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We model a GaAs quasi-one-dimensional quantum wire in an applied longitudinal field and focus
on mechanisms of electron emission leading to real-space transfer from the wire. The Monte Carlo
simulation assumes an initial electron distribution in the wire and calculates the time required for
electrons to undergo nonequivalent intervalley scattering to three-dimensional states. The model in-
cludes multiple subbands, polar optic and acoustic phonons, intervalley scattering, and band-
structure nonparabolicity. Results have been obtained for different confinement conditions as well
as different temperatures. We find that the required time is a very strong function of the longitudi-
nal field and ranges from 4 ns down to 1 ps for fields in the range of 100 V/cm to 8 kV/cm. The
corresponding distances in the wire vary from 130 um down to the submicrometer range.

I. INTRODUCTION

The physics and fabrication of quasi-one-dimensional
(1D) artificial structures have experienced rapid progress
in the past few years.!”® While early confined systems
were limited to the observation of quantum effects at low
temperature, 1D effects are now observable well above
liquid-helium temperature. Quantum wires with carrier
confinement below 1000 A have recently been achieved
and quantum features in the transconductance of 1D
field-effect devices have been reported at 77 K.’
Meanwhile, new approaches to fabricate quantum struc-
tures with two degrees of confinement by direct growth
on vicinal GaAs substrates have demonstrated the feasi-
bility of quantum-wire based lasers,®® which raises issues
concerning the dynamics and dissipation of nonequilibri-
um carriers in 1D systems. Above 77 K, transport is
essentially limited by phonon scattering which is a strong
impediment to the observation of quantum interference
effects. Also, high-temperature operation is desirable and
the interesting aspect of 1D transport is the reduction of
transverse degrees of freedom which tends to limit
scattering to forward and backward events.!® Under
these conditions, thermal effects become determinant and
1D transport is described in terms of a semiclassical
Boltzmann formalism. Theoretical investigations of the
electronic properties of semiconductor wire structures
have been accomplished including calculation of the
dominant scattering mechanisms!! 7% and transport
simulations. >~ 17

One serious unresolved issue is carrier emission from
the quantum wire, since at sufficiently high electric fields,
the carriers gain enough energy to overcome the
confining barrier.!> The escape mechanisms depend on
the wire configuration and include real-space transfer
effects!® such as emission from a quantum-well confining
potential or drift away from a heterojunction triangular
confining potential. Carrier losses due to scattering in-
clude intravalley as well as intervalley phonon scattering
to 3D states. If the losses due to these mechanisms are
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significant, either in terms of electron lifetimes in the wire
or mean paths in the wire, then the whole concept of an
infinitely long, semiclassical quantum wire is invalid. To
date, no work has addressed this question.

II. MODEL

We simulate electron transport with a Monte Carlo
technique which is based on a model consisting of a
GaAs-Al,Ga,;_,As quantum well (QW) and a perpendic-
ular gate electrode with a triangular electrostatic poten-
tial. The model includes seven electronic subbands. Fig-
ure 1 shows this configuration, which is similar to the V-
shaped-groove quantum-wire field-effect transistor!
(VFET) or the modulation doped GaAs-Al,Ga,_,As
wire structures fabricated using ion-beam-assisted etch-
ing.® The V-shaped-groove wire, characterized by a
quantum well in the y direction and a triangular potential
in the z direction, offers, in principle, the largest degree of
confinement that can be controlled by external transverse
electric fields (gate fields) F,. Although different
confinement configurations may be considered, the con-
clusions obtained with this configuration can be general-
ized to any kind of geometrical confinement.

For the y direction we calculate wave functions in the
infinite square-well approximation while in the z direction
we perform a variational calculation with exponentially
damped polynomials as the trial wave functions. We
compute the first three y and z wave functions and com-
bine them to obtain nine wave functions. Then, the total
wave functions V¥ are given by
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where £; and ¢, ; are determined by a variational calcula-
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tion as well as the corresponding energy E;; we also have
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FIG. 1. Idealized structure used in the simulation.
Confinement in the y direction is due to a quantum well of
width L,. F, is the applied field in the z direction which gives
rise to a triangular well.

assumed free electrons (plane waves) in the x direction.
The corresponding energies of the subband bottoms are
given by
(#imi)? . .

