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Models of resonant-tunneling diodes based on the envelope-function approximation often give un-

satisfactory results. In order to address some of the shortcomings of these models, we employ a
tight-binding model that allows more careful treatment of heterointerfaces than is possible in the
envelope-function approach. We use transfer matrices to carry out the calculation and present an

0

improved method that allows us to transfer across larger device dimensions () 1000 A), thereby

permitting us to include space-charge regions in the model. We compare results obtained with the
tight-binding and envelope-function approximations.

I. INTRODUCTION

It is widely known that models of resonant-tunneling
diodes (RTD's) based on the envelope-function approxi-
mation produce values of the valley current which are far
smaller than what one measures in a real device. This
discrepancy is especially pronounced in devices with
A1As barriers, due to the relatively small conduction-
band discontinuity between the GaAs I valley the A1As
X valley. In order to model such devices more accurate-
ly, one must treat the heterointerfaces more carefully
than is possible in the usual envelope-function model,
taking into account the fact that the electron has many
tunneling paths available to it. To address this shortcom-
ing, one might try to extend the envelope-function ap-
proximation to include valley-mixing effects at a
heterointerface. This has been the approach of Ando
et al. ' Another option is to discard the envelope-
function approach altogether, restating the problem in
terms of localized states, for example. In this work, we
employ an empirical tight-binding model to treat hetero-
structures lacking translational symmetry in one direc-
tion.

Tight-binding models have been used to study single in-
terfaces and superlattices and, less frequently, RTD's
(Ref. 5) and quantum wells. Because all these structures
involve a lack of translational invariance on an atomic
scale, a transfer-matrix ' approach is commonly used. It
is well known that transfer matrices, such as those used
in these types of calculations, are fraught with numerical
instabilities, namely, exponential blowup. Schulman and
Chang have addressed this problem for superlattices and
bound states of quantum wells with their reduced-
Hamiltonian method; it has, however, remained a serious
obstacle for aperiodic structures with unbound states,
such as RTD's. As a result, the few published RTD
models can handle only relatively small dimensions (Ref.
5 uses 60 monolayers, or 170 A), and thus cannot incorp-
orate any of the space-charge regions which form on ei-
ther side of the RTD. Since the accumulation layer in
front of a RTD can cause band bending of about 0.1 eV
under moderate bias, it is essential that these effects be in-

eluded in the model. We have recently discovered a
method for solving transfer-matrix problems which can
handle relatively long lengths of material; we regularly
model structures of about 300 monolayers (849 A) and
have done calculations for devices as large as 400 mono-
layers (1132 A). The only limitations we have found are
computer time and money.

In this work, we examine RTD's using a nearest-
neighbor-only tight-binding model, including depletion
and accumulation regions, and compare our results to
those obtained with the usual envelope-function approxi-
mation. In addition, we briefly discuss some of the
difhculties and virtues of such an approach. We use
transfer matrices, ' with the aforementioned improved
solution method. In Sec. II, we brieAy discuss our
transfer matrix, which is somewhat simpler than that of
Refs. 6 and 7. In Sec. III, we present our enhancement to
the usual transfer-matrix approach and apply it to RTD's
and discuss the results.

II. TRANSFER-MATRIX METHOD
AND TIGHT-BINDING MODEL

In order to study systems lacking translational symme-
try in the z direction, we use the transfer-matrix
method. ' We employ a nearest-neighbor-only, empiri-
cal tight-binding model with a basis of five atomiclike or-
bitals per atom, s, p, p, p„and s*, where the last orbital
is an excited s state. Additionally, we specialize to the
case of zinc-blende-structure crystals, giving ten orbitals
per unit cell, and we consider only materials oriented in
the [001]direction. Figure 1 illustrates our definition of a
layer. In each layer L we construct Bloch sums of each
orbital type centered on both anions and cations which
have the requisite symmetry in the x -y plane:

