ —exp( —tc /2r), (33)

and for tc (0 we get

exp(+ i tc /2r~ )
R~ —1+ [exp( tc /2r )

—1] .
+2~i tc

(34)

Thus we conclude that in the high-field limit the saddle-
point approximation is valid for all values of tc except
tc )7 where this approximation overestimates the correct
integral. This is because for large values of positive tc
the numerator of (31) becomes proportional to
exp —

( tc /2r) while the denominator, i.e., the saddle-
point approximation, goes to zero algebraically. This
does not cause a problem for the application of the
saddle-point approximation to the QTE since the actual
integral and its saddle-point approximation are both

I

small in this regime and contribute very little to the QTE.
Figure 6 demonstrates the accuracy of this approxima-

tion via a numerical calculation; the figure shows plots of
the real and imaginary parts of the numerator and
denominator of (31) as functions of tc for the high-field
limiting case rF/r(k) =

—,'. This figure shows that the two
functions are close to each other for all values of tc. As
mentioned before, although this value of —,

' does not
represent the limiting case 7F/7(&1, we chose this value
as representative for GaAs. Numerical studies show that
for a value of rF /r(k) =0. 1 the two curves are already in-
distinguishable.

C. Transport equation within the saddle-point approximation

An identical argument holds for the t2 integration in
(27). Thus we can apply the saddle-point approximation
to both the t, and t~ integrations in (27), i.e., repalce
t, ~ tc and t2 ~tc in the slowly varying function
exp[g(t, , t2)] to get

f (k)=g [X + —,'(1+g)]f (k —q+eFtc)
q, „

p 9( tc) 0 (t tc )
2 2

f dt exp i sgn(q. F)
oo 272F

(35)

The presence of the theta function 9( —tc) in the ex-
ponential is to avoid the unphysical divergence in the re-
gion tc) 0 introduced by the saddle-point approxima-
tion, as was demonstrated in the last section in Eqs. (13)
and (14).

In order to make this equation more suitable for later

discussion we introduce a dimensionless function

,
2

t j7F X2
S(t)= f dx exp i

277 2

in terms of which (35) reads

(36)
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[zv, /'
f(k)=2~+ [N + —,'( I+r))]f (k q+—eFtc)

q„
p 8( t—c)

X exp — dt S( tc—)r~ .r k+eFt

(37)

This equation is the final form of the QTE after making
the saddle-point approximation. At this point this equa-
tion does not seem to resemble any previously derived
transport equation, but in the following section we shall
show that to the lowest order in the parameter r~/r this
equation is equivalent to the high-field transport equation
derived in Ref. 4 and also to the BE.

tion of the exponential term in (39) within this time is
also of order rF/r as a function of tc S. ince in the high-
field limit ~F/«1, both of these functions vary on a
scale larger than r~ and therefore we can (a) replace tc in
these equations by t and (b) replace A (t —tc) by a delta
function 5(t —tc) without changing the value of the in-
tegral in (39). We perform these replacements in two
separate steps to connect this work to previous results in
the literature.

Replacement (a) gives

f(k)=2~ f g ~Mq~ [Nq+ —,'(I+il)]f(k q+e—Ft)

po, 1

r(k+ e F t')
VI. DERIVATION OF THE BE FROM THE QTE XrFA (t —tc), (40)

f (k)=2m f dt g ~ [Nq+ —,'(I+il)]
oo g 2

Xf (k q+eFtc)—
p 8( tc)—

Xr~A(t tc) . —(39)

The definition of the function A (t) has an additional
important property: When A (t) is integrated with a
function varying on a time scale larger than rz then A (t)
behaves like a delta function 5(t) Now we use th. is prop-
erty of A (t) in (39). As a function of tc the fractional
variation off (k —q+eFtc) on a time scale r~ is of order
r~/r or larger, as was demonstrated in Sec. IV, Eq. (24).
Here again we are justified in using a semiclassical result
because we shall show that the QTE reduces to the semi-
classical BE in the high-field limit. The fractional varia-

Before we proceed with the derivation of the BE we
shall first outline the main step of the derivation. The
necessary algebra will be filled in in the rest of this sec-
tion.

First we notice that the QTE (37) differs from the BE
(22) by only one term; i.e., if S( —tc) in the QTE could be
replaced by 8( —tc) then one would recover the semiclas-
sical BE. Using Fresnel integrals it can be shown that
S(t) has the limits S( —~ )=0 and S(~ )=1. Between
these limits this function varies on a scale ~z', thus if the
other functions in (37) vary slowly on the scale r~, then
S(t) can be replaced by 8(t) and one would recover the
BE. However, we need to be careful in following this ar-
gument since the only integration in (37) is over the vari-
able q while tc is a function of q, as can be seen from (11).

In order to follow the argument and be able to use the
limit 7.F/~(1 we must decouple the explicit q depen-
dence of the integrand of (37) from tc dependence. We
accomplish this by introducing an additional time in-
tegration by defining A (t):

0S( tc)=—f dt A(t tc)—(3&)

and rewrite (37) as

X rF5(t —tc ) . (41)

It can be seen by using (21) that the above equation is in
fact the semiclassical BE (19).

Therefore we conclude that in the high-field limit
(r~ ((r) the QTE reduces to the semiclassical BE. This
result was demonstrated via Monte Carlo simulations in
Ref. 6 for very high electric fields; here we have supplied
an analytic proof. Thus in both the low-field limit (a case
which we have not treated in this paper) and the high-
field limit the QTE gives results identical to the BE.
Therefore a reasonable assumption is that this should
also be true for intermediate values of the electric field.

VII. CONCLUSIONS

In this paper we have studied the effect of the electric
field on scattering in the I valley of GaAs below the on-
set of the Gunn effect. We have shown that scattering
events with large momentum transfer (i.e. , large-angle
scattering which gives the most important contribution
to resistivity) are already in the high-field regime even at
a moderately low field strength of 3 X 10 V/m. By using
a saddle-point approximation which is exact in the high-
field limit we recover the scattering rates obtained earlier
in Ref. 4 by using the ad hoc completed-collision approxi-
mation. We show that within the same accuracy (r~/r)
these rates are equal to those obtained from the Fermi
golden rule in the absence of the electric field.

Although we have specifically treated GaAs before the
onset of the Gunn effect, a more general theoretical con-

which is the QTE derived in Ref. 4 [Eq. (4.12) of that
reference] by using the ad hoc completed-collision ap-
proximation. Here this equation has been derived in a
more controlled manner. Note that the theta function
8( t) in the ex—ponential decay term can now be replaced
by one since t is always negative.

Performing step (b) turns this equation into

f(k)=2m f g ~M ~ [N + —,'(I+i))]f(k—q+eFt)
q, g

o, 1

r(k+eFt')
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elusion of this paper is that the BE is valid for large
homogeneous electrostatic fields and nondegenerate elec-
trons in a single unbounded band interacting weakly with
phonons.
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