=T 5 tE;, i=12,3, j=12,3. (2)

I am*L 3 J
These approximations are good if the energy level lies
deep in the well. The higher y levels should be spaced
more closely as they approach the top of the QW and the
z levels spaced more closely as screening flattens out the
triangular potential. The y=2,z=3 and y=3, z=3 states
are omitted because of memory constraints in the Monte
Carlo code. For most confinement conditions of interest,
these two levels are above the edge of the GaAs-
Al ,Ga,_, As barrier and can be neglected. Although the
lowest energy level is clearly E;;, the ordering of the
higher subbands depends on the confinement conditions.
To avoid confusion, the subbands will be numbered with
a single subscript v, which will range in order of increas-
ing energy from 1 for the lowest subband to 7 for the
highest subband. The y and z quantum numbers will, in
general, not be used.

Because of the relatively high energy transport con-
sidered in this simulation, nonparabolic effects in the
band structure are important and have been included in
the model using the Kane approximation!® with a non-
parabolicity factor a=0.67 eV~ L. Then, the relation be-
tween E (k, ), the electron energy in the subband, and &k,
the longitudinal wave factor, is given by

2
z—ﬁ—*(k3+kf)=[E(kx )+E,){1+alE(k,)+E,]}
m
=E (k)[1+aE (k)] (3a)
with
K2=2""F (1+aE,) , (3b)

h2

k=(k,,k,). (3d)

E, is the energy at the bottom of the subband; here we
have defined the total energy relative to the quantum-well
bottom as Ep(k)=E,+E(k,). We express k, in terms
of the energy and do not attempt to define k, and k, be-
cause only the magnitude of k, can be determined and k,
is not even a constant of motion. In addition, it is impor-
tant to note that k is defined as an ordered pair rather
than a vector, the reason being it does not transform as a
vector (i.e., it is not closed under addition or scalar multi-
plication). The E(k,) relation is now a function of not
only the energy relative to the subband bottom but also
the energy of the subband relative to the quantum well.
The density of states is also now a function of both E,
and E (k).

For the satellite valleys, since the effective masses are
large, the level splitting brought about by the
confinement will be small; therefore we assume that only
3D states exist in the X and L valleys. We consider polar
optic, acoustic, and intervalley phonon scattering mecha-
nisms. At present, the 1D Monte Carlo code is not inter-
faced to a 3D transport code for electrons in the satellite
valleys and our model does not include any mechanism
for electron injection into the wire. Due to this approxi-
mation, our results are limited to the transient case where
all electrons are in the wire at time ¢ equals zero; we
study the time evolution of the system as electrons escape
to 3D states.

III. SCATTERING RATES

In general, the transition rate from a wave vector k to
k’ is given by Fermi’s golden rule?

W(k’k/):%|Hﬂ‘lZS(Eﬁnal_Einitial) ) (4)

where H; is the matrix element of the perturbing poten-
tial H between the initial and final states. The transition
rate is modified due to nonparabolic effects in the conduc-
tion band, which introduces a term G(k,k’). This term
represents the overlap integral between the periodic parts
of the Bloch functions at k and k' summed over the dou-
bly degenerate final spin states and averaged over the ini-
tial spin states. For 3D cases, this is equal to?!

G(k,k')=(aga, +cpcpcosB)?, (5a)
with
[ 1+aEqx) |V
ST |\ 1+2aEr ) |
aEy(k) 12 )
T | 1+2aE k) |

and B the angle between k and k'’ [ then cos S8
=(k k,+k,k,+k,k',)/|k|k'[]. In 1D systems the en-
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ergy quantization replaces k by k in which case only k.
and k, are known whereas k, and k, are undetermined;
this makes B undetermined. To overcome this difficulty,
we average cosf3 over all possible values of ky, k,, k}j, and
k, subject to the constraint k2=k’+k2 and similarly for
k’. Although it may be argued that k, is a good quan-
tum number with discrete values, fixing k, fixes k, as
well; however, this k, value does not correspond to any
physical quantity. The cosf term is derived assuming
plane waves and it is not clear that either k, or k, are the
corresponding quantities in the 1D form of cosB. In ad-
dition, using explicit values for k, and k, still requires an
averaging process, since the signs of k, and k, are un-
determined. Rather than making these assumptions, we
simply average over k, and k, as well. This method of
determining S is certainly an approximation to calculat-
ing the overlap between initial and final Bloch functions;
however, this seems the most reasonable approach given
the small magnitude of c;. S is thus obtained as a func-
tion of k., k,, k,, and k, which are all known quantities.
With this assumption, G(k,k ') becomes