Ina;k((, L ) = g exp[ik((. R, ((]lna;L;R, ((),
J

I«;k~~, L ) = & exp[ik~~ (R)+v)~~]I«;L;(R)+v)I) .
J

(2)
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The index n is one of s, p„,p, p„or s*. The letters "a"
and "c"signify anion and cation, respectively. The nota-
tion rll signifies the projection of r onto the x-y plane, so
that the sums in (1) and (2) are in a plane parallel to the
x-y plane. In (2), v is the basis vector of a unit cell:
v=a(x+y+z)/4, where a is the lattice constant. We
write the total wave function, which is a simultaneous
eigenstate of the Hamiltonian & and k~~ as

l +k &
= g & (CL,

' «;k~~;l. ) + C,"'l nc;k1, 1. ) ) . (3)
L n

Ga

As

As

[001]

~Lver Index

L

We have suppressed the normalization in (1)—(3) because
it is not important. The transpose of a vector of
coefFicients CL is defined by

One Atomic Plane

FIG. 1. GaAs oriented in the [001] direction.

(C )T—(Csa Cxa Cya Cza Cs*a Csc Cxc Cyc Czc Cs*c)
L L& L & L& L& L & L& L& L& L~ L (4)

where we have used the shorthand "x" for p, etc. We
then employ the transfer matrix T, which is generated by
taking inner products of (1) and (2) with the Schrodinger
equation [&—E]l@k ) =0 to relate the various C toL

one another. Instead of the general expressions given in
Ref. 6, we obtain a simpler relationship, resulting from
our inclusion of only nearest-neighbor interactions:

CL= YCL

It turns out that in the nearest-neighbor approxima-
tion, for certain values of

klan,
Y will not exist. This situa-

tion is not due to a defect in the transfer-matrix method,
but rather is merely rejective of the pathologies present
in the underlying tight-binding Hamiltonian. This is easi-
ly demonstrated for the case under consideration by
choosing a k~~ for which 5' does not exist (for the

TABLE I. Tight-binding parameters. All values are in eV.
The parameters are used in the nearest-neighbor tight-binding
Hamiltonian given in Ref. 9.

nearest-neighbor-only approximation in a [001]-oriented
crystal, k~~=(2~/a)x, for example), and computing
the determinant of the matrix [&—El], with
k=(2vr/a)x+k, z. (The Hamiltonian in the nearest-
neighbor tight-binding approximation is given in Ref. 9.)
We used MAPLE (Ref. 10) to symbolically evaluate the
determinant, and found it completely independent of k„
regardless of the choice of tight-binding parameters,
meaning that for this

klan,
the electron is both stationary

and infinitely massive for motion in the z direction. It is
therefore no surprise that Y does not exist for certain

klan.

In spite of this pathology, the nearest-neighbor approxi-
mation is still valuable. It will not be seriously in error
when k~~ is small, as is the case at low temperatures, and,
due to the N scaling of most matrix operations, it is
much more computationally accessible than even a
second-near-neighbor model.

Since interfaces and/or applied biases are present in all
structures of interest, it is appropriate to brieAy discuss
our treatment of these features. At an interface, we take
the tight-binding parameters to be the average of those in
the two bulk materials on either side, ensuring that the
product of transfer matrices representing a unit cell of a

Parameter

E (sa)
E(pa)
E(se)
E (pc)
E(s a)
E(s*c)
V(s, s)
V(x, x)
V(x,y)
V(sa, pc)
V(pa, sc)
V(s a,pc)
V(pa, s*c)

GaAs

—8.390 00
1.074 75

—2.654 05
3.554 75
8.574 75
6.704 75

—6.451 3
1.954 6
4.770 0
4.680 0
7.700 0
4.850 0
6.900 0

A1As

—8.266 3110
0.344 288 7

—1.629 823 0
2.947 689 0
6.844 239 0
6.087 689 0

—6.664 2
1.878 0
3.860 0
5.600 0
7.600 0
4.220 0
8.300 0

Quantity

Eg
E, ;„(I )

Exr
Exx
k;„ in [001]

~x, (

CiaAs

1.538
1.538
0.484
0.268
0.9639
0.0689
1.457

A1As

3.136
2.497

—0.882
0.542
0.8512
0.1582
1.046

TABLE II. Energies, minima, and effective masses. Energies
o

are in eV. Wave vectors are in A . Effective masses are ex-
pressed in terms of the free-electron rest mass. Refer to Fig. 2
for energy gaps.
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superlattice 7 has the necessary similarity property
We treat an applied bias as a stepwise-

constant potential.
Our tight-binding parameters are given in Table I. We

arrived at this particular choice of parameters by starting
with those given in Refs. 4 and 9, but modifying them to

give better longitudinal X-valley effective masses. The
A1As parameters have been adjusted to make the
GaAs/A1As valence-band discontinuity 40 /o of the
energy-gap difference at the I point. In Table II, we list
the energy gaps and effective masses generated by the
tight-binding parameters of Table I. The lowest two of
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FIG. 2. (a) The two lowest conduction bands of GaAs from I to X from our tight-binding parameters. (b) The two lowest conduc-
tion bands of A1As from I to X from our tight-binding parameters.