G(E,E,)=(aEaE,)2+2aEaE,CECE:
kxks
R AR )
(k2k?+1k2k'?)
(K2 +k2)(k2+K2)

+(cpep ) (6a)

for intersubband transitions and
G(k,k")=(aga;.)*+2aza; cic.
N k. k,+k2
(k£+k%,)1/2(k:,2 +k:,2 )1/2
(k k. +k2)?
+(cpez.)? (6b)
R (R k2R P2+ K2
for intrasubband transitions.

Currently, we consider polar-optic-phonon (POP) and
inelastic-acoustic-phonon scattering for 1D states within
the T valley. In addition, we consider intervalley scatter-
ing from 1D states in the I'" valley to 3D states in the X or
L valleys. For POP or acoustic phonons, the transition
probabilites from an electron state k, in initial subband v
to a state k, in final subband u are calculated according
to Fermi’s golden rule as

Wk ky)

_ 27 o
T kg GRD

+ o0 + 0
X f_m f_w dqydqz{M3D,v,u(qx7quqz)l2
X (N, +4+1)8([E, +E(k,)]

272

—[E,+E(k;)]
ttw,) , (7)

where g, is the longitudinal and g,, and g, the transverse
phonon wave vectors, respectively. N, is the phonon oc-

cupation number with the plus or minus sign correspond-
ing to phonon emission or absorption. The double in-
tegral over g, and g, represents the calculation of the 1D
matrix elements Mp , ,(g,) from the 3D matrix ele-
ments. !> Here we consider only bulk (i.e., 3D) phonon
modes and neglect 1D and surface modes. This does not
introduce significant error as long as the confinement is
not excessively high, i.e., less than 50 A.?2 The POP
dispersion relation is assumed to be a constant, which
makes N, and the energy conservation & function in-
dependent of g; therefore they can be factored out of the
double integral. However, the nonconstant dispersion re-
lation for acoustic phonons makes computation of the in-
tegral considerably more complex. The numerical in-
tegration routine has g, as an input parameter, which we
vary to obtain 1D matrix elements. For acoustic pho-
nons, we evaluate the integral for g, in the range
7X10*< g, <1.5X10” cm~!. The acoustic-phonon tran-
sition probabilities are essentially independent of g, for
smaller values, while 1.5X 107 cm ™! is the largest possi-
ble momentum exchange. For POP transitions, the in-
tegral is evaluated for 1 <g, <1X10" cm™ L.

The &, term in Eq. (7) represents conservation of longi-
tudinal momentum with the plus or minus sign corre-
sponding to forward or backward phonon scattering, re-
spectively, and is used to select a value for g, and the cor-
responding matrix element. Scattering rates are comput-
ed by integrating the transition probabilities over the final
electron k states. The total scattering rate for POP’s or
acoustic phonons from initial state k, in subband v is
then given by

:
2
ME)= 3 SE M, (4008,

lJ':l x’9x
(1+2aE})
2 ———L Gk (8a)
7k,
with
Im* 172
|k | = ;"2 [E;(14+aE})—E,(1+aE,)] (8b)
and
Ep=Eptfiog . (8¢)

Equations (8b) and (8c) represent conservation of energy
and determine the final k state and the factor 2aE; in
Eq. (8a) is due to nonparabolicity in the final density of
states. For each 1D subband, conservation of energy
gives four possible final states corresponding to forward
or backward emission or absorption.

A constant broadening factor was used to account for
quantum corrections to the final density of states. Be-
cause of the divergence in the classical density of states at
the bottom of a subband, we consider quantum correla-
tions between scattering events and neglect other in-
tracollisional effects such as the influence of the field or
phonon lifetime. The density-of-states broadening was
selected by fitting the scattering rates from Fermi’s gold-
en rule to the imaginary part of the polaron self-energy
obtained from a self-consistent solution to the Fock ap-
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proximation and was found to be equal to 2.5 meV at 300
K and 1.6 meV at 77 K.2 A similar broadening factor
was also used for acoustic-phonon and intervalley scatter-
ing.

For intervalley scattering, the transition rate between
state k, in subband v of the I" valley and state k' in the X
or L valley is given by

W, xr(ke,k')

27
= _6 !
ﬁ kx kx’qx

+ + o0
Xf_m f_w dg,dq,|Msp ,, x 1(9x,4,,9.)
X (N, +1+1)8[ Ep(K)—Ey , (K')

9 272

G(k,k')

iha)x’L ] ’ (9)

where Ey (k') is the total energy of the final state rela-
tive to the bottom of the quantum well (i.e., the bottom of
the I' valley) and #iwy ; the intervalley phonon energy.
Again, we assume 3D modes and a constant dispersion
relation which allows us to factor N, and the energy-
conservation § function out of the integral. In addition,
the form of the matrix element allows the integral to be
separated into two independent single integrals over g,
and g, without any g, dependence. Then, S, ;(k,), the
total rate to a specific L valley, is given by

277
Stk ) =57 Mip (4%, | (Ny+525)
’ mZ
X k P (1+2a, E;) , (10a)
with the final k state k' given by
¥ 172
Ik'|= —%E-L—EL(1+aLEL) ) (10b)

and the final energy relative to the bottom of the L valley,
E,=[E, +E(k,)]—A +Fw, . (10c)

A; is the energy difference between L and I'. A similar
expression holds for S, y(k,). Then, the total intervalley
scattering rate is given by

Ak )=3S, y(k,)+4S, [ (k) , (10d)

with the factors of 3 and 4 accounting for the number of
satellite valleys.

The scattering rates are shown in Fig. 2. For the sake
of clarity, only the bottom two subbands are shown with
a being the lowest subband and b the first excited state.
The threshold for intervalley absorption to the L valley
occurs at 262 meV and the onset of emission to the L val-
ley begins at 318 meV. Absorption to the X valley starts
at 450 meV and emission to that valley occurs above 510
meV. The rates for POP and acoustic phonons show a
large number of peaks, each peak being proportional to
the density of final states and corresponding to an emis-
sion or absorption to the bottom of a subband (the peaks
at higher energy represent scattering to subbands not
shown in the figure). These peaks make the velocity and

5x1013
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Total Scattering Rate (s-1)

° 150 200 250 360 350 4IOO 4é0
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FIG. 2. Scattering rates for a quantum-wire structure includ-
ing POP, acoustic, and intervalley phonons. The confinement
conditions are L, =135 10\, F,=120kV/cm, and T=300 K. Al-
though the rates include transitions between all seven subbands,
only the lowest two subbands are shown for the sake of clarity.
The peaks in the rates are due to POP scattering to the bottom
of a subband. Clearly visible are the thresholds for phonon ab-
sorption to the L valley at 262 meV, emission to the L valley at
318 meV, and absorption to X valley at 450 meV. The emission
threshold to the X valley at 510 meV is not on the graph, but is
included in the simulation.

distribution functions sensitive to the energy separation
between subbands, particularly the first and second sub-
bands. Although the scattering rates for POP and acous-
tic phonons are different for the different subbands, we
can see that the rate for intervalley scattering is indepen-
dent of the initial subband.

IV. MONTE CARLO SIMULATION

Because of the large number of peaks in the rates, nor-
mal methods of computing free flight times are inefficient.
Using constant or piecewise constant scattering rates?* %>
with self-scattering would have introduced a very large
percentage of self-scattering events. Instead, a direct in-
tegration method was used. For a given subband v, if r is
a uniformly distributed random number on [0,1], then

—Inr= folkv[kv(t’)]dt’ , (11)

where ¢ is the time of the free flight, k(¢) is the momen-
tum as a function of time in subband v, and A, (k,) is the
scattering rate as a function of momentum for that sub-
band. In 3D simulations it is virtually impossible to store
k(E) in tabular form because of the large number of pos-
sible k values. In 1D systems, there is only one scalar k,
value for each energy and each v (tabulated earlier by the
program), therefore k(E) is simply a lookup function.
Moreover, in 3D, dt is a complicated function of k, in-
volving squares and square-root computations, which
typically prohibits direct integration algorithms in Monte
Carlo techniques. For 1D systems, however, direct in-
tegration compares favorably with other methods.