4780 BOYKIN, van der WAGT, AND HARRIS 43

the six conduction bands, along with some of the gaps,
are shown in Fig. 2.

III. APPLICATION
TO RESONANT-TUNNELING DIODES

A. General

V;,„(v1+b6v6+ . +b10v10)=b1u1+ +b5u5, (6)

For a RTD, we carry out an expansion in terms of bulk
GaAs transfer-matrix eigenstates on either side of the
structure in the first layer after the band-bending associ-
ated with the space-charge regions has essentially
stopped. The left-hand-side expansion states will be those
with bulk transfer-matrix eigenvalues A, such that

I kI & 1

(decaying as one transfers with T 'G,~, „« toward
z —co ) and those propagating states with BE/Bk, (0,
where A=e ,xp(i k, a /2) (reflected states). We label these
states v6, . . . , v&o. In addition, there will be an incident
electron. We assume that it is in a bulk transfer-matrix
eigenstate, say v&, with BE/Bk, )0. We furthermore re-
strict our attention to cases in which this is the only
forward-propagating state on the left-hand side. In these
cases, there will be only one rejected state. The right-
hand-side expansion states will be those with IA,

I
(1 (de-

caying as one p«pagates with YeaAs right toward
z~+ oo ) and those propagating states with BE/Bk, &0
(transmitted states). We label these states u„. . . , u, .
(Note that it is possible to have several transmitted
states. ) We must then solve the linear system:

B. Improved method

As mentioned in the Introduction, the straightforward
implementation of Eq. (6), Eq. (7), will only work if the
composite transfer matrix Y„t is a product of a relatively
small number of single-monolayer transfer matrices. We
have typically found this number to be 20—30 when using
double precision. (It will naturally be much less when k~~

approaches one of the pathologies of the underlying bulk
tight-binding Hamiltonian. ) Schulman and Chang dis-
cuss the reasons for this instability in connection with
their reduced-Hamiltonian method, which also employs
transfer matrices. Their solution is to periodically reex-
pand the product of transfer matrices in terms of a new
basis, normalized to counteract the exponential growth.
Since RTD's necessarily include continuum states, and
the reduced-Hamiltonian method cannot be applied to
such states, we must seek a different solution to the nu-
merical instability.

We now present our method for dealing with the ex-
ponential growth problem. First, rewrite T«t
as a product of composite transfer matrices 7;,
i =1,2, . . . , n, each of which is itself a product of m,
single-monolayer transfer matrices, where each m, is less
than the total number of monolayers which can be suc-
cessfully handled by a straightforward implementation
such as Eq. (7):

—tot —n —n —1 —2—1
'T 'r Y Y'T

b)

(u, I

. Iu —T,„v6I I

—'T„„v,o)

&io

= ( %1o1vl )

(7)

Equation (6) may then be rewritten as

&1(v1+b6v6+ +b1ov1o)

Now, since (nIp, In ) =(mo/1ri)BE„/Bk, „," the transmit-
ted probability current J, is constant and is given by

BE„

n z, n

where L,, is a normalization length and the sum is over
transmitted states. An analogous expression holds for
the reflected current. From (8), we see that the transmis-
sion and reAection coefficients for transport from left to
right are given by

=Vz 'V~ '. 7„'(b,u1+ . +b~u, ) .