For a given initial electron energy and subband we fol-
low an electron in the longitudinal field F, until it under-
goes an intervalley scattering, at which point it is lost to
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the simulation. The total time spent tracking that elec-
tron is saved and a new electron is started with the same
initial conditions. This procedure is repeated until we
have accumulated at least 400 000 scattering events and
at least 1000 intervalley scatterings. The electron lifetime
in the quantum wire is then obtained by averaging the
time required to undergo intervalley scattering.

V. RESULTS

We have run Monte Carlo simulations at 300 and 77 K
for two different confinement conditions. The first is a
high-confinement condition characterized by L, =135 A
and F,=120 kV/cm. This condition places the bottom
subband 138 meV above the quantum-well bottom and
the first excited state 231 meV above the well bottom.
The second case is a lower-confinement condition with
L,=215 A and F,=20 kV/cm, which places the bottom
two levels 45 and 73 meV above the well bottom, respec-
tively.

We have varied the electron initial energy as well as
the electron initial subband; we find only a small depen-
dence of the electron lifetime on the energy and essential-
ly no dependence on the initial subband. The lack of
dependence on initial subband can be explained by noting
that the intervalley scattering rate in Fig. 2 is the same
for both subbands a and b.

In Fig. 3, we present the electron lifetime in the high-
confinement case as a function of initial energy for two
different longitudinal fields. The temperature is 300 K,
curve a shows the carrier lifetime in the presence of a lon-
gitudinal field of 1000 V/cm, and curve b is for a lower
field of 100 V/cm. The lifetime is relatively independent
of the inital energy for energies near the subband bottom
and is about 150 ps at 100 V/cm and 50 ps at 1000 V/cm.
Although the actual value of the lifetime at low energy
depends on temperature, field, and confinement condi-
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FIG. 3. Electron lifetime in quantum wires as a function of
initial energy for two different longitudinal fields under high-
confinement conditions at 7=300 K. a is for a longitudinal
field of 100 V/cm, while b is for a longitudinal field of 1000
V/cm.
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tions, the different curves are all approximately parallel.
At higher initial energies, the lifetime decreases at the
threshold for intervalley scattering which occurs at 262
meV for phonon absorption to the L valley. At high lon-
gitudinal fields, the transition is smoother, but still occurs
at roughly the same initial energy. The existence of two
distinct energy regions in the curves can be understood as
a trade-off between the intervalley-scattering time and the
time required to reach equilibrium. We would expect the
time required to scatter intervalley to be proportional to
exp[ —(E —E,)/kT], where E, is the threshold energy
for intervalley scattering and E is some characteristic en-
ergy of the system. Normally, E is the initial energy,
however, if the time is longer than that required to reach
equilibrium, the system reaches equilibrium before under-
going an intervalley scattering and the time is indepen-
dent of the initial energy.

In Fig. 4 we show the influence of the longitudinal field
on the time and distance required to undergo an interval-
ley scattering event. The inset in Fig. 4 shows an esti-
mate of the distance an electron travels for a, high, and b,
low, confinement at 300 K. The high-confinement curves
are for a simulation where the initial electron energy is
140 meV while in the low-confinement case the initial
electron energy is 50 meV. Varying the initial energy
does not substantially alter the result except for very high
initial energies (as can be expected from Fig. 3). These
distances are only approximations as they are calculated
assuming {x )=<{v){(¢) rather than explicitly calculat-
ing (x)={(vt) where x is the distance, v is the velocity,
and ¢ is the lifetime (the reason lies in the Monte Carlo
code which keeps statistics on velocity and time indepen-
dently and does not keep track of correlations between
the two). This assumption limits the validity of the re-
sults to long lifetimes where the velocity is sufficiently
randomized and electron runaway is not important.- Ac-
cordingly, we do not present the distance for the 77-K
case, or for longitudinal fields larger than 2 kV/cm (al-
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FIG. 4. Electron lifetime and distance vs longitudinal field at
77 and 300 K for high- and low-confinement conditions. a and
b are high and low confinement at 300 K, respectively, while ¢
and d are the corresponding curves for 77 K. Assumptions used