Now we expand the right-hand side of (12) in terms of
some basis. Any basis will suffice —it need not be special-
ly normalized as is the case with the basis used to extend
the reduced-Hamiltonian method. Accordingly, we em-

ploy the standard basis (e; ), where the column vector e;
has a 1 in the ith row and 0 elsewhere. Thus, whereas we
previously had 10 equations (12), now we have 20:

, IBE/Bk, I,
TL~(E,k(()= g Ib I

&L,z(E, k(() —Ib6I'

(9)

(10)

'T1(v1+b6v6+ ' +b1ov10) c1 e1+ +c M e10(2) . . . (2)

+2( 0 1 el + + 0 10 elo)(2) . . . (2)

(13)

Note that the sum in (9) is over forward-propagating
output-side expansion states only, and that "inc" denotes
the incident state. In (10), note that if there can be only
one incident state, there will be one and only one
reAected state, and this state will have the same magni-
tude of group velocity as the incident state. Finally, the
sum of (9) and (10) is always unity.

' ' V„( b1u1+'' ' +bgu5)

where the c" are new expansion coefficients. If we re-
peat the above process until Y„appears on the left-hand
side, we obtain 10n equations, arranged in matrix form:
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FIG. 3. (a) Transmission coefficient of a double-barrier RTD with 6-monolayer A1As barriers, a 14-monolayer GaAs well, and 35-
monolayer undoped emitter and collector spacers. Vfe assume T =77 K, XD = 10"cm, and complete donor ionization. The elec-
tron is incident from the I valley of the GaAs emitter with k~~

=0 and E =5.5058 meV above the conduction-band minimum. (b) Po-
tential profile used in solving the Schrodinger equation for the same RTD at 0.392 V bias.
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0 0 A„,=(u, l

. Iu 1010101010) . (18)

0

0
—n, l

0

0 0

b
c(2)

(n)

(V1

0

0

(15)

Note that we must not solve (15) by block-elimination
methods, for those methods will put the instabilities right
back into the problem. IThis may be seen by attempting
block Gaussian elimination on (15).] On the other hand,
any other sparse Gaussian elimination algorithm' should
solve (15) without reintroducing the instabilities, thus al-
lowing us to use transfer matrices over sufficient dis-

0
tances (approximately 1000 A) to include space-charge
regions. The reason why the rearrangement, Eq. (15),
works so well is simply that by limiting the number of
single-monolayer transfer-matrix factors in each compos-
ite transfer matrix 'T; we have effectively reduced the ex-
ponential growth to a tolerable level.

C
(i)

C1

C(i)

(i)
C&0

(16)

and the A's are

a, , =(Ololololol —X,v, l

.
I

—W, v„),

where each 1 is a 10X10 identity matrix, each block
above is 10X 10, b and the c"are given by

C. Results and discussion

Figure 3(a) is a graph of the transmission coefficient as
calculated from (9) versus applied bias for a RTD with 6-
monolayer AlAs barriers and a 14-monolayer GaAs well.
The device also has 35-monolayer undoped emitter and
collector spacers, and the emitter and collector are both
doped to XD =10' cm . The total amount of material
included in the calculation was 346 monolayers (979 A).
We take T=77 K and assume complete donor ioniza-
tion, due to the heavy doping. The potential profile for
the Schrodinger equation is calculated with the Poisson
equation. The charge term arises from the ionized
donors and the electrons, which obey Fermi-Dirac statis-
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FIG. 4. Current density vs voltage graph for the device of Fig. 3. Solid line, tight-binding calculation; dashed line, envelope-
function calculation.



43 TIGHT-BINDING MODEL FOR GaAs/A1As RESONANT-. . . 4783

X T(E,kII, V)dE dk dk, , (19)

ties. That is, the Poisson and Schrodinger equations were
not solved self-consistently. Figure 3(b) shows the poten-
tial profile used for V =0.392 V. The electron is incident
from the I valley of the GaAs emitter with k~|=0 and
E E,—=5.5058 meV (k, =0.01 A '). For all points in
the graph, Aux conservation was excellent, giving
R + T = 1.0+10 . The graph shows an interesting
structure, particularly the resonance and antiresonance at
0.392 and 0.403 V, respectively. This type of structure,
which is not observed in the usual envelope-function cal-
culations (but which is found in calculations based on the
method of Ando et al. ' ) is associated with tunneling
through virtual states in the X valley of the second bar-
rier. This is demonstrated by expanding the wave func-
tion in one layer of the second barrier in terms of the
eigenstates of the bulk A1As transfer matrix for that layer
and examining the resulting expansion coefficients. For
the aforementioned RTD we carried out such an expan-
sion in the last layer of the second barrier at the resonant
bias of 0.392 V and found that the major contributions
(totaling over 95%) come from X-valley Bloch (propaga-
ting) states with k =+0.710 and +1.02 A

We have also calculated the tunneling current for this
device. The transmission coefficient in the tight-binding
model is a function of E, k~~, and applied bias V. Thus the
current is given by the triple integral

where Ezz is the Fermi level in the emitter bulklike re-
gion.

Figure 4 is a graph of the current density versus ap-
plied bias for the structure of Fig. 3, calculated with both
the tight-binding (solid line) and envelope-function
(dashed line) models. The envelope-function calculation
made no corrections for conduction-band nonparabolici-
ty. As before, the tight-binding calculation assumes that
the electrons are incident from the I valley of GaAs.
Neither model faithfully reproduces the I-V characteris-
tics of a RTD, for the current does not begin a strong
monotonic increase after reaching a minimum. This is
not, however, unexpected, since both models are
coherent. In such models, the current will not rise again
until the applied bias approaches the second resonance or
becomes so great that the electron may tunnel over the
barriers. Because much of the potential is dropped across
the space-charge regions (as opposed to the RTD proper),
in devices with small wells, the bias will necessarily be
fairly high when the second resonance is reached. Since
in both models the current is fairly Aat after the first
peak, it is reasonable to take an average for the valley
current. In the tight-binding model, we have a peak
current density of 3. 10X10 A/cm and an average val-
ley current of 4948 A/cm, for a peak-to-valley ratio of
about 63. In the envelope-function model, the peak
current density is 1.57 X 10 A/cm and the average val-
ley current density is 434 A/cm, giving a peak-to-valley
ratio of about 361. Note that these differences between
the two models, as well as the tight-binding model's lower
peak bias, are all explained by the tight-binding model s
inclusion of the A1As longitudinal X valleys. Since the
X-valley barrier is quite low (about 0.077 eV with our pa-
rameters), its inclusion will tend to make the RTD more
transparent.

T(E,kII, V)~T(E —
EII, 0, V), (20)

where E~~
=A' k~~/2m z,~s. We may then use the standard

expression' for the tunneling current

PB GaAskB +J=
2m A

X T E), V

1+exp[(EF,E EJ ) ~kg T]
Xln dEi,1+exp[(EF ~ E, eV)u, T]— —

(21)

where fF and fc are Fermi-Dirac distribution functions
for the emitter and collector bulklike regions, respective-
ly. While Eq. (19) gives the proper expression for the
current, it is exceedingly difficult to evaluate numerically,
owing to the great amount of work necessary to calculate
the transmission coeflicients. We reduce (19) to a single
integral by making the approximation

IV. CONCLUSIONS

In order to model modern quantum devices more real-
istically, it is essential to treat heterointerfaces more care-
fully than is possible in the usual envelope-function ap-
proximation. It is also often necessary to take into ac-
count band nonparabolicity and the effects of multiple
valleys and bands. Because the conduction-band discon-
tinuity between the A1As X valley and the GaAs I valley
is rather small, inclusion of multivalley effects can be-
come important for heterostructures, especially RTD's.
A RTD model that takes into account the rather small
barrier presented by the AlAs X valley will lead to a
structure which is much more transparent to electron
tunneling, resulting in larger valley currents. In order to
include space-charge regions in our model, we have
presented an improved method for carrying out transfer-
matrix calculations which allows one to transfer across

0
relatively large distances () 1000 A) and incorporate all
of the important regions of the device. Our transmission
coefficients calculated using the tight-binding model show
extra structure associated with X valley tunneling which
does not, however, significantly manifest itself in the
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current-voltage characteristics. We have also found that
while the tight-binding model predicts significantly
higher valley currents than does the envelope-function
model, leading to a more realistic peak-to-valley ratio, it
still fails to satisfactorily reproduce the I-V characteris-
tics of a RTD. Thus, while the tight-binding model clear-
ly represents an improvement over the envelope-function
model, a complete description of a RTD will need to in-
clude additional effects, such as self-consistently deter-
mined potentials, phonons, interface roughness, and im-
purity scattering.
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