in calculating the distance limit its validity to 300 K and fields
below 2 kV/cm.
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though the trend is clearly to shorter distances as the
field increases). The distance in the low-confinement case
is much larger than that for the high-confinement case,
even though electron velocities in high confinement are
larger than in low confinement. The distance rises rapid-
ly, peaks near 400 V/cm, and then drops off slowly. This
behavior can be understood by considering the two ex-
tremes of infinite and zero field. At very large fields, the
lifetime is so short that even though the acceleration is
very high, the distance still tends towards zero. At zero
field, electrons still scatter by intervalley phonons with
some small, but finite probability. Since the average ve-
locity is zero, the average distance, as previously defined,
required to undergo an intervalley scattering is zero. Of
course, a more meaningful concept for the zero-field case
would be {d ) ={v? ), where v,, is the thermal velocity.
We estimate this to be approximately 44 um under high
confinement and 1150 yum for low confinement. These
numbers are larger than one would estimate from extra-
polation in the figure; however, v, is considerably larger
than the average (drift) velocity at low field and the re-
sults would converge at higher fields.

The influence of the longitudinal field on the lifetime is
shown in Fig. 4 for high and low confinement at both 77
and 300 K. Curve a(b) is for high (low) confinement at
300 K; ¢(d) is high (low) confinement at 77 K. All curves
show a very strong dependence on the longitudinal field.
At lower fields, the effects of confinement and tempera-
ture are significant, but at higher fields these effects are
washed out as the field dominates in determining the life-
time. The times (for the same field) are larger at 77 K be-
cause of the lack of phonon absorption, which tends to
both lower the average energy and also raise the thresh-
old for intervalley scattering. The 77-K results do not go
below 1500 V/cm because the lifetime is over 10 ns and it
requires too much CPU time to get an accurate estimate
of the lifetime.

The fraction of electrons above the scattering threshold
for the four different cases is tabulated in Table I and
supports the data in Fig. 4. The cases with shorter life-
times have greater carrier concentrations above the
threshold for intervalley scattering. As can be seen, the
high-confinement condition at 300 K has a much shorter
lifetime than the low-confinement case. This is due to the
fact that under high confinement the average energy is
high because of the location of the bottom subband rela-
tive to the L or X valley. However, at 77 K the trend is
reversed and under low confinement a larger fraction of
carriers is above the emission threshold.
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FIG. 5. Idealized distribution functions for the four cases
shown in Fig. 4. The 300-K curves, a and b, are for a longitudi-
nal field of 500 V/cm while the 77-K curves, ¢ and d, are for a
longitudinal field of 1500 V/cm.

Figure 5 presents a highly schematic picture of the dis-
tribution functions for the four cases. If we compare the
two distribution functions at 300 K (a and b), it is ap-
parent that the field does not play a major role since in
both cases the high-energy slope of the distribution func-
tion is characterized by an electron temperature of ap-
proximately 400 K. Near equilibrium, detailed balance
requires the distribution function to be insensitive to the
confinement. However, at 77 K, hot carriers are much
more important due to the lower lattice temperature and
the higher longitudinal field. The corresponding electron
temperatures are 260 K for the high-confinement case (c)
and 550 K for the low confinement case (d). Therefore
we suspect this difference is due to the dependence of the
scattering rates on confinement and energy. At high
fields, detailed balance is irrelevant and consequently the
tail of the distribution function is more sensitive to the
scattering rate. At high energy, where carriers undergo
intervalley transfer, the effective POP scattering rate is
stronger under high confinement than under low
confinement due to the overlap integral in the matrix ele-
ment.® As a result, the tail of the distribution function
decreases more rapidly in the former case than in the
latter, resulting in lower electron temperatures. This
high-field effect results in longer electron lifetimes for the
high-confinement case and can be seen at 300 K for fields
above 3 kV/cm where curves (@) and (b) cross over.

TABLE 1. Simulation conditions for the four cases shown in Figs. 4 and 5. The fraction is the frac-
tion of carriers found above the threshold for intervalley scattering (262 meV at 300 K and 318 meV at

77 K) and the time is the average electron lifetime.

Temperature Field Fraction Time

Case Confinement (K) (V/cm) % (ps)
a High 300 500 0.679 84
b Low 300 500 0.0338 1580

c High 77 1500 0.00523 3985
d Low 77 1500 0.0602 926
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VI. CONCLUSIONS

In conclusion, we have performed the first multi-
subband quasi-1D simulation which includes intervalley
scattering to 3D states. The electron lifetime and dis-
tance for escaping the wire are not only very strong func-
tions of longitudinal field but also are dependent on the
confinement conditions and temperature. Lifetimes rang-
ing from 4 n down to 1 ps have been calculated at 77 and
300 K for two confinement conditions with distances
ranging from 130 um down to the submicrometer range.
The computed distances are in the 10-um range for fields
below 2 kV/cm at 300 K, which demonstrates the feasi-
bility of operating quantum wires as purely 1D structures

without being concerned with intervalley scattering. On
the other hand, under high-field conditions, electrons es-
cape the wire quickly. This should be accompanied by a
corresponding negative differential resistance in the I-V
characteristics similar to real space transfer as they
scatters from high mobility 1D states in the " valley to
lower mobility 3D states in the L or X valleys.

ACKNOWLEDGMENTS

The authors are indebted to Karl Hess for helpful dis-
cussions on real-space transfer. This work is supported
by National Science Foundation Grant No. NSF-CDR-
85-10209 and the Joint Services Electronics Program.

1H. Sakaki, Jpn. J. Appl. Phys. 19, L735 (1980).

2p. Petroff, A. Gossard, R. Logan, and W. Wiegmann, Appl.
Phys. Lett. 41, 635 (1982).

3A. Warren, D. Antoniadis, and H. Smith, Phys. Rev. Lett. 56,
1858 (1986).

4K. Kash, A. Scherer, J. Worlock, H. Craighead, and M.
Tamargo, Appl. Phys. Lett. 49, 1043 (1986).

5T. Hiramoto, K. Hirakawa, Y. Iye, and T. Ikoma, Appl. Phys.
Lett. 51, 1620 (1987).

6M. L. Roukes, A. Scherer, S. J. Allen, H. G. Craighead, R. M.
Ruthen, E. D. Beebe, and J. P. Harbison, Phys. Rev. Lett. 59,
3011 (1987).

7K. Ismail, D. A. Antoniadis, and H.I. Smith, Appl. Phys. Lett.
54, 1130 (1989).

8M. Tsuchiya, J. M. Gaines, R. H. Yan, R. J. Simes, P. O.
Holtz, L. A. Coldren, and P. M. Petroff, Phys. Rev. Lett. 62,
466 (1989).

9E. Kapon, D. M. Hwang, and R. Bhat, Phys. Rev. Lett. 63, 430
(1989).

103, Briggs and J. P. Leburton, Phys. Rev. B 39, 8025 (1989).

13, P. Leburton, J. Appl. Phys. 56, 2850 (1984).

12G, Fishman, Phys. Rev. B 34, 2394 (1986).

138, Laux and F. Stern, Appl. Phys. Lett. 49, 91 (1986).

143, Lee and H. Spector, J. Appl. Phys. 57, 366 (1985).

158, Briggs and J. P. Leburton, Phys. Rev. B 38, 8163 (1988). In
this reference, Eq. (4) should be corrected to agree with Eq.
(8) in this paper.

165, Das Sarma and X. C. Xie, Phys. Rev. B 35, 9875 (1987).

17A. Kubasi, C. Chattopadhyay, and C. K. Sarkar, J. Appl.
Phys. 65, 1598 (1989).

18K Hess, H. Morkoc, H. Shichijo, and B. G. Streetman, Appl.
Phys. Lett. 35, 469 (1979).

19E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).

20E. M. Conwell, High Field Transport In Semiconductors
(Academic, New York, 1967).

21w, Fawcett, A. D. Boardman, and S. Swain, J. Phys. Chem.
Solids 31, 1963 (1970).

22N. Mori and T. Ando, Phys. Rev. B 40, 6175 (1989).

238, Briggs, B. A. Mason, and J. P. Leburton, Phys. Rev. B 40,
12001 (1989).

24C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, 645 (1983).

25R. Yortson, J. Comput. Phys. 64, 177 (1986